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Abstract— In this paper we consider the theory of robust out-
put regulation for distributed parameter systems with infinite-
dimensional exosystems. The main purpose of the paper is to
extend selected results of the existing state space theory to allow
plants with unbounded control and observation operators. In
particular, we show that under suitable assumptions on the
closed-loop system, the solvability of the output regulation
problem can be characterized using the solvability of the
regulator equations. The theoretic results are illustrated with an
example where we consider output tracking for a heat equation
with point observation.

I. INTRODUCTION

Asymptotic output tracking and disturbance rejection —
known together as the output regulation problem — have
been studied for linear infinite-dimensional systems since
the early 1980’s [10], [8], [1]. Recently, there have been
development in the theory in a situation where the reference
and disturbance signals are generated using an infinite-
dimensional exosystem [4], [3], [5]. This extension allows
studying nonsmooth periodic and almost periodic signals
in the output regulation problem. However, in the previous
references the considered systems have been assumed to have
bounded input and output operators. This is a limitation for
the applicability of the results, since many actual control
systems incorporate, for example, boundary control or mea-
surements at a single point. The purpose of this paper is to
extend some of the main results in [3], [5] to cover systems
with unbounded control and observation operators. In the
frequency domain the output regulation problem for such
systems has been studied in [9], [12].

We consider linear distributed parameter systems of the
form

ẋ(t) = Ax(t) +Bu(t) + w(t), x(0) = x0 ∈ X (1a)
y(t) = Cx(t) +Du(t). (1b)

In this paper the input and output operators may be un-
bounded in such a way that B ∈ L(U,X−1) and C ∈
L(X1, Y ), where X1 and X−1 are scale spaces related to
the operator A.

In extending the output regulation theory we work under
the assumption that the closed-loop system consisting of the
plant and the controller (which may also have unbounded
input and output operators) has a well-defined state. More
precisely, we assume that the closed-loop system operator
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with maximal domain generates a strongly continuous semi-
group. The unboundedness of the operator C requires that
we slightly modify the definition of the output regulation
problem, since the output of the plant (1) may no longer be
well-defined for all initial states x0 ∈ X .

As our main result we show that under the standing
assumptions on the systems, the solvability of the output
regulation problem can be characterized using the solvability
of the regulator equations [1]

ΣS = AeΣ +Be (2a)
0 = CeΣ +De. (2b)

This extends the theory presented in [3], [5].
In Section V we derive concrete conditions for the closed-

loop system operator to generate a strongly continuous semi-
group. For this we use the perturbation theory for semigroups
under unbounded perturbations [2, Sec. III.3].

The theoretic results are illustrated in Section VI where
we study a one-dimensional heat equation with point obser-
vation. We design a one-dimensional feedback controller that
achieves robust output tracking of constant reference signals.

II. MATHEMATICAL PRELIMINARIES

In this section we introduce the notation and state the
assumptions on the plant, the exosystem and the controller.
Our main assumption is that while the input and output
operators of the plant and the controller are allowed to
be unbounded operators, we assume that the closed-loop
system is well-defined in the sense that the closed-loop
system operator (with maximal domain) generates a strongly
continuous semigroup.

For Banach spaces X and Y and A : X → Y , we denote
by D(A), N (A) and R(A) the domain, kernel and range
of A, respectively. The space of bounded linear operators is
L(X,Y ). If A : X → X , then σ(A), σp(A) and ρ(A) are the
spectrum, the point spectrum and the resolvent set of A. For
λ ∈ ρ(A) the resolvent operator is R(λ,A) = (λI −A)−1.
Inner products are denoted by 〈·, ·〉.

In this paper we consider a linear system (1), where
x(t) ∈ X is the state of the system, y(t) ∈ Y is the
output, and u(t) ∈ U the input. The space X is a Banach
space, and U = Cm and Y = Cp. Here w(t) ∈ X denotes
the disturbance signal to the state of the plant. We assume
that A : D(A) ⊂ X → X generates a strongly continuous
semigroup T (t) on X . For a fixed λ0 > ω0(T (t)) we define
the scale spaces X1 = (D(A), ‖(λ0 − A)·‖) and X−1 =
(X, ‖R(λ0, A)·‖) (the completion of X with respect to the
norm ‖R(λ0, A)·‖) [2, Sec. II.5]. We assume the input and



output operators of the plant are such that B ∈ L(U,X−1),
C ∈ L(X1, Y ), and the feedthrough operator satisfies D ∈
L(U, Y ). We denote by A−1 : X ⊂ X−1 → X−1 the
extension of the operator A to the the space X−1.

The reference signal yref (t) to be tracked and the distur-
bance signal w(t) are generated by an exosystem

v̇(t) = Sv(t) v(0) = v0 ∈W (3a)
yref (t) = −Fv(t) (3b)
w(t) = Ev(t) (3c)

on a separable Hilbert space W (the minus sign is for
notational convenience).

