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Abstract— In this paper we employ a new controller structure
in solving the robust output regulation problem for a linear
distributed parameter system with finite or infinite-dimensional
exosystems. In the case of an infinite-dimensional exosystem
we also present additional conditions for achieving polynomial
or logarithmic nonuniform decay rates for the closed-loop
semigroup.

Index Terms— Output tracking, distributed parameter sys-
tem, robustness.

I. INTRODUCTION

The robust output regulation problem for an infinite-
dimensional linear system

ẋ(t) = Ax(t) +Bu(t) + w(t), x(0) = x0 ∈ X (1a)
y(t) = Cx(t) +Du(t) (1b)

involves designing a controller in such a way that the output
y(t) of the plant asymptotically tracks a given reference
signal yref (t) despite the external disturbance signals w(t).
Robust output regulation of infinite-dimensional systems has
been studied actively since the early 1980’s, see [17], [16],
[11], [13] and references therein.

In [11] the classical internal model principle of Francis
and Wonham [5], and Davison [4] was extended for infinite-
dimensional systems and for reference and disturbance sig-
nals generated by an infinite-dimensional exosystem. In its
original form, the p-copy internal model principle is very
much a finite-dimensional concept. Because of this, for
infinite-dimensional systems the internal model has been
redefined and has appeared in different forms in the liter-
ature [16], [7], [6]. In [11], three different definitions for an
“internal model” were studied. Most notably, these included
the p-copy internal model principle, which is very near the
Jordan form version of the original definition by Francis and
Wonham, and the so-called G-conditions. It was shown that
under suitable conditions these concepts are equivalent, but
they do possess differing properties. In particular, the G-
conditions remain meaningful for plants whose input spaces
are infinite-dimensional, whereas in such a situation the p-
copy internal model becomes ambiguous.

In [6] the robust output regulation problem was solved
with a controller that incorporates an internal model of the
exosystem. The structure of the controller was chosen in such
a way that the internal model could be inserted as a block
in a triangular controller, and subsequently the remaining
parameters of the controller were used in stabilizing the
closed-loop system. The internal model in [6] was defined
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using the G-conditions, and because of this, the form of the
triangular structure was chosen in such a way that verifying
the G-conditions for the controller became possible.

In this paper we solve the robust output regulation problem
using an alternative controller structure. In particular, we
choose a complementary triangular structure that is more
natural for verifying that the controller incorporates the p-
copy internal model of the exosystem.

Our alternative triangular structure also has two additional
practical advantages. First of all, it allows controller design
for plants that have more inputs than outputs. In addition,
recently in [12] it was shown that if the class of admissible
perturbations to the operators (A,B,C,D) of the plant (1)
is restricted, the robust output regulation problem may be
solvable with a controller that does not incorporate a full
internal model. In order to design observer based controllers
with reduced order internal models it becomes necessary to
use the controller structure as defined in this paper [10]. For
an example of application, see [10, Sec. VI].

The triangular controller structure used in this paper was
first introduced in [10] where it was used in designing a
controller with a reduced order internal model of a diagonal
finite-dimensional exosystem. In this paper use it to solve
the robust output regulation problem for two different types
of full exosystems: A general finite-dimensional exosystem
and a diagonal infinite-dimensional exosystem. For a finite-
dimensional exosystem, the internal model based controller
constructed in this paper achieves robust output regulation
with exponential closed-loop stability. In the case of an
infinite-dimensional exosystem, exponential stability is un-
achievable, and the closed-loop system is instead stabilized
strongly. In the latter situation we show that under suitable
additional assumptions it is possible to achieve nonuniform
decay rates for the closed-loop semigroup. In particular, for
systems on Hilbert spaces it is possible to achieve polynomial
closed-loop stability.

If X and Y are Banach spaces and A : X → Y is a
linear operator, then D(A) and N (A) denote the domain
and the null space of A, respectively. The space of bounded
linear operators from X to Y is denoted by L(X,Y ). If
A : X → X , then σ(A) and ρ(A) = C \ σ(A) are its
spectrum and its resolvent set, respectively. For λ ∈ ρ(A)
the resolvent operator is given by R(λ,A) = (λI −A)−1.

