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Abstract— In this paper we study robust output regulation for
distributed parameter systems. In particular we are interested
in the internal model principle, which can be used in char-
acterizing controllers that achieve robust output tracking and
disturbance rejection for a linear system. We show that if we do
not require robustness with respect to arbitrary perturbations,
then there may exist robust controllers that do not contain
a full-sized internal model of the exosystem’s dynamics. The
existence of such controllers depends on the class of admissible
perturbations. Our approach also establishes a convenient way
of testing the robustness of a controller with respect to given
perturbations. The theoretic results are applied to analyzing the
robustness properties of controllers for a system of two shock
absorber models, and for a one-dimensional heat equation.

I. INTRODUCTION

In this paper we consider robust output regulation for a
distributed parameter system of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X (1a)
y(t) = Cx(t) +Du(t). (1b)

This problem consists of robust output tracking and distur-
bance rejection for reference and disturbance signals gener-
ated by a signal generator (also called the exosystem) of the
form

v̇(t) = Sv(t), v(0) = v0 ∈W (2a)
yref (t) = Frv(t). (2b)

The robust output problem has been studied actively for over
three decades, see [1], [2], [3], [4] and references therein.
We are especially interested in the internal model principle
introduced for finite-dimensional systems in the 1970’s by
Francis and Wonham, and Davison. This well-known re-
sult gives a characterization for controllers achieving robust
output tracking and disturbance rejection for linear finite-
dimensional systems [5], [6]. Recently, the internal model
principle was also generalized for infinite-dimensional linear
systems [7].

One of the implications of the internal model principle
is that a robust controller must contain at least p copies
of the dynamics of the signal generators, where p is the
number of outputs of the plant (1). In practice this means
that for any Jordan block of S in the exosystem (2) as-
sociated to an eigenvalue iω, the system operator of the
controller must have at least p Jordan blocks of greater
or equal size associated iω. In this paper we study the
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robustness properties of controllers that do not contain “full”
internal models, i.e., the number of copies of the exosystem’s
dynamics is smaller than p. The main motivation for our
study is the possibility of reducing the size of the internal
model in the controller. In particular, we will see that the
number of copies of the exosystem’s dynamics required
in the controller is dependent on the class of admissible
perturbations. Therefore, if we do not require robustness with
respect to all possible uncertainties, there may exist robust
controllers that contain less than p copies of the exosystem’s
dynamics. We will see an example of this in Section V, where
the one-dimensional controller is in particular robust with
respect to small perturbations in the damping coefficients of
the shock absorber models.

As our main results we present a new characterization
for the robustness of a control law, and a method for
testing the robustness of a given controller with respect to
particular perturbations. The testing of robustness can be
accomplished by checking the solvability of certain linear
operator equations. Our conditions for robustness also show
that the perturbations in the parameters of the plant affect
the behaviour of the closed-loop system only through the
change of the transfer function P (λ) = CR(λ,A)B +D of
the plant at the frequencies iωk of the signal generator.

In this paper we consider systems and controllers that
are linear systems on infinite-dimensional Banach spaces.
Such classes of systems are required in the study of models
described by linear partial differential equations, as well as
systems with delays. However, to the authors’ knowledge, the
main results of this paper are new also for finite-dimensional
systems. In such a case the parameters A, B, C, and D of the
plant (1) are matrices of appropriate sizes and many of the
technical assumptions made in Section II become redundant.

We illustrate the theoretic results with two examples. In
the first example we consider a system of two identical and
independent shock absorber models. We first design a one-
dimensional error feedback controller for output tracking
of constant reference signals. We can then use our results
to examine the robustness properties of the control law. In
particular we will see that the perturbations in the damping
coefficients of the shock absorbers do not affect the transfer
function P (λ) of the system at λ = 0, and therefore the
controller is robust with respect to small changes in these pa-
rameters. As an example of control of an infinite-dimensional
system we consider tracking of constant reference signals
for a one-dimensional heat equation. We use our theoretic
results to derive conditions for the perturbations to preserve
the output tracking property.



In this paper we assume that the matrix S in the exosys-
tem (2) is diagonalizable. The case of a non-diagonalizable
S in the signal generator is studied in [8].

