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Abstract— In this paper we study certain infinite-dimensional
Sylvester equations. The equations are closely related to robust
output regulation of infinite-dimensional systems. If the signal
generator is finite-dimensional or has discrete spectrum and a
complete set of orthonormal eigenvectors, there are some known
sufficient conditions for the decomposing of these Sylvester
equations. In this paper we generalize these conditions to the
case where the signal generator has discrete spectrum and
a complete set of orthonormal generalized eigenvectors. We
also study how these conditions are related to an infinite-
dimensional version of the internal model of finite-dimensional
control theory. We show that under certain assumptions on the
spectra of the closed-loop system and the signal generator these
conditions are equivalent to the concept of an internal model.

I. INTRODUCTION

Recently there has been much work on infinite-dimen-
sional robust regulation theory [1], [2]. In [3], [2] the finite-
dimensional robust controller theory of Francis and Wonham
represented by Huang [4] has been partly generalized to
infinite-dimensional systems. The key idea is that the closed-
loop state xe(t) approaches a dynamic steady state of the
form Σv(t) as t → ∞. Here Σ is the solution of the
associated Sylvester equation and v(t) is the state of the
exosystem v̇ = Sv. The dynamic steady state operator Σ
can be decomposed into two parts Π and Γ according to the
decomposition of the extended state space to the state spaces
of the system and the controller. The Sylvester equations can
be decomposed accordingly into

ΠS = AΠ +BKΓ + E (1a)
ΓS = G1Γ + G2(CΠ +DKΓ + F ) (1b)

For stable closed-loop systems the regulation error e(t) goes
to zero as t→∞ if CΠ +DKΓ + F = 0. To achieve this,
the controller parameters (G1,G2) are chosen such that the
above equations decompose into

ΠS = AΠ +BKΓ + E (2a)
ΓS = G1Γ (2b)

0 = CΠ +DKΓ + F (2c)

This also leads naturally to robust regulation if we choose
the controller parameters such that the equations (1) and (2)
are equivalent for all suitable perturbations of operators A,
B, C, D, E and F . The equation (2c) then implies that
the regulation error goes to zero as t → ∞ for all these
perturbations and thus the regulation property is robust.
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The main purpose of this paper is to find necessary and
sufficient conditions such that the equations (1) decompose
into equations (2) for all operators (A,B,C,D,E, F ). This
problem is closely related to the Internal Model Principle,
which states that any feedback controller which stabilizes the
closed-loop system also solves the robust output regulation
problem if and only if it contains a suitably reduplicated copy
of the dynamics of the exosystem [5]. This is a well-known
result for finite-dimensional systems and has also been
studied in the case of distributed parameter systems with
finite-dimensional exosystems [6] and infinite-dimensional
exosystems with complete sets of eigenvectors [1].

It has already been shown in [3] that if the exosystem with
system operator S is finite-dimensional, then the equations
(1) and (2) are equivalent for all suitable operators if

R(iωkI − G1) ∩R(G2) = {0}, (3a)
N (G2) = {0} (3b)

and
N (iωkI − G1)dk−1 ⊂ R(iωkI − G1) (3c)

for all k ∈ Z, where (iωk) are the eigenvalues of the signal
generator and dk denotes the dimension of the largest Jordan
block associated to the eigenvalue iωk. In [2] this result
has also been generalized to infinite-dimensional exosystems
with complete sets of orthonormal eigenvectors. In this case
the condition (3c) becomes redundant.

In [7] it has been shown that for S with discrete spectrum
and a complete set of orthonormal eigenvectors the condi-
tions (3) are both necessary and sufficient for the equations
(1) and (2) to be equivalent. In this paper we extend these
results for a more general exosystem capable of generating
polynomially increasing infinite-dimensional signals. This
type of signal generator is constructed by defining an op-
erator with an infinite number of Jordan blocks.

We also compare the conditions (3) to the definition of
internal model in finite-dimensional control theory. The clas-
sical definition uses the Jordan canonical forms of the system
operators of the exosystem and the controller. Because of
this, the definition cannot be used when these operators
are infinite-dimensional. We generalize the definition for
inifinite-dimensional systems and show that under certain
assumptions the conditions (3) are equivalent to the definition
of the internal model.