II. ASSUMPTIONS ON THE PLANT AND THE CONTROLLER

The operators of the plant (1) on a Banach space X
are such that A : D(A) ⊂ X → X generates a strongly
continuous semigroup T (t) on X . The input, output, and
feedthrough operators are bounded in such a way that B ∈



L(U,X), C ∈ L(X,Y ), and D ∈ L(U, Y ), where the input
space U is a Banach space and Y = Cp is the output space.
We assume that the pair (A,B) is exponentially stabilizable
and the pair (C,A) is exponentially detectable. The transfer
function of the plant is denoted by P (λ) = CR(λ,A)B+D
for λ ∈ ρ(A).

The reference and disturbance signals are generated by an
exosystem of the form

v̇(t) = Sv(t), v(0) = v0 ∈W (2a)
w(t) = Ev(t) (2b)

yref (t) = −Fv(t) (2c)

on a separable Hilbert space W , where S generates a strongly
continuous group, E ∈ L(W,X) and F ∈ L(W,Y ). In this
paper we consider two types of exosystems — one finite-
dimensional and the other infinite-dimensional.

Definition 1 (The Finite-Dimensional Exosystem): For
the finite-dimensional exosystem we have W = Cr for some
r ∈ N, S ∈ L(W ) = Cr×r is a matrix in its Jordan canonical
form, and E ∈ L(W,X) and F ∈ L(W,Y ) = Cp×r. The
eigenvalues of σ(S) = {iωk}qk=1 ⊂ iR are distinct.

Definition 2 (The Infinite-Dimensional Exosystem): For
the infinite-dimensional diagonal exosystem we have that
W = `2(C) is a separable Hilbert space with the canonical
orthonormal basis {φk}k∈Z. The operator S is

Sv =
∑
k∈Z

iωk〈v, φk〉φk,

v ∈ D(S) =
{
v ∈W

∣∣ ∑
k∈Z
|ωk|2|〈v, φk〉|2 <∞

}
,

where the eigenvalues {iωk}k∈Z ⊂ iR of S are distinct
and have a uniform gap, i.e., infk 6=l|ωk − ωl| > 0. We
also assume the sequence is ordered in such a way that
ωk < ωl whenever k < l. The E and F are Hilbert–
Schmidt operators, i.e., (Eφk)k∈Z ∈ `2(X) and (Fφk)k∈Z ∈
`2(Y ) (F automatically has this property due to the Riesz
Representation Theorem).

For the finite-dimensional exosystem we denote by nk ∈ N
the size of the Jordan block associated to iωk ∈ σ(S). For
the infinite-dimensional exosystem we define nk = 1 for all
k ∈ Z. For both exosystems we assume that iωk ∈ ρ(A) and
that P (iωk) is surjective for every k.

The regulation error is defined as e(t) = y(t) − yref (t).
We consider a dynamic error feedback controller

ż(t) = G1z(t) + G2e(t), z(0) = z0 ∈ Z
u(t) = Kz(t)

on a Banach space Z, where G1 : D(G1) ⊂ Z → Z generates
a semigroup on Z, G2 ∈ L(Y,Z), and K ∈ L(Z,U).

The plant and the controller can be written together as a
closed-loop system on the product space Xe = X × Z as

ẋe(t) = Aexe(t) +Bev(t), xe(0) = xe0 = [ x0
z0 ]

e(t) = Cexe(t) +Dev(t),

where Ce = [C DK], De = −F ,

Ae =

[
A BK
G2C G1 + G2DK

]
and Be =

[
E
−G2F

]
.

Due to our assumptions, the operator Ae generates a strongly
continuous semigroup Te(t) on Xe.

III. THE ROBUST OUTPUT REGULATION PROBLEM

Our main control problem is defined in the following.
The Robust Output Regulation Problem: Choose

(G1,G2,K) in such a way that the following are satisfied:

1. The closed-loop system is exponentially/strongly sta-
ble, i.e., the semigroup Te(t) generated by Ae is
exponentially/strongly stable.

2. For all initial states v0 ∈ W and xe0 ∈ Xe

the regulation error goes to zero asymptotically, i.e.,
limt→∞ e(t) = 0.