II. MATHEMATICAL PRELIMINARIES

In this section we introduce the notation used in the paper
and state the basic assumptions on the system, the exosystem
and the controller. In the case of a finite-dimensional plant
we have X = Cn and the operators in the system, controller
and the closed-loop system are matrices of appropriate sizes.

If X and Y are Banach spaces and A : X → Y is
a linear operator, we denote by D(A), N (A) and R(A)
the domain, kernel and range of A, respectively. The space
of bounded linear operators from X to Y is denoted by
L(X,Y ). If A : X → X , then σ(A), σp(A) and ρ(A) denote
the spectrum, the point spectrum and the resolvent set of A,
respectively. For λ ∈ ρ(A) the resolvent operator is given by
R(λ,A) = (λ−A)−1. The inner product on a Hilbert space
is denoted by 〈·, ·〉.

We consider plants of the form (1), where x(t) ∈ X is the
state of the system, u(t) ∈ U = Cm the input and y(t) ∈
Y = Cp the output. The dimensions of the input space and
the output space satisfy p ≤ m. We assume that A generates
a strongly continuous semigroup on X and that the rest of
the operators are bounded in such a way that B ∈ L(U,X),
C ∈ L(X,Y ) and D ∈ L(U, Y ). For λ ∈ ρ(A) the transfer
function of the plant is given by P (λ) = CR(λ,A)B+D ∈
L(U, Y ).

The reference signals yref (t) are generated by finite-
dimensional exosystem

v̇(t) = Sv(t), v(0) = v0 ∈W (3a)
yref (t) = −Fv(t). (3b)

on W = Cq . In this paper we assume that S is a diagonal
matrix S = diag(iω1, . . . , iωq) and F ∈ L(W,Y ) = Cp×q .
We denote by (φ1, . . . , φq) the Euclidean basis vectors,
which are also the eigenvectors of S.

The plant can be written in a standard form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X (4a)
e(t) = Cx(t) +Du(t) + Fv(t) (4b)

where e(t) = y(t) − yref (t) ∈ Y is the regulation error and
v(t) ∈ W is the state of the exosystem (3). We assume
that σ(A) ∩ σ(S) = ∅ and that P (iωk) is surjective for all
k ∈ {1, . . . , q}.

We consider a dynamic error feedback controller

ż(t) = G1z(t) + G2e(t), z(0) = z0 ∈ Z
u(t) = Kz(t)

on a Banach-space Z. Here z(t) ∈ Z is the state of the
controller, G1 : D(G1) ⊂ Z → Z generates a strongly contin-
uous semigroup on Z, G2 ∈ L(Y,Z) and K ∈ L(Z,U). The
closed-loop system consisting of the plant and the controller
on Xe = X×Z with state xe(t) = (x(t), z(t))T is given by

ẋe(t) = Aexe(t) +Bev(t), xe(0) = xe0 = (x0, z0)T

e(t) = Cexe(t) +Dev(t),

where Ce = (C DK), De = F ,

Ae =

(
A BK
G2C G1 + G2DK

)
and Be =

(
0
G2F

)
.

The operator Ae : D(A) × D(G1) ⊂ Xe → Xe generates a
strongly continuous semigroup TAe(t) on Xe.

A. The Classes of Perturbations to the Plant

In this paper we consider a situation where parameters of
the plant (1) are perturbed in such a way that the operators A,
B, C, and D are changed into Ã : D(Ã) ⊂ X → X , B̃ ∈
L(U,X), C̃ ∈ L(X,Y ), and D̃ ∈ L(U, Y ), respectively.
For λ ∈ ρ(Ã) the transfer function of the perturbed plant
is denoted P̃ (λ) = C̃R(λ, Ã)B̃ + D̃. We likewise denote
the operators of the closed-loop system consisting of the
perturbed plant and the controller by C̃e =

(
C̃ D̃K

)
, and

Ãe =

(
Ã B̃K

G2C̃ G1 + G2D̃K

)
, D(Ãe) = D(Ã)×D(G1).