The equations (2) are often called the regulator equa-
tions related to the linear system consisting of operators
(A,B,C,D,E, F ) and the error feedback controller with
operators (G1,G2,K). Similar equations also exist for non-
linear systems [8]. Even though the Sylvester equations (1)



and (2) are closely related to infinite-dimensional systems,
we consider the equations for general operators without
assumptions on the well-posedness of these systems.

In Section II we introduce the notation and state the basic
assumptions on the considered operators. In Section III we
show that conditions (3) are necessary and sufficient for the
decomposing of the Sylvester equations. The main result
of the section is Theorem 2. In Section IV we generalize
the definition of the internal model for infinite-dimensional
systems and compare it to the conditions (3). The main result
in the section is Theorem 9 which states that under certain as-
sumptions these conditions are equivalent to the definition of
the internal model. Section V contains concluding remarks.

II. NOTATION AND DEFINITIONS

If X and Y are Banach spaces and A : X → Y is
a linear operator, we denote by D(A), N (A) and R(A)
the domain, kernel and range of A, respectively. The space
of bounded linear operators from X to Y is denoted by
L(X,Y ). If A : X → X , then σ(A), σp(A) and ρ(A) denote
the spectrum, the point spectrum and the resolvent set of A,
respectively. For λ ∈ ρ(A) the resolvent operator is given by
R(λ,A) = (λI −A)−1.

Let X,Y, U be Banach-spaces and let W be a Hilbert
space. Let {iωk}k∈Z ∈ iR be a set with no finite accumu-
lation points such that the set Ik =

{
l ∈ Z

∣∣ ωl = ωk

}
is

finite for all k ∈ Z.
Let

{
φl

k

∣∣ k ∈ Z, l = 1, . . . , nk

}
⊂ W where nk < ∞

for all k ∈ Z be an orthonormal basis of W , i.e.

W = span{φl
k}kl, 〈φl

k, φ
m
n 〉 = δknδlm.

We assume there exists some Nd ∈ N such that for every
k ∈ Z we have nk ≤ Nd. For k ∈ Z define an operator
Sk ∈ L(W ) such that

Sk = iωk〈·, φ1
k〉φ1

k +
nk∑
l=2

〈·, φl
k〉
(
iωkφ

l
k + φl−1

k

)
The operator Sk then satisfies (iωkI − Sk)φ1

k = 0 and
(Sk − iωkI)φl

k = φl−1
k for all l ∈ {2, . . . , nk} and thus

corresponds to a Jordan block associated to the eigenvalue
iωk. For k ∈ Z define dk = max

{
nl

∣∣ l ∈ Z, ωl = ωk

}
.

This corresponds to the dimension of the largest Jordan block
associated to the eigenvalue iωk.

Define operator S : D(S) ⊂W →W as

Sv =
∑
k∈Z

Skv, D(S) =
{
v ∈W

∣∣ ∑
k∈Z
‖Skv‖2 <∞

}
.

Also, for k ∈ Z denote by Pk the orthogonal projection
Pk =

∑nk

l=1〈·, φl
k〉φl

k onto the finite-dimensional subspace
Wk = span{φl

k}
nk

l=1.
Let (A,B,C,D,E, F ) be a collection of operators such

that A : D(A) ⊂ X → X , B ∈ L(U,X), C ∈ L(X,Y ),
D ∈ L(U, Y ), E ∈ L(W,X) and F ∈ L(W,Y ). These
represent operators of a distributed parameter system

ẋ = Ax+Bu+ Ev, x(0) = x0 ∈ X
e = Cx+Du+ Fv

where e is the regulation error and v is the state of the
exosystem with v̇ = Sv and v(0) = v0 ∈ D(S).

Let (G1,G2,K) be a collection of operators such that
G1 : D(G1) ⊂ Z → Z, G2 ∈ L(Y,Z) and K ∈ L(Z,U).
They represent the operators of an error feedback controller

ż = G1z + G2e, z(0) = z0 ∈ Z
u = Kz

on the Banach space Z.
The closed-loop system with state xe(t) = (x(t), z(t))T

on the space X × Z is given by

ẋe = Aexe +Bev, xe(0) = (x0, z0)T

e = Cexe +Dev,

where Ce =
[
C DK

]
, De = F ,

Ae =
[
A BK
G2C G1 + G2DK

]
and Be =

[
E
G2F

]
.

For λ ∈ ρ(A) the transfer function of the plant is defined as
P (λ) = CR(λ,A)B +D ∈ L(U, Y ).