3. If the operators (A,B,C,D,E, F ) are perturbed to
(Ã, B̃, C̃, D̃, Ẽ, F̃ ) in such a way that Ãe generates
an exponentially/strongly stable semigroup, σ(Ãe) ∩
σ(S) = ∅ and the Sylvester equation ΣS = ÃeΣ+Be
has a solution, then limt→∞ e(t) = 0 for all v0 ∈ W
and xe0 ∈ Xe.

The theory developed in [11] shows that the controllers
solving the robust output regulation problem are character-
ized by the internal model principle in Theorem 4.

Definition 3 (The p-Copy Internal Model): A
controller (G1,G2,K) is said to incorporate a p-copy
internal model of the exosystem (2) if for all k we have

dimN (iωk − G1) ≥ dim Y

and G1 has at least dimY = p independent Jordan chains of
length greater than or equal to nk associated to the eigenvalue
iωk.

Theorem 4: Assume the controller (G1,G2,K) stabilizes
the closed-loop system strongly in such a way that iωk ∈
ρ(Ae) for all k, and the Sylvester equation ΣS = AeΣ +Be
has a solution Σ ∈ L(W,Xe). Then the controller solves the
robust output regulation problem if and only if it incorporates
a p-copy internal model of the exosystem.

IV. THE CONTROLLER WITH A P-COPY INTERNAL
MODEL

In this section we define the controller structure used in
solving the robust output regulation problem. As the state
space of the controller we choose Z = Z1×Z2, where Z1 =
CnZ and Z2 is a Banach space. The parameters (G1,G2,K)
of the controller are of the form

G1 =

[
G1 R1

0 R2

]
, G2 =

[
G2

R3

]
, K =

[
K1, K2

]
,

where G1 ∈ L(Z1), R1 ∈ L(Z2, Z1), R2 : D(R2) ⊂ Z2 →
Z2 generates a semigroup on Z2, G2 ∈ L(Y,Z1), R3 ∈
L(Y, Z2), K1 ∈ L(Z1, U), and K2 ∈ L(Z2, U).



The operator G1 is called the internal model of the
exosystem (2). We choose G1 to be a block diagonal operator

G1 = block diag
(
S, S, . . . , S︸ ︷︷ ︸

p times

)
(3)

with domain D(G1) = D(S) × · · · × D(S) on the space
Z1 = W p. With this choice the controller incorporates a
p-copy internal model, as is shown in the next theorem.

Theorem 5: The controller (G1,G2,K) incorporates a p-
copy internal model of the exosystem.

Proof: For the finite-dimensional exosystem: Because
the frequencies iωk are distinct, we immediately see that for
every k ∈ {1, . . . , q} we have dimN (iωkI − G1) = p and
G1 has exactly p independent Jordan chains of length nk
associated to iωk. The structure of G1 further implies that
the operator G1 is such that dimN (iωkI − G1) ≥ p and
G1 has at least p independent Jordan chains of length ≥ nk
associated to iωk.

For the infinite-dimensional exosystem we similarly see
that dimN (iωkI − G1) = p, and further dimN (iωkI −
G1) ≥ p.

In the following theorem we choose the parameters of the
controller (G1,G2,K) in such a way that the closed-loop
system is stabilized in a suitable way. The type of stability
available depends solely on the type of stability achievable
for the semigroup generated by G1 +G2(CHe1 +DK1).

Theorem 6: Choose Z = Z1 ×X , K =
[
K1, −K2

]
,

G1 =

[
G1 G2(C +DK2)
0 A+BK2 + L(C +DK2)

]
, G2 =

[
G2

L

]
,

where G1 is as in (3), and K2 ∈ L(X,U) and L1 ∈ L(Y,X)
are chosen in such a way that A+BK2 and A+L1C generate
exponentially stable semigroups.

For any K1 ∈ L(Z1, U) the Sylvester equation

He1G1 = (A+ L1C)He1 + (B + L1D)K1. (4)

has a unique solution He1 ∈ L(Z1, X) satisfying
He1(D(G1)) ⊂ D(A).