The perturbations to the operators A, B, C, and D do not
affect the operators Be and De of the closed-loop system.
Whenever Ã generates a semigroup on X , the semigroup
generated by Ãe is denoted by T̃e(t).

The perturbations (Ã, B̃, C̃, D̃) in the class O of pertur-
bations are assumed to satisfy the following conditions:
(a) The perturbed system operator Ã generates a strongly

continuous semigroup on X and satisfies iωk ∈ ρ(Ã)
for all k ∈ {1, . . . , q}

(b) The perturbed closed-loop system is exponentially sta-
ble, and P̃ (iωk) is surjective for all k ∈ {1, . . . , q}.

If the unperturbed closed-loop system is exponentially
stable, then the above conditions are satisfied, for example,
for any bounded perturbations of small enough norms.

III. THE ROBUST OUTPUT REGULATION PROBLEM

The robust output regulation problem is formulated as
follows.
The Robust Output Regulation Problem: Choose the parame-
ters (G1,G2,K) in such a way that the following are satisfied:

1. The closed-loop system operator Ae generates an ex-
ponentially stable semigroup on Xe.

2. For all initial states v0 ∈ W and xe0 ∈ Xe

the regulation error goes to zero asymptotically, i.e.,
limt→∞ e(t) = 0.

3. If the operators (A,B,C,D) are perturbed to
(Ã, B̃, C̃, D̃) ∈ O, then limt→∞ e(t) = 0 for all initial
states v0 ∈W and xe0 ∈ Xe.

Parts 1 and 2 of the problem, i.e. output tracking without
robustness, are called the output regulation problem. The
following terminology is used in the rest of the paper.

Definition 1: If the controller (G1,G2,K) satisfies parts 1
and 2 of the robust output regulation problem, it is said
to solve the output regulation problem. If the controller
solves the robust output regulation problem (with respect to



given perturbations), it is called robust (with respect to given
perturbations).

The robustness of a controller with respect to given
perturbations can be characterized using the solvability of
the Sylvester type regulator equations [5], [4].

Theorem 2: A controller solving the output regulation
problem is robust with respect to given perturbations
(Ã, B̃, C̃, D̃) ∈ O if and only if the perturbed regulator
equations

ΣS = ÃeΣ +Be (6a)

0 = C̃eΣ +De (6b)

have a solution Σ ∈ L(W,Xe) satisfying R(Σ) ⊂ D(Ãe).
Proof: This is a direct consequence of Theo-

rem 3.1 in [7].

IV. TESTING ROBUSTNESS WITH RESPECT TO GIVEN
PERTURBATIONS

In this section we introduce a new characterization for the
robustness of a control law. The conditions can also be used
as a method for testing a robustness of a control law with
respect to given perturbations. In particular, the result shows
that the perturbations in the operators (A,B,C,D) only
affect the regulation property of the controller through the
change of the transfer function of the plant at the frequencies
of the exosystem.

Theorem 3: A controller (G1,G2,K) solving the output
regulation problem is robust with respect to given perturba-
tions (Ã, B̃, C̃, D̃) ∈ O if and only if the equations

P̃ (iωk)Kzk = −Fφk (7a)

(iωk − G1)zk = 0 (7b)

have a solution zk ∈ D(G1) for all k ∈ {1, . . . , q}. Moreover,
the solution of (7) is unique.

The proof of the theorem is based on the following
properties of the regulator equations.

Lemma 4: Let (Ã, B̃, C̃, D̃) ∈ O. An operator Σ =
(Π,Γ)T ∈ L(W,Xe) with R(Σ) ⊂ D(Ãe) = D(Ã)×D(G1)
satisfies the Sylvester equation ΣS = ÃeΣ +Be if and only
if

(iωk − G1)Γφk = G2
(
P̃ (iωk)KΓφk + Fφk

)
(8a)

Πφk = R(iωk, Ã)B̃KΓφk (8b)

for all k ∈ {1, . . . , q}. In this case we have

C̃eΣφk +Deφk = P̃ (iωk)KΓφk + Fφk (8c)

for all k ∈ {1, . . . , q}.
Proof: The conclusion of the lemma can be verified

by applying both sides of the regulator equations (6) to the
eigenvectors φk of S. See [8] for a detailed proof.