Throughout this paper we denote by O a collection
(A,B,C,D,E, F ) of operators where A : D(A) ⊂ X → X ,
B ∈ L(U,X), C ∈ L(X,Y ), D ∈ L(U, Y ), E ∈ L(W,X)
and F ∈ L(W,Y ). It is worthwile to note that these operators
are more general than the operators in a distributed parameter
system, since we do not require that the operator A generates
a C0-semigroup on X or that the operator G1 generates a C0-
semigroup on Z.

III. DECOMPOSING OF THE SYLVESTER EQUATIONS

In this section we study the infinite-dimensional Sylvester
equations

ΠS = AΠ +BKΓ + E (6a)
ΓS = G1Γ + G2(CΠ +DKΓ + F ) (6b)

and

ΠS = AΠ +BKΓ + E (7a)
ΓS = G1Γ (7b)

0 = CΠ +DKΓ + F , (7c)

for operator collections O. The operator equations are con-
sidered on D(S) and the operators Π ∈ L(W,X) and
Γ ∈ L(W,Z) are assumed to satisfy Π(D(S)) ⊂ D(A) and
Γ(D(S)) ⊂ D(G1).

We are interested in finding necessary and sufficient condi-
tions for the operators G1 and G2 such that the equations (6)
and (7) are equivalent for all operator collections O. By this
equivalence we mean that if one of the equations (6) and (7)
has a solution (Π,Γ) such that Π ∈ L(W,X), Γ ∈ L(W,Z),
Π(D(S)) ⊂ D(A) and Γ(D(S)) ⊂ D(G1), then it is also a
solution of the other equation.

To make this consideration meaningful, we present condi-
tions under which the equations (6) have a solution. These
assumptions are in no way minimal and they actually guar-
antee the existence of a unique bounded solution (Π,Γ). The
proof of the lemma can be found in [9].



Lemma 1: If O is a collection of operators such that Ae

generates a strongly stable C0-semigroup, for all k ∈ Z and
l ∈ {1, . . . , nk} we have Beφ

l
k ∈ R(iωkI −Ae)nk−l+1 and

if

∑
k∈Z

nk∑
l=1

 l∑
j=1

‖R(iωk, Ae)l+1−jBeφ
j
k‖

2

<∞,

then there exist operators Π ∈ L(W,X) and Γ ∈ L(W,Z)
with Π(D(S)) ⊂ D(A) and Γ(D(S)) ⊂ D(G1) such that the
equations (6) are satisfied. �

The following is the main result of this section.

Theorem 2: Assume Z = R(iωkI − G1) +R(G2) for all
k ∈ Z. The equations (6) and (7) are equivalent for all
operator collections O if and only if

R(iωkI − G1) ∩R(G2) = {0}, ∀k ∈ Z (8a)
N (G2) = {0} (8b)

and

N (iωkI − G1)dk−1 ⊂ R(iωkI − G1) ∀k ∈ Z. (8c)

�
We will prove the theorem in parts. In Lemma 3 we present

a simpler characterization for the equivalence of the Sylvester
equations. This characterization is from Immonen [1]. The
Lemmas 4, 5 and 6 prove that the decomposing of the
Sylvester equations imply the conditions (8a), (8b) and (8c),
respectively. Finally, Lemma 7 shows that the conditions (8)
imply the decomposing of the Sylvester equations.

Lemma 3: The equations (6) and (7) are equivalent for all
operator collections O if and only if

∀Λ,∆ : ΛS = G1Λ + G2∆ ⇒ ∆ = 0, (9)

where Λ ∈ L(W,Z) is such that Λ(D(S)) ⊂ D(G1) and
∆ ∈ L(W,Y ). �

Proof: We first prove the necessity of condition (9).
Assume the equations (6) and (7) are equivalent for all
operator collections O and assume ΛS = G1Λ + G2∆ for
Λ ∈ L(W,Z) and ∆ ∈ L(W,Y ) with Λ(D(S)) ⊂ D(G1).
Let A,B,C and D be arbitrary operators and choose Γ = Λ,
Π = 0, E = −BKΓ and F = ∆ − DKΓ. We then have
Π(D(S)) ⊂ D(A), Γ(D(S)) ⊂ D(G1) and the equations (6)
are satisfied. Thus also the equations (7) are satisfied. The
equation (7c) now implies

0 = CΠ +DKΓ + F = DKΓ + ∆−DKΓ = ∆.