Assume then, that K1 ∈ L(Z1, U) and G2 ∈ L(Y,Z1)
can be chosen in such a way that G1 + G2(CHe1 + DK1)
generates an exponentially/strongly stable semigroup. If we
then choose L = L1+He1G2, then the closed-loop system is
exponentially/strongly stable. Moreover, there exist M ≥ 1
and ω0 > 0 such that the resolvent operator of the closed-
loop system satisfies

‖R(iω,Ae)‖ ≤M‖R(iω,G1 +G2(C1He1 +DK1))‖ (5)

for ω ∈ R with |ω| ≥ ω0.
Proof: The operator A + L1C generates an exponen-

tially stable semigroup and −G1 generates a semigroup with
growth bound equal to zero. Now [15, Cor. 8] shows that for
any K1 ∈ L(Z1, U) the Sylvester equation (4) has a unique
solution He1 ∈ L(Z1, X) satisfying He1(D(G1)) ⊂ D(A).

If the controller (G1,G2,K) is chosen as suggested, then

Ae =

 A BK1 −BK2

G2C G1 +G2DK1 G2C
LC LDK1 A+BK2 + LC

 .

If we choose a similarity transform Qe ∈ L(X × Z1 ×X)
by

Qe =
[
I 0 0
0 I 0
I 0 I

]
and Q−1e =

[
I 0 0
0 I 0
−I 0 I

]
,

we can define Âe = QeAeQ
−1
e on X×Z1×X , and compute

Âe = Qe

 A+BK2 BK1 −BK2

0 G1 +G2DK1 G2C
−A−BK2 LDK1 A+BK2 + LC


=

A+BK2 BK1 −BK2

0 G1 +G2DK1 G2C
0 (B + LD)K1 A+ LC

 .
Denote

Âe1 =

[
G1 +G2DK1 G2C
(B + LD)K1 A+ LC

]
.

Since A+BK2 is exponentially stable, the block triangular
structure shows that Âe (and hence also Ae by similarity) is
exponentially/strongly stable if Âe1 is exponentially/strongly
stable [6, Lem. 20]. Since L = L1 +He1G2, we have

Âe1 =

[
G1 0

(B + L1D)K1 A+ L1C

]
+

[
G2

He1G2

][
DK1 C

]
.

Define Qe1 =
[

I 0
He1 −I

]
∈ L(Z1 × X) with Q−1e1 = Qe1.

Since He1 satisfies the equation (4), a direct computation
yields

Q−1e1

[
G1 0

(B + L1D)K1 A+ L1C

]
Qe1 =

[
G1 0
0 A+ L1C

]
.

Therefore, if we define Ae1 = Q−1e1 Âe1Qe1, then

Ae1 =

[
G1 0
0 A+ L1C

]
+

[
G2

0

] [
CHe1 +DK1 − C

]
=

[
G1 +G2(CHe1 +DK1) −G2C

0 A+ L1C

]
.

Since A + L1C generates an exponentially stable semi-
group and G1 +G2(CHe1 +DK1) is exponentially/strongly
stable, also the semigroup generated by Ae1 is exponen-
tially/strongly stable by [6, Lem. 20]. This finally concludes
that the closed-loop system is exponentially/strongly stable.

Finally, the fact that there exist M ≥ 1 and ω0 > 0 such
that (5) holds for ω ∈ R with |ω| ≥ ω0 follows from the
triangular structures of operators Ae1 and Âe similarly as in
the proof of [13, Lem. 19]

V. STABILIZATION OF THE INTERNAL MODEL

Theorem 6 shows that in order to stabilize the closed-
loop system, we must be able to choose the operators
K1 ∈ L(Z1, U) and G2 ∈ L(Y,Z1) in such a way that
the operator G1 + G2(CHe1 + DK1) generates a suitably
stable semigroup. These choices are the main topic of this
section. We will complete the stabilization of the internal
model separately for the two different types of exosystems.

Denote PL(λ) = CR(λ,A + L1C)(B + L1D) + D for
λ ∈ C+. This is the transfer function of the plant (1) after
an output injection L1y(t) = L1(Cx(t) + Du(t)). Since
{iωk}k ∈ ρ(A) ∩ ρ(A + L1C), the surjectivity of P (iωk)
also implies that PL(iωk) is surjective for every k.