The block diagonal exosystem with eigenvalues
(ωk)k∈Z ⊂ R is constructed by first choosing the space W
to be a separable Hilbert space with an orthonormal basis{
φlk
}
kl

:=
{
φlk ∈ W

∣∣ k ∈ Z, l = 1, . . . , nk
}
. By this we

mean

W = span
{
φlk
}
kl
, 〈φlk, φmn 〉 =

{
1 k = n, l = m
0 otherwise.

The lengths nk ∈ N of the subsequences are uniformly
bounded. For given (ωk)k∈Z ⊂ R the operators Sk ∈ L(W )
representing nk-dimensional Jordan blocks are defined as

Sk = iωk〈·, φ1k〉φ1k +

nk∑
l=2

〈·, φlk〉
(
iωkφ

l
k + φl−1k

)
.

The operators Sk have the property that (iωkI−Sk)φ1k = 0,
and (Sk − iωkI)φlk = φl−1k for all l ∈ {2, . . . , nk}. The
system operator S is defined as

Sv =
∑
k∈Z

Skv, D(S) =

{
v ∈W

∣∣∣∣ ∑
k∈Z
‖Skv‖2 <∞

}
.

The spectrum of the operator S satisfies

σ(S) = σp(S) = {iωk}k∈Z.

The operator S generates a strongly continuous group TS(t)
on W , and

TS(t)v =
∑
k∈Z

eiωkt
nk∑
l=1

〈v, φlk〉
l∑

j=1

tl−j

(l − j)!
φjk,

for all v ∈W , and t ∈ R. For any nS ∈ N such that nS ≥ nk
for all k ∈ Z there exists MS ≥ 1 such that

‖TS(t)‖ ≤MS(|t|nS + 1), ∀t ∈ R.

The output operators E, and F of the exosystem are assumed
to be Hilbert–Schmidt operators, i.e.,∑

k∈Z

nk∑
l=1

‖Eφlk‖2 <∞, and
∑
k∈Z

nk∑
l=1

‖Fφlk‖2 <∞.

For k ∈ Z we define the orthogonal projection

Pk =

nk∑
l=1

〈·, φlk〉φlk

onto the finite-dimensional subspace span{φlk}
nk
l=1 of W .

With this notation the domain of the operator S satisfies

D(S) =
{
v ∈W

∣∣ ∑
k∈Z

(1 + ω2
k)‖Pkv‖2 <∞

}
.

We define scale spaces Wα ⊂W related to the exosystem.
Definition 2.1: For α ≥ 0 we denote by (Wα, ‖·‖α) the

space

Wα =
{
v ∈W

∣∣ ∑
k∈Z

(1 + ω2
k)α‖Pkv‖2 <∞

}
with norm ‖·‖α defined by

‖v‖2α =
∑
k∈Z

(1 + ω2
k)α‖Pkv‖2, v ∈Wα.

For all α ≥ 0 the spaces (Wα, ‖·‖α) are Hilbert spaces,
and for 0 ≤ β ≤ α we have Wα ⊂ Wβ . For nonnegative
integer values m ∈ N0 the spaces Wm coincide with the
domains D((S− I)m) and the norms ‖·‖m are equivalent to
the norms defined by the mappings v 7→ ‖(S − I)mv‖ on
Wm. The spaces Wα are invariant under the group TS(t), the
restrictions TS(t)|Wα

are strongly continuous groups on Wα

and the generators of these groups are S|Wα : D(S|Wα) ⊂
Wα →Wα with domains D(S|Wα) = Wα+1.

We consider an error feedback controller of the form

ż(t) = G1z(t) + G2e(t), z(0) = z0 ∈ Z,
u(t) = Kz(t)

on a Banach space Z. The operator G1 : D(G1) ⊂ Z → Z
generates a strongly continuous semigroup TG1(t) on Z, and
the scale spaces Z1 and Z−1 are defined similarly as for the
plant. We assume G2 ∈ L(Y,Z−1) and K ∈ L(Z1, U). The
extension of G1 to the space Z−1 is denoted by G1,−1 : Z ⊂
Z−1 → Z−1.

The system and the controller can be written together as
a closed-loop system on the Banach space Xe = X × Z.
This composite system with state xe(t) = (x(t), z(t))T can
be written formally on X−1 × Z−1 as

ẋe(t) = Aexe(t) +Bev(t), xe(0) = xe0, (4a)
e(t) = Cexe(t) +Dev(t), (4b)

where e(t) = y(t) − yref (t) is the regulation error, xe0 =
(x0, z0)T , Ce =

(
C, DK

)
, De = F ,

Ae =

(
A−1 BK
G2C G1,−1 + G2DK

)
, Be =

(
E
G2F

)
.

Due to the unboundedness of the operators B, C, G2, and K
the domain of the operators Ae will not be D(A) × D(G1)
as in references [3], [6]. Instead, we consider the domain

D(Ae) =

{(
x
z

)
∈ D(C)×D(K)

∣∣∣∣∣(
A−1x+BKz