This concludes that (9) is satisfied.
It remains to prove the sufficiency of (9). Assume (9)

is satisfied for all Λ ∈ L(W,Z) and ∆ ∈ L(W,Y ) with
Λ(D(S)) ⊂ D(G1).

It is clear that if the equations (7) are satisfied for some
operators A,B,C,D,E, F,Π and Γ, then also the equations
(6) are satisfied for these operators.

Assume the equations (6) are satisfied for operators A,B,
C,D,E, F,Π and Γ. If we choose ∆ = CΠ + DKΓ + F

and Λ = Γ, then (9) implies 0 = ∆ = CΠ + DKΓ + F .
Substituting this into equation (6b) we obtain ΓS = G1Γ.
This concludes that the equations (7) are satisfied.

The following three lemmas prove the necessity of the
conditions (8) for the equivalence of the Sylvester equations.

Lemma 4: If the equations (6) and (7) are equivalent for
all operator collections O, then R(iωkI−G1)∩R(G2) = {0}
for all k ∈ Z. �

Proof: Let k ∈ Z and let w ∈ R(iωkI −G1)∩R(G2).
Then there exist z ∈ D(G1) and y ∈ Y such that

w = (iωkI − G1)z = G2y.

Choose Λ = 〈·, φnk

k 〉z and ∆ = 〈·, φnk

k 〉y. For v ∈ D(S)

(ΛS − G1Λ)v = 〈Sv, φnk

k 〉z − 〈v, φ
nk

k 〉G1z

= 〈v, φnk

k 〉(iωkI − G1)z = 〈v, φnk

k 〉G2y = G2∆v.

Thus we have ΛS = G1Λ+G2∆ and our assumption together
with Lemma 3 implies that 0 = ∆φnk

k = 〈φnk

k , φnk

k 〉y = y.
This further implies that w = G2y = 0.

Lemma 5: If the equations (6) and (7) are equivalent for
all operator collections O, then N (G2) = {0}. �

Proof: Let y ∈ N (G2) and let φ ∈ D(S) with ‖φ‖ = 1.
Choose Λ = 0 ∈ L(W,Z) and ∆ = 〈·, φ〉y. We then have
R(Λ) = {0} ⊂ D(G1), ΛSv = 0 and

G1Λv + G2∆v = 0 + 〈v, φ〉G2y = 0

for any v ∈ D(S). Thus we have ΛS = G1Λ +G2∆ and our
assumption together with Lemma 3 implies ∆ = 0. Now
0 = ∆φ = 〈φ, φ〉y = y and thus N (G2) = {0}.

To prove the necessity of the condition (8c) we need the
assumption that Z = R(iωkI − G1) +R(G2) for all k ∈ Z.

Lemma 6: If Z = R(iωkI − G1) +R(G2) for all k ∈ Z
and the equations (6) and (7) are equivalent for all operator
collections O, then N (iωkI −G1)dk−1 ⊂ R(iωkI −G1) for
all k ∈ Z. �

Proof: Since dk = max
{
nl

∣∣ l ∈ Z, ωl = ωk

}
, it

is sufficient to prove the condition (8c) with nk in place of
dk. Let k ∈ Z and z ∈ N (iωkI − G1)nk−1. Since we have
Z = R(iωkI − G1) + R(G2), there exist z1 ∈ D(G1) and
y ∈ Y such that

z = (iωkI − G1)z1 + G2y. (10)

Choose ∆ = (−1)nk〈·, φnk

k 〉y and

Λ =

(
nk−1∑
l=1

(−1)l−1〈·, φl
k〉(iωkI − G1)nk−1−lz

)
+(−1)nk−1〈·, φnk

k 〉z1.
Since z1 ∈ D(G1) and z ∈ N (iωkI − G1)nk−1, we have
R(Λ) ⊂ D(G1). Now for all l ∈ {2, . . . , nk − 1}

(ΛS − G1Λ)φ1
k = (iωkI − G1)Λφ1

k = (iωkI − G1)nk−1z

= 0 = G2∆φ1
k

(ΛS − G1Λ)φl
k = (iωkI − G1)Λφl

k + Λφl−1
k

= (−1)l−1(iωkI − G1)(iωkI − G1)nk−1−lz

+ (−1)l−2(iωkI − G1)nk−1−(l−1)z = 0 = G2∆φl
k



and using (10)