A. Stabilization of the Finite-Dimensional Internal Model

Since we assumed S to be in its Jordan canonical form, we
can denote the Euclidean basis vectors {ek}rk=1 of W = Cr
as

{φ11, . . . , φ
n1
1 , φ12, . . . , φ

n2
2 , . . . , φ1q, . . . , φ

nq
q } = {e1, . . . , er},

and then for every k ∈ {1, . . . , q} the sequence {φlk}
nk

l=1

is a Jordan chain of S associated to the eigenvalue iωk.
Moreover, define ϕj(k,l) ∈W

p by

ϕ1
(k,l) = (φlk, 0, . . . , 0)T , ϕ2

(k,l) = (0, φlk, 0, . . . , 0)T , . . . ,

ϕp(k,l) = (0, . . . , 0, φlk)T .

Then {ϕj(k,l) | k = 1, . . . , p, l = 1, . . . , nk, j = 1, . . . , p }
is an orthonormal basis of Z1 = Cpr, and N (iωk − G1) =
span{ϕj(k,1)}

p
j=1. Finally, for every k ∈ {1, . . . , q} the

independent Jordan chains of G1 associated to iωk are

{ϕ1
(k,1), . . . , ϕ

1
(k,nk)

}, {ϕ2
(k,1), . . . , ϕ

2
(k,nk)

}, . . . ,

{ϕp(k,1), . . . , ϕ
p
(k,nk)

}.

We choose the operator K1 ∈ L(Z1, U) as

K1 =

q∑
k=1

p∑
j=1

〈·, ϕj(k,1)〉PL(iωk)†ej

where PL(iωk)† is the Moore–Penrose Pseudoinverse of
PL(iωk), and {ek}pk=1 ⊂ Y = Cp are the Euclidean basis
vectors of Y = Cp.

We will now show that the pair (CHe1 + DK1, G1)
is detectable. Since Z1 = Cpr and Y = Cp are finite-
dimensional and since σ(G1) = {iωk}qk=1 and N (iωk −
G1) = span{ϕj(k,1)}

p
j=1 for every k ∈ {1, . . . , q}, the de-

tectability of (CHe1+DK1, G1) can be verified by showing
that (CHe1 +DK1)ϕj(k,1) 6= 0 for every k ∈ {1, . . . , q} and
j ∈ {1, . . . , p} [8, Thm. 6.2-5]. To do this, we first need
to compute He1ϕ

j
(k,1). Applying both sides of the Sylvester

equation (4) to ϕj(k,1) (and using G1ϕ
j
(k,1) = iωkϕ

j
(k,1)) we

get

(He1G1 − (A+ L1C)He1)ϕj(k,1) = (B + L1D)K1ϕ
j
(k,1)

⇒ (iωkI −A− L1C)He1ϕ
j
(k,1) = (B + L1D)K1ϕ

j
(k,1)

⇒ He1ϕ
j
(k,1) = R(iωk, A+ L1C)(B + L1D)K1ϕ

j
(k,1).

A further computation shows

(CHe1 +DK1)ϕj(k,1)

= CR(iωk, A+ L1C)(B + L1D)K1ϕ
j
(k,1) +DK1ϕ

j
(k,1)

= PL(iωk)K1ϕ
j
(k,1) = PL(iωk)PL(iωk)†ej = ej 6= 0,

since PL(iωk) is surjective and thus PL(iωk)† is a right
inverse. This concludes that the pair (CHe1 +DK1, G1) is
detectable, and therefore G2 can be chosen in such a way that
G1 + G2(CHe1 + DK1) generates an exponentially stable
semigroup (i.e., the matrix is Hurwitz).

We have arrived that the following conclusion.

Theorem 7: For a finite-dimensional exosystem, the
choices of the controller parameters in Theorem 6 together
with the above internal model (G1, G2,K1) solve the robust
output regulation problem in such a way that the closed-loop
system is exponentially stable.

Proof: Since S is a finite-dimensional operator with
σ(S) ⊂ iR and Ae generates an exponentially stable
semigroup, the Sylvester equation ΣS = AeΣ + Be has a
solution Σ ∈ L(W,Xe) satisfying R(Σ) ⊂ D(Ae) [15]. The
conclusion of the theorem now follows from Theorems 4
and 6.