Proof of Theorem 3: Let (Ã, B̃, C̃, D̃) ∈ O.
We begin by showing that robustness of a controller with

respect to the given perturbations implies that the equa-
tions (7) have solutions for all k ∈ {1, . . . , q}. The perturbed

closed-loop system is stable, and thus the robustness of the
controller together with Theorem 2 implies that the perturbed
regulator equations (6) have a solution Σ = (Π,Γ) ∈
L(W,Xe) such that R(Π) ⊂ D(Ã) and R(Γ) ⊂ D(G1).
Let k ∈ {1, . . . , q}. We have from (8a) and (8c) in Lemma 4
that the perturbed regulator equations (6) imply

(iωk − G1)Γφk = G2
(
P̃ (iωk)KΓφk + Fφk

)
0 = P̃ (iωk)KΓφk + Fφk.

If we choose zk = Γφk ∈ D(G1)nk , then (7a) follows imme-
diately from the second equation. Furthermore, substituting
the second equation into the right-hand side of the first shows
that (iωk − G1)zk = 0, and thus zk is the solution of the
equations (7). Since k ∈ {1, . . . , q} was arbitrary, the first
part of the proof is concluded.

We now assume that for all k ∈ {1, . . . , q} the equa-
tions (7) have solutions zk ∈ D(G1). We define operators
Π ∈ L(W,X), Γ ∈ L(W,Z), and Σ ∈ L(W,Xe) by

Γ =

q∑
k=1

〈·, φk〉zk, Π =

q∑
k=1

〈·, φk〉R(iωk, Ã)B̃Kzk, (9)

and Σ = (Π,Γ). We will show that Σ is a solution of
the perturbed regulator equations (6). First of all, we have
R(Σ) ⊂ D(Ã) × D(G1) = D(Ãe). Let k ∈ {1, . . . , q}. We
have Γφk = zk, which together with the definition of Π
implies that (8b) is satisfied. Furthermore, since Γφk = zk,
we have from (7) that

(iωk − G1)Γφk = (iωk − G1)zk

= 0 = G2
(
P̃ (iωk)Kzk + Fφk

)
= G2

(
P̃ (iωk)KΓφk + Fφk

)
,

which is precisely (8a). Lemma 4 now implies that Σ is
a solution of the Sylvester equation ΣS = ÃeΣ + Be.
Furthermore, Lemma 4 and equation (7a) imply that we have

C̃eΣφk +Deφk = P̃ (iωk)KΓφk + Fφk

= P̃ (iωk)Kzk + Fφk = 0.

Therefore Σ is a solution of the perturbed regulator equa-
tions, and thus Theorem 2 concludes that the controller is
robust with respect to the given perturbations.

It remains to show that the equations (7) may have at most
one solution. We first note that since the perturbed closed-
loop system is exponentially stable and since S is a finite-
dimensional operator with σ(S) ⊂ iR, the solution of the
Sylvester equation (6a) is unique [9].

Assume that for some k0 ∈ {1, . . . , q} the equations (7)
have solutions zk0 , z̃k0 ∈ D(G1). Let zk be solutions of (7)
for k 6= k0. As in the second part of this proof, we can define
Σ = (Π,Γ)T and Σ̃ = (Π̃, Γ̃)T with the formulas in (9)
using the sets (z1, . . . , zk0 , . . . , zq) and (z1, . . . , z̃k0 , . . . , zq)
of elements, respectively. As above, we have from Lemma 4
that Σ and Σ̃ are solutions of the Sylvester equation (6a).
Since the solution of this equation is unique, we must have



Σ = Σ̃. Due to the definitions of Γ and Γ̃ this is only possible
if zk0 = z̃k0 . �

Theorem 3 also enables us to present a new proof for
the result that a stabilizing controller that incorporates a
p-copy internal model of the exosystem solves the robust
output regulation problem. For distributed parameter systems
this result was proved in [7] by showing the equivalence of
three different definitions for an internal model, which finally
concluded that the p-copy internal model was necessary and
sufficient for robustness. Theorem 3 can be used to give a
more direct proof for the sufficiency of the p-copy internal
model for robustness.