(ΛS − G1Λ)φnk

k = (iωkI − G1)Λφnk

k + Λφnk−1
k

= (−1)nk−1(iωkI − G1)z1 + (−1)nk−2z

= (−1)nk−1 ((iωkI − G1)z1 − z) = (−1)nk−1(−G2y)
= G2 ((−1)nk〈φnk

k , φnk

k 〉y) = G2∆φnk

k

This concludes that ΛSv = G1Λv + G2∆v holds for all
v ∈ span{φl

k}
nk

l=1. Since clearly Λφm
j = 0 and ∆φm

j = 0 for
all j 6= k and m ∈ {1, . . . , nj}, we have for all v ∈ D(S)

ΛSv = ΛPkSv = ΛSPkv = G1ΛPkv + G2∆Pkv

= G1Λv + G2∆v

and thus ΛS = G1Λ+G2∆ in D(S). Now Lemma 3 implies
0 = (−1)nk−1∆φnk

k = ‖φnk

k ‖2y = y. Substituting this into
(10) we get z = (iωkI −G1)z1 and thus z ∈ R(iωkI −G1).

Finally, Lemma 7 proves the sufficiency of the conditions
(8) for the equivalence of the Sylvester equations.

Lemma 7: If the conditions (8) are satisfied, then the
equations (6) and (7) are equivalent for all operator collec-
tions O. �

Proof: By Lemma 3 it is sufficient to show that (9)
holds. Let Λ ∈ L(W,Z) and ∆ ∈ L(W,Y ) be such that
Λ(D(S)) ⊂ D(G1) and

ΛS = G1Λ + G2∆. (11)

Let k ∈ Z. Applying the both sides of (11) to φ1
k we obtain

(iωkI − G1)Λφ1
k = G2∆φ1

k.

Now the conditions (8a) and (8b) imply that ∆φ1
k = 0 and

(iωkI − G1)Λφ1
k = 0 and the condition (8c) shows that

Λφ1
k ∈ N (iωkI−G1) ⊂ N (iωkI−G1)dk−1 ⊂ R(iωkI−G1).

Applying the both sides of (11) to φ2
k we obtain

(iωkI − G1)Λφ2
k + Λφ1

k = G2∆φ2
k.

Since Λφ1
k ∈ R(iωkI − G1), the conditions (8a) and (8b)

imply that

∆φ2
k = 0, (iωkI − G1)Λφ2

k + Λφ1
k = 0

Since Λφ1
k ∈ D(G1), we see that Λφ2

k ∈ D(iωkI−G1)2. Ap-
plying (iωkI−G1) to the both sides of the latter equation and
using Λφ1

k ∈ N (iωkI−G1) we obtain (iωkI − G1)2Λφ2
k = 0

and the condition (8c) implies

Λφ2
k ∈ N (iωkI−G1)2⊂ N (iωkI−G1)dk−1⊂ R(iωkI−G1).

Continuing the same procedure we see that ∆φl
k = 0 and

Λφl
k ∈ N (iωkI−G1)l ⊂ N (iωkI−G1)dk−1 ⊂ R(iωkI−G1)

for all l ∈ {1, . . . , nk − 1}. Applying the both sides of (11)
to φnk

k we obtain

(iωkI − G1)Λφnk

k + Λφnk−1
k = G2∆φnk

k

and the conditions (8a) and (8b) imply that ∆φnk

k = 0. Since
k ∈ Z was arbitrary, we have shown that ∆φl

k = 0 for all
k ∈ Z and l ∈ {1, . . . , nk}. Since {φl

k} is a basis of W this
concludes that ∆ = 0.

IV. CONNECTION TO THE INTERNAL MODEL PRINCIPLE

In this section we study the conditions

R(iωkI − G1) ∩R(G2) = {0}, ∀k ∈ Z (12a)
N (G2) = {0} (12b)

and

N (iωkI − G1)dk−1 ⊂ R(iωkI − G1) ∀k ∈ Z (12c)

in greater detail. In particular we want to compare them to
the concept of internal model in finite-dimensional control
theory. The classical definition states that if dimY = p, then
a controller incorporates an internal model of the exosystem
if the following is satisfied [5]: If s ∈ σ(S) is an eigenvalue
of S such that d(s) is the dimension of the largest Jordan
block associated to s, then s ∈ σ(G1) and G1 has at least
p Jordan blocks of dimension ≥ d(s) associated to s. Since
the operators Sk can be seen as Jordan blocks of the operator
S, this property can be expressed as

For all k ∈ Z we have dimN (iωkI − G1) ≥ dimY
and G1 has at least dimY independent Jordan chains
of length ≥ dk associated to the eigenvalue iωk.