B. Stabilization of the Infinite-Dimensional Internal Model

In the case of an infinite-dimensional exosystem we have
Z1 = W p. For every k ∈ Z we define ϕlk ∈W p by

ϕ1
k = (φk, 0, . . . , 0)T , ϕ2

k = (0, φk, 0, . . . , 0)T , . . . ,

ϕpk = (0, . . . , 0, φk)T .

Then {ϕlk | k ∈ Z, l = 1, . . . , p } is an orthonormal basis of
Z1 and N (iωk−G1) = span{ϕlk}

p
l=1. Let (hk)k∈Z ∈ `2(C)

be such that hk 6= 0 for all k ∈ Z. The operator K1 is chosen
to be

K1 =
∑
k∈Z

p∑
l=1

〈·, ϕlk〉hk
PL(iωk)†el
‖PL(iωk)†‖

, (6)

where PL(iωk)† is the Moore–Penrose Pseudoinverse of
PL(iωk), and {e1, . . . , ep} ⊂ Y = Cp are the Euclidean
basis vectors of Y = Cp. We clearly have K1 ∈ L(Z1, U).

As we saw in Theorem 6, the Sylvester equation (4) has a
unique solution He1 ∈ L(Z1, X) satisfying He1(D(G1)) ⊂
D(A). Applying both sides of (4) to ϕlk for k ∈ Z and
l ∈ {1, . . . , p} yields

(He1G1 − (A+ L1C)He1)ϕlk = (B + L1D)K1ϕ
l
k

⇒ (iωkI −A− L1C)He1ϕ
l
k = (B + L1D)K1ϕ

l
k

⇒ He1ϕ
l
k = R(iωk, A+ L1C)(B + L1D)K1ϕ

l
k.

Since {ϕlk | k ∈ Z, l = 1, . . . , p } is a basis of Z1, this
concludes that He1 is given by the formula

He1 =
∑
k∈Z

p∑
l=1

〈·, ϕlk〉R(iωk, A+ L1C)(B + L1D)K1ϕ
l
k.

We will now show that G2 can be chosen in such a way
that the semigroup generated by G1 + G2(CHe1 + DK1)
is strongly stable. Using (6) and the formula for He1 shows
that

(CHe1 +DK1)ϕlk

= CR(iωk, A+ L1C)(B + L1D)K1ϕ
l
k +DK1ϕ

l
k

= PL(iωk)K1ϕ
l
k = hkPL(iωk)

PL(iωk)†el
‖PL(iωk)†‖

=
hk

‖PL(iωk)†‖
el.



The sequence (‖PL(iωk)‖)k∈Z is uniformly bounded since
A+ L1C is exponentially stable. Because

1 = ‖I‖ = ‖PL(iωk)PL(iωk)†‖ ≤ ‖PL(iωk)‖‖PL(iωk)†‖

⇔ 1

‖PL(iωk)†‖
≤ ‖PL(iωk)‖,

also the sequence (1/‖PL(iωk)†‖)k∈Z is uniformly bounded
with respect to k ∈ Z. Let z1 ∈ Z1 be arbitrary. Since
Z1 = W p, z1 is of the form z1 = (w1, w2, . . . , wp)

T ,
where wl ∈W for every l ∈ {1, . . . , p}. Moreover, we have
〈z1, ϕlk〉 = 〈wl, φk〉 for every l ∈ {1, . . . , p}. If we denote
c1 =

∑
k∈Z

hk

‖PL(iωk)†‖φk ∈W , then

(CHe1 +DK1)z1 =
∑
k∈Z

p∑
l=1

〈z1, ϕlk〉(CHe1 +DK1)ϕlk

=

p∑
l=1

∑
k∈Z
〈z1, ϕlk〉

hk
‖PL(iωk)†‖

el

=

p∑
l=1

el
∑
k∈Z
〈wl, φk〉

hk
‖PL(iωk)†‖

=

p∑
l=1

el

〈
wl,
∑
k∈Z

hk
‖PL(iωk)†‖

φk

〉
=

p∑
l=1

el 〈wl, c1〉 .