For a diagonal exosystem, the p-copy internal model in a
controller (G1,G1,K) can be defined as follows.

Definition 5: A controller is said to incorporate a p-copy
internal model of the exosystem if

dimN (iωk − G1) ≥ p ∀k ∈ {1, . . . , q}. (10)

Theorem 6: If the controller solves the output regulation
problem and incorporates a p-copy internal model of the ex-
osystem, then it solves the robust output regulation problem.

Proof: Assume the controller (G1,G1,K) solves the
output regulation problem and that (10) is satisfied. Let
(Ã, B̃, C̃, D̃) be such that the perturbed closed-loop system
is exponentially stable.

Since σp(Ãe) ∩ σ(S) = ∅, have as in [7, Lem. 6.3]
that the operator (P̃ (iωk)K)|N (iωk−G1) is injective for every
k ∈ {1, . . . , q}. Furthermore, the condition (10) together
with the Rank-Nullity Theorem [10, Thm. 4.7.7] imply
that (P̃ (iωk)K)|N (iωk−G1) is also surjective for every k ∈
{1, . . . , q}. In particular, the surjectivity of this operator
means that for every k we can find zk ∈ N (iωk − G1)
such that (7a) is satisfied. This concludes that for all k ∈
{1, . . . , q} the equations (7) are satisfied, and thus by The-
orem 3 the controller is robust with respect to perturbations
(Ã, B̃, C̃, D̃). Since the perturbations were arbitrary, this
concludes the proof.

V. SHOCK ABSORBER MODEL

In this section we consider control of a system consisting
of two independent shock absorbers. We begin by building
a one-dimensional feedback controller to achieve tracking of
constant reference signals. We will then study the robustness
properties of the control law using Theorem 3.

The behavior of an individual shock absorber is described
by the equations

q̈(t) + rq̇(t) + q(t) = F (t).

where r > 0 is the damping coefficient. If we control
the external force F (t) and observe the position q(t), the
standard form for a single system becomes

ẋk(t) =

(
0 1
−1 −r

)
xk(t) +

(
0
1

)
uk(t), xk(0) =

(
q(0)
q̇(0)

)
yk(t) =

(
1 0

)
xk(t).

We consider a situation where the nominal plant has a
damping coefficient r = 1, and later in the example consider
the effects of uncertainty in this parameter. In the nominal
situation we therefore have 2 identical and independent
systems, and the system equations become

ẋ(t) = diag (A0, A0)x(t) + diag (B0, B0)u(t)

y(t) = diag (C0, C0)x(t),

where we have denoted x(t) = (x11(t), x21(t), x12(t), x22(t))T ,
u(t) = (u1(t), u2(t))T , y(t) = (y1(t), y2(t))T , and

A0 =

(
0 1
−1 −1

)
, B0 =

(
0
1

)
, C0 =

(
1 0

)
.

The plant is exponentially stable, and its transfer function is
given by

P (λ) = CR(λ,A)B = diag(C0R(λ,A0)B0)

= diag

(
1

λ2 + λ+ 1

)
=

1

λ2 + λ+ 1
I

for all λ /∈ σp(A0).
We consider output tracking of constant signals. As an

exosystem we use

v̇(t) = 0, v(0) = v0

yref (t) =

(
1
1

)
v(t) = 1v0.

We now have iω0 = 0, and φ = 1 ∈ N (iω0 − G) = C.
Furthermore, with this choice we have F = −1 in the
standard form, and P (0) = I is invertible.

As the controller we consider

ż(t) = 0 · z(t) +
(
1 0

)
e(t)

u(t) = Kz(t) =

(
k1
k2

)
z(t),

where we choose the elements of K in such a way that
the controller solves the output regulation problem for the
nominal plant. This can be done by ensuring that the closed-
loop system is stable and the regulator equations have a
solution. In particular, since we have G1 = 0, Lemma 4
implies that the regulator equations are satisfied if