(13)

We can see that even though the original definition of
the internal model is given using the Jordan normal form,
condition (13) also makes sense if the the controller is
infinite-dimensional. The main purpose of this section is to
compare the conditions (12) to the property (13).

In this section we make the following standing assumption.

Assumption 8: σ(S) ∩ σ(A) = ∅ for all considered
operators A. �

The following theorem is the main result of this section.

Theorem 9: Let σ(S)∩σ(Ae) = ∅ and dimY <∞. The
conditions (12) are satisfied if and only if (13) holds. �

We will prove this theorem by proving a series of lemmas.
Since these are also useful results considered separately, we
will prove them using weaker assumptions whenever possi-
ble. In particular it is interesting to see that the conditions
(12) imply the property (13) even if the space Y is infinite-
dimensional.

Lemma 11 proves that the conditions (12) imply that the
condition (13) holds. Lemmas 13, 14 and 15 then prove that
the condition (13) implies conditions (12a), (12b) and (12c),
respectively.

We will start by proving the following useful lemma.

Lemma 10: If σ(S) ∩ σp(Ae) = ∅, then the operator
(P (s)K)|N (sI−G1) is injective for all s ∈ σ(S). �

Proof: Let s ∈ σ(S) and let z ∈ N (sI − G1) be such
that P (s)Kz = 0. Choose x = R(s,A)BKz ∈ D(A). Now

(sI −Ae)
[
x
z

]
=
[

(sI −A)x−BKz
−G2Cx+ (sI − G1)z − G2DKz

]
=
[

BKz −BKz
−G2(CR(s,A)B +D)Kz + (sI − G1)z

]
=
[
0
0

]



Since s ∈ σ(S), we know that s /∈ σp(Ae) and thus sI−Ae

is injective. This implies that z = 0. This concludes that the
restriction of P (s)K to N (sI − G1) is an injection.

The following lemma states that if (12) are satisfied, then
the spaces N (iωkI − G1) are isomorphic to Y and G1 has
dimY independent Jordan chains of length ≥ dk associated
to the eigenvalue iωk for all k ∈ Z. This concludes that
under assumptions of Theorem 9 the conditions (12) imply
that (13) holds, but the result is more general in the sense
that it doesn’t require Y to be finite-dimensional.

Lemma 11: If σ(S) ∩ σ(Ae) = ∅ and the condi-
tions (12) are satisfied, then for every k ∈ Z the op-
erator (P (iωk)K)|N (iωkI−G1) is an isomorphism between
N (iωkI−G1) and Y and G1 has dimY independent Jordan
chains of length ≥ dk associated to the eigenvalue iωk. �

Proof: Let k ∈ Z and denote s = iωk. From Lemma
10 we see that (P (s)K)|N (sI−G1) is injective and thus it is
sufficient to prove that it is also surjective.

Since σ(S)∩σ(Ae) = ∅, we have s ∈ ρ(Ae) and sI−Ae

is surjective. Thus for all z ∈ Z there exist x1 ∈ D(A) and
z1 ∈ D(G1) such that[

0
z

]
= (sI −Ae)

[
x1

z1

]
=
[

(sI −A)x1 −BKz1
−G2Cx1 + (sI − G1)z1 − G2DKz1

]
Since σ(S)∩σ(A) = ∅, we have s ∈ ρ(A) and we get from
the first equation that x1 = R(s,A)BKz1. Thus

z = −G2CR(s,A)BKz1 + (sI − G1)z1 − G2DKz1

= (sI − G1)z1 − G2P (s)Kz1. (14)

Let y ∈ Y . Then z = −G2y ∈ R(G2) ⊂ Z and we can
choose z1 ∈ D(G1) such that (14) holds. Now

−G2y = (sI − G1)z1 − G2P (s)Kz1
⇔ −G2y + G2P (s)Kz1︸ ︷︷ ︸

∈R(G2)

= (sI − G1)z1︸ ︷︷ ︸
∈R(sI−G1)

⇔
{
G2y = G2P (s)Kz1
0 = (sI − G1)z1

⇔
{
y = P (s)Kz1
0 = (sI − G1)z1

because R(sI−G1)∩R(G2) = {0} and N (G2) = {0}. This
means that for every y ∈ Y there exists z1 ∈ N (sI − G1)
such that y = P (s)Kz1 and thus (P (s)K)|N (sI−G1) is
surjective.