This concludes that the operator G1 +G2(CHe1 +DK1) is
of the form

G1 +G2(CHe1 +DK1)

=

S . . .
S

+

G
11
2 · · · G1p

2
...

. . .
Gp12 Gpp2


〈·, c1〉 . . .

〈·, c1〉


where Glj2 ∈ L(C,W ) = W for every l, j ∈ {1, . . . , p}. If
we choose Glj2 = 0 whenever l 6= j, and Gll2 = g2 ∈ W for
all l ∈ {1, . . . , p}, then the operator becomes diagonal, i.e.,

G1 +G2(CHe1 +DK1) =

S + g2〈·, c1〉
. . .

S + g2〈·, c1〉

 .
It is now clear that the properties of the semigroup generated
by G1 + G2(CHe1 + DK1) follow from those of the
semigroup generated by the operator S + g2〈·, c1〉.

Since S has compact resolvent and generates a di-
agonal contraction semigroup, and since 〈c1, φk〉 =
hk/‖P (iωk)†‖ 6= 0, the internal model can be stabilized
strongly with the choice g2 = −c1 ∈ W [2]. Theorems 9
and 10 show that under suitable assumptions on the growth
of the norms ‖P (iωk)†‖ we can achieve additional stability
properties for the closed-loop system. The results use the fol-
lowing sufficient condition for the solvability of the Sylvester
equation ΣS = AeΣ +Be.

Lemma 8: If the closed-loop system is strongly stable and
(‖R(iωk, Ae)‖‖Beφk‖)k∈Z ∈ `2(C), then ΣS = AeΣ + Be
has a solution Σ ∈ L(W,Xe) satisfying Σ(D(S)) ⊂ D(Ae).

Proof: The results follows directly from [6, Lem. 6].

Theorem 9: If ‖PL(iωk)
†‖

|hk| = O(|k|β) for some β > 0,
then for any α > β + 1/2 the operator G2 can be chosen
in such a way that the closed-loop system is strongly stable,
σ(Ae)∩iR = ∅ and ‖R(iω,Ae)‖ = O(|ω|α). The controller
then solves the robust output regulation problem if Be ∈
L(W,Xe) satisfies (|ωk|α‖Beφk‖)k∈Z ∈ `2(C). Finally, if
X is a Hilbert space, then the closed-loop is polynomially
stable and there exists Me ≥ 1 such that

‖Te(t)xe‖ ≤
Me

t1/α
‖Aexe‖, t > 0 (7)

for every xe ∈ D(Ae).
Proof: From the structure of the operator G1 +

G2(CHe1+DK1) it is clear that if S+g2〈·, c1〉, generates a
strongly stable semigroup with the property σ(S+g2〈·, c1〉)∩
σ(S) = ∅, then the same is true for G1+G2(CHe1+DK1).
Furthermore, since W is a Hilbert space and S∗ = −S,
this is equivalent to the operator −S+ c1〈·, g2〉 generating a
strongly stable semigroup and σ(−S+ c1〈·, g2〉)∩σ(−S) =
∅. The operator −S is a diagonal operator with simple
eigenvalues that have a uniform gap. Because of this, we
can choose g2 ∈ W using pole placement [18]. More
precisely, we apply Theorem 15 in [14] (where a similar
stabilization problem was considered for SISO systems). It
is sufficient to replace |〈g2, φk〉||PK(iωk)| in [14, Thm. 17]
by |hk|/‖PL(iωk)†‖. After this modification the proof of [14,
Thm. 15] gives a way of choosing g2 ∈ W in such a way
that σ(−S + c1〈·, g2〉) = {µk}k∈Z, where

µ0 = −1 and µk = − 1

|k|α
− iωk.