0 = CeΣ +De = P (0)KΓ + F

is satisfied for some Γ ∈ N (0− G1) = C.
Since the closed-loop system is finite-dimensional, its

stability can be determined from the eigenvalues of Ae. Since
the plant is stable, the inverse of λ − Ae can be computed
using the inverse of λ−A and that of its Schur complement
SA(λ) = λ − G1 − G2P (λ)K. Therefore, the closed-loop
system is exponentially stable if we choose K in such a
way that λ − G1 − G2P (λ)K has no roots in C+. A direct
computation yields

SA(λ) = λ− G1 − G2P (λ)K = λ− k1
λ2 + λ+ 1

=
λ3 + λ2 + λ− k1

λ2 + λ+ 1



and if we choose k1 = −1/2, then SA(λ) 6= 0 for all
λ ∈ C+, and the closed-loop system is exponentially stable.
The regulator equations have a solution if the regulation
constraint is satisfied, i.e. if there exists Γ ∈ C such that

P (0)KΓ + F = 0 ⇔
(
−1/2
k2

)
Γ + (−1) = 0

⇔
(
−1/2
k2

)
Γ = 1.

This implies we can choose Γ = −2 and k2 = −1/2, and
then the regulator equations are satisfied. This concludes that
with the choice K = −1/2·1 the controller solves the output
regulation problem.

A. Robustness Properties of the Control Law

Since dimY = 2 > 1 = dimN (0 − G1), our controller
is not guaranteed to be robust with respect to arbitrary
perturbations in the parameters of the plant. Theorem 3 states
that the system is robust with respect to any perturbations for
which the closed-loop system stability is preserved and for
which the equations

P̃ (0)Kz = −F
(0− G1)z = 0

have a solution z ∈ C. Since 0−G1 = 0, the second equation
is satisfied for all z ∈ C.

If we first consider a situation where the damping coeffi-
cients r of the different subsystems are perturbed indepen-
dently of each others, the perturbed system operator of the
plant is given by

Ãj0 =

(
0 1
−1 −rj

)
, A = diag

(
Ã1

0, Ã
2
0

)
and the perturbed transfer function becomes

P̃ (λ) = CR(λ, Ã)B

= diag(C0R(λ, Ã1
0)B0, C0R(λ, Ã2

0)B0)

= diag

(
1

λ2 + r1λ+ 1
,

1

λ2 + r2λ+ 1

)
for all λ /∈ σp(Ã). Since changing the values of the damping
coefficients can be written as an additive perturbation to
A, we know that for small enough changes (i.e., rj ≈ 1)
the closed-loop system remains exponentially stable and
0 ∈ ρ(Ã). However, for any such perturbed values rj the
perturbed transfer function at the frequency λ = 0 is given
by

P̃ (0) = diag

(
1

02 + r1 · 0 + 1
,

1

02 + r2 · 0 + 1

)
= I = P (0).

This means that the uncertainties damping coefficients do
not affect the transfer function of the plant at λ = 0. In
particular this concludes that the 1-dimensional controller is
robust with respect to any changes in the values rj for which
the closed-loop system is exponentially stable and 0 ∈ ρ(Ã).

On the other hand, if we consider a more general case
where the two subsystems are perturbed independently, then
the perturbed transfer function can be written in the form

P̃ (λ) = diag
(
P̃1(λ), P̃2(λ)

)
= P (λ) + diag (δ1(λ), δ2(λ)) ,

where δj(λ) are functions that are analytic in C+. Now,
writing α = 1/z ∈ C the first equation in (7) becomes

P̃ (0)K = −αF
⇔ diag(δ1(0), δ2(0))K = −αF −K

⇔ − 1/2 ·
(
δ1(0)
δ2(0)

)
= (α+ 1/2) · 1

⇔ δj(0) = −1− 2α, j = 1, 2.

This shows that the control law is robust with respect to
precisely those perturbations that affect the transfer functions
Pj(λ) of the subsystems at λ = 0 in the same way.

VI. CONTROLLED HEAT EQUATION

In this section we consider controlling the heat distribution
of a metal bar. We assume the heating can be controlled
on intervals [1/4, 1/2] and [3/4, 1], and observed on the
intervals [0, 1/2] and [1/2, 3/4], as illustrated in Figure 1.{{{{

u1(t) u2(t)

y1(t) y2(t)

Fig. 1. Heating of a metal bar.