This concludes that dimN (sI − G1) = dimY . Since
Jordan chains related to linearly independent eigenvectors
are independent, it remains to show that there exists a Jordan
chain of length ≥ dk related to every ψ1 ∈ N (sI − G1).

Since N (sI − G1)l ⊂ N (sI − G1)l+1 for all l ∈ N, the
condition (12c) implies that we have

N (sI − G1) ⊂ · · · ⊂ N (sI − G1)dk−1⊂ R(sI − G1). (15)

Choose ψ1 ∈ N (sI−G1). Then (15) implies that there exists
ψ2 ∈ D(G1) such that (G1 − sI)ψ2 = ψ1 ∈ D(G1). This
implies that ψ2 ∈ D(G2

1) = D(G1 − sI)2 and

(G1 − sI)2ψ2 = (G1 − sI)ψ1 = 0.

Thus we have ψ2 ∈ N (sI−G1)2. Define {ψl}dk

l=3 recursively
as follows:

Let l ∈ {3, . . . , dk}. Assume ψl−1 ∈ N (sI − G1)l−1. We
have from (15) that there exists ψl ∈ D(G1) such that

(G1 − sI)ψl = ψl−1 ∈ N (sI − G1)l−1 ⊂ D(sI − G1)l−1.

Thus we have ψl ∈ D(G1 − sI)l and

(G1 − sI)lψl = (G1 − sI)l−1ψl−1 = 0.

This implies that ψl ∈ N (sI − G1)l.
The resulting set {ψl}dk

l=1 satisfies

(sI −G1)ψ1 = 0, (G1 − sI)ψl = ψl−1, l ∈ {2, . . . , dk}.

and thus by possibly adding elements to this set we obtain
a Jordan chain {ψl}ml=1 with length m ≥ dk.

From the previous lemma we see that the conditions (12)
imply that G1 has exactly dimY independent Jordan chains.
This follows from our assumption σ(S) ∩ σp(Ae) = ∅ as is
shown in the next lemma.

Lemma 12: If σ(S)∩σp(Ae) = ∅, then for all k ∈ Z we
have N (iωkI − G1) ≤ dimY . �

Proof: Let k ∈ Z and denote s = iωk. We have from
Lemma 10 that (P (s)K)|N (sI−G1) ∈ L(N (sI − G1), Y ) is
injective. Using the Rank-Nullity Theorem [10, Thm 4.7.7]
we can conclude that

dimN (sI − G1) = dimR
(
(P (s)K)|N (sI−G1)

)
+ dimN

(
(P (s)K)|N (sI−G1)

)
= dimR

(
(P (s)K)|N (sI−G1)

)
≤ dimY.

We will now show that if dimY <∞, then the property
(13) also implies that the conditions (12) hold. For this it
is sufficient to assume that σ(S) ∩ σp(Ae) = ∅. This is
satisfied, for example, whenever the operator Ae generates
a strongly stable C0-semigroup, because then σp(Ae) ⊂ C−
[11]. The proof is divided into the following three lemmas.

Lemma 13: If σ(S)∩σp(Ae) = ∅, dimY <∞ and (13)
holds, then R(iωkI − G1) ∩R(G2) = {0} for all k ∈ Z. �

Proof: Let k ∈ Z and denote s = iωk. Lemma 12
shows that we must have dimN (sI − G1) = dimY . Let
v ∈ R(sI − G1) ∩ R(G2). Then there exist y ∈ Y and
z ∈ D(G1) such that v = G2y = (sI − G1)z. We will first
show that there exists z1 ∈ D(G1) such that

v = G2P (s)Kz1 = (sI − G1)z1.

We have from Lemma 10 that (P (s)K)|N (sI−G1) is injective
and since dimN (sI−G1) = dimY , it is invertible. Because
of this we can choose z0 ∈ N (sI − G1) such that

P (s)Kz0 = y − P (s)Kz ∈ Y ⇔ y = P (s)K(z + z0).

We then have

G2P (s)K(z+ z0) = G2y = (sI −G1)z = (sI −G1)(z+ z0)

and thus we can choose z1 = z + z0.



Choose x1 = R(s,A)BKz1 ∈ D(A). As in the proof of
Lemma 10, we see that

(sI −Ae)
[
x1

z1

]
=
[

0
−G2P (s)Kz1 + (sI − G1)z1

]
=
[
0
0

]
.