The resulting operator −S + c1〈·, g2〉 — and consequently
also G1 +G2(CHe1 +DK1) — is a Riesz-spectral operator
with eigenvalues {µk}k∈Z and all but a finite number of
these eigenvalues are simple. Because of this, the semigroup
generated by G1 + G2(CHe1 + DK1) is strongly stable,
σ(G1 + G2(CHe1 + DK1)) ∩ σ(S) = ∅. Moreover, a
geometric argument can be used to show that for a large
enough |ω|

‖R(iω,G1 +G2(CHe1 +DK1))‖

≤ M̃1

dist(iω, σ(−S + c1〈·, g2〉))
=

M̃1

mink|iω − µk|

≤ M̃1M̃2|ω|α

Together with Theorem 6 this implies

‖R(iω,Ae)‖ ≤M‖R(iω,G1 +G2(CHe1 +DK1))‖
= O(|ω|α).

If X is a Hilbert space, we can also renorm Xe to be Hilbert,
and we have from [3, Thm. 2.4] that there exists Me ≥ 1
such that (7) holds.

The solvability of ΣS = AeΣ+Be follows from Lemma 8
and ‖R(iωk, Ae)‖ = O(|ωk|α). By Theorems 4 and 6 the
controller solves the robust output regulation problem.

Theorem 10: If ‖PL(iωk)
†‖

|hk| = O(eβ|k|) for some β > 0,
then for any α > β the operator G2 can be chosen in



such a way that the closed-loop system is strongly stable,
σ(Ae) ∩ iR = ∅ and ‖R(iω,Ae)‖ = O(eα|ω|). The
controller then solves the robust output regulation problem
if Be ∈ L(W,Xe) satisfies (eα|ωk|‖Beφk‖)k∈Z ∈ `2(C).
Finally, the closed-loop is nonuniformly stable in such a way
that there exist Me ≥ 1 and t0 > 1 such that

‖Te(t)xe‖ ≤
Me

ln t
‖Aexe‖, t > t0 (8)

for every xe ∈ D(Ae).
Proof: The stabilization can be completed using pole

placement as in the proof of Theorem 9, but now the
{µk}k∈Z are chosen to be

µ0 = −1 and µk = −e−α|k| − iωk.

The possibility of choosing g2 in such a way that σ(−S +
c1〈·, g2〉) = {µk}k∈Z and −S + c1〈·, g2〉 is a Riesz spectral
operator with at most finite nonsimple eigenvalues now fol-
lows from verifying the required conditions in [18] (similarly
as in, for example, [9, Sec. 3.3.3]). As in the proof of
Theorem 9 we again have that G1 +G2(CHe1 +DK1) is a
Riesz spectral operator with σ(G1 +G2(CHe1 +DK1)) =
{µk}k∈Z at most finite nonsimple eigenvalues. Theorem 6
and a geometric argument now show that for large |ω| we
have

‖R(iω,Ae)‖ ≤M‖R(iω,G1 +G2(CHe1 +DK1))‖

≤M M̃1

mink|iω − µk|
= O(e−α|ω|)

Finally, we have from [1, Thm. 1.5 & Ex. 1.6] that there
exist Me ≥ 1 and t0 > 1 such that (8) holds.

The solvability of ΣS = AeΣ+Be follows from Lemma 8
and ‖R(iωk, Ae)‖ = O(eα|ωk|). By Theorems 4 and 6 the
controller solves the robust output regulation problem.

VI. EXAMPLE: CONTROL OF HARMONIC OSCILLATORS

In this example we control two undamped harmonic
oscillators

q̈1(t) + q1(t) = F1(t), q̈2(t) + 2q2(t) = F2(t).

The control inputs are the external forces F1(t) and F2(t).
The objective of the robust output regulation problem is
to drive the positions of the oscillators to a constant state
where q1(t) − q2(t) = 1. To achieve this, we can choose
a measurement y(t) = q1(t) − q2(t) and track a constant
reference signal yref (t) ≡ 1 generated by a one-dimensional
exosystem with S = 0 ∈ C, F = −1, and v0 = 1.
Figure 1 shows the behavior of q1 and q2 when the control
law is chosen as in Sections IV and V. The matrices L1,
K2, and G2 are all chosen using pole placement so that the
appropriate stabilized matrices have stability margins equal
to 2. Even though it would have been possible to use only one
control input to solve the control problem, the availability
of two inputs should allow subsequent improvement of the
performance of the control law.
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Fig. 1. Oscillator positions q1(t) and q2(t).
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