We assume that there is no heat flow through the ends
of the bar. The parameters of the plant can be chosen as
X = L2(0, 1), U = Y = C2, and

Ax(z) = x′′(z)− x(z),

D(A) =
{
x ∈ X

∣∣ x, x′ abs. cont., x′′ ∈ X,
x′(0) = x′(1) = 0

}
,

Bu = 4
(
χ[1/4,1/2](z), χ[3/4,1](z)

)(u1
u2

)
,

Cx = 4

(∫ 1

0
χ[0,1/4](z)x(z)dz∫ 1

0
χ[3/4,1](z)x(z)dz

)
,

where χ[a,b](z) is the characteristic function on an interval
[a, b] ⊂ [0, 1]. The operator A generates an exponentially
stable semigroup on X . The explicit expression of the
transfer function P (λ) of the plant can be found in [11, Ex.
3.13]. In particular, we have that P (0) ∈ C2×2 is invertible,
and

P (0) ≈
(

0.2590 4.7008
0.2453 0.2590

)
.

We consider output tracking of constant reference signals.
To this end, we choose the exosystem on W = C to be

v̇(t) = 0, v(0) = v0 ∈W

yref (t) =

(
1
2

)
v(t).



We then have S = 0 ∈ C and F = (−1, −2)T . As
the controller, we choose a one-dimensional dynamic error
feedback controller

ż(t) = ε
(
1, 0

)
e(t), z(0) = z0 ∈ Z

u(t) = −P (0)−1Fz(t).

on Z = C. With this controller, we have G1 = 0 ∈ C,
G2 = ε(1, 0), and K = −P (0)−1F ≈ (8.4167, −0.2510)

T

with ε > 0. For z = 1 ∈ N (0 − G1) = C we have
P (0)Kz = P (0)(−P (0)−1F ) · 1 = −F , and similarly as
in Theorem 3 we can conclude that the controller solves
the output regulation problem provided that the closed-loop
system is exponentially stable. Perturbation techniques such
as the ones in [12, App. B] can be used to show that if we
choose ε > 0 small enough, then the controller stabilizes the
closed-loop system exponentially.

We can now investigate the robustness of the control law.
Since dimY = 2 > 1 = dimN (0−G1), the controller is not
guaranteed to be robust with respect to all perturbations in
the parameters of the plant. The effects of the perturbations to
the transfer function of the plant can be written as P̃ (λ) =

P (λ) + ∆(λ) where ∆(λ) =
(
δ11(λ)
δ21(λ)

δ12(λ)
δ22(λ)

)
. If we write

α = 1/z ∈ C for z ∈ N (0 − G1) = C, then the solvability
of the equations in Theorem 3 are equivalent to

P̃ (0)Kz = −F

⇔ (P (0) + ∆(0)) (−P (0)−1F ) = −αF

⇔ ∆(0)P (0)−1F = (α− 1)F

for some α ∈ C. This concludes that the controller is
robust with respect to any small enough perturbations to the
parameters of the plant if and only if the perturbation ∆(0) =
P̃ (0)−P (0) is such that the application of ∆(0)P (0)−1 does
not change the direction of F , i.e., ∆(0)P (0)−1F ⊂ spanF .
This condition, in turn, can be written as a set of conditions
on the relationships between the components δij(0) of the
perturbing function ∆(·) evaluated at λ = 0. In particular,
the one-dimensional controller is robust with respect to any
perturbations in the parameters of the plant that do not affect
the behaviour of the transfer function at λ = 0.

VII. CONCLUSIONS

In this paper we have considered the robust output regu-
lation problem for infinite-dimensional linear systems and
finite-dimensional diagonal signal generators. We have in
particular concentrated in studying robustness properties of
controllers that do not incorporate full p-copy internal mod-
els. We have shown that the perturbations in the parameters
of the system affect the tracking of reference signals only
through the change of the transfer function of the plant at
the frequencies iωk of the exosystem. Therefore, a feedback
controller is in particular robust with respect to any perturba-
tions that do not affect these values of the transfer function.

Future research topics include extending the results for
nondiagonal exosystems and considering rejection of distur-
bance signals to the state of the plant.
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