Since sI − Ae is injective we have z1 = 0, which implies
v = (sI − G1)z1 = 0. Thus R(sI − G1) ∩R(G2) = {0}.

Lemma 14: If σ(S)∩σp(Ae) = ∅, dimY <∞ and (13)
holds, then N (G2) = {0}. �

Proof: Let y ∈ N (G2) and k ∈ Z and denote s = iωk.
Lemma 12 shows that dimN (sI − G1) = dimY . We have
from Lemma 10 that (P (s)K)|N (sI−G1) is injective and
since dimN (sI−G1) = dimY , it is invertible. This implies
that there exists z1 ∈ N (sI−G1) such that y = P (s)Kz1 and
thus G2P (s)Kz1 = 0. Choose x1 = R(s,A)BKz1 ∈ D(A).
As in the proof of Lemma 10, we see that

(sI −Ae)
[
x1

z1

]
=
[

0
−G2P (s)Kz1 + (sI − G1)z1

]
=
[
0
0

]
.

Since s ∈ σ(S) and σ(S) ∩ σp(Ae) = ∅, we have that
sI − Ae is injective and thus z1 = 0. This further implies
that y = P (s)Kz1 = 0 and thus N (G2) = {0}.

Lemma 15: If σ(S)∩σp(Ae) = ∅, dimY <∞ and (13)
holds, thenN (iωkI−G1)dk−1 ⊂ R(iωkI−G1) for all k ∈ Z.
�

Proof: Let k ∈ Z and denote s = iωk and N = dimY .
Lemma 12 shows that we must have dimN (sI −G1) = N .

By our assumption G1 has N independent Jordan chains
{ψl

n}
mn

l=1 with mn ≥ dk associated to s. Because by the
definition of the Jordan chain we have ψk

n ∈ R(sI−G1) for
all n ∈ {1, . . . , N} and k ∈ {1, . . . , dk − 1}, to prove the
lemma it is sufficient to show that

N (sI − G1)m ⊂ span
{
ψl

n

∣∣ n ≤ N, l ≤ m} (16)

for m ∈ {1, . . . , dk − 1}. We will do this using induc-
tion. Since the set {ψ1

n}Nn=1 is linearly independent and
ψ1

n ∈ N (sI − G1) for all n ∈ {1, . . . , N}, we have

N (sI − G1) = span{ψ1
n}Nn=1 (17)

and thus (16) holds for m = 1.
Assume (16) holds for m = j ∈ {1, . . . , dk − 2}. Let

z ∈ N (sI − G1)j+1. Then z ∈ D(G1) and

(sI − G1)z ∈ N (sI − G1)j .

Since we assumed (16) holds for m = j, there exist constants{
αl

n

∣∣ n = 1, . . . , N, l = 1, . . . , j
}

such that

(sI − G1)z =
N∑

n=1

j∑
l=1

αl
nψ

l
n =

N∑
n=1

j∑
l=1

αl
n(G1 − sI)ψl+1

n

where the second equality follows from the fact that {ψl
n}l

are Jordan chains of G1 associated to s. This implies

(sI − G1)(z +
N∑

n=1

j∑
l=1

αl
nψ

l+1
n ) = 0.

We now have from (17) that there exist constants {α0
n}Nn=1

such that

z +
N∑

n=1

j∑
l=1

αl
nψ

l+1
n =

N∑
n=1

α0
nψ

1
n

and thus z ∈ span
{
ψl

n

∣∣ n ≤ N, l ≤ j + 1
}

. This implies
that (16) holds for m = j + 1. This completes the proof.

V. CONCLUSIONS

Necessary and sufficient conditions for decomposing of
certain infinite-dimensional Sylvester equations have been
presented. This property is closely related to robust output
regulation of infinite-dimensional systems. The definition
of the internal model of finite-dimensional control theory
was generalized for infinite-dimensional systems. Using this
generalization it was shown that under certain assumptions
the conditions for the decomposing of the Sylvester equations
are equivalent to the definition of the internal model.

In this paper we have only considered bounded solutions
of the Sylvester equations. A more general theory of robust
regulation may require the dynamic steady state operator Σ
to be unbounded. Because of this, the results presented in
this paper should be extended to allow unbounded operators
Π and Γ.

It was also assumed that the exosystem has pure point
spectrum. One area of further research is considering more
general classes of exosystems.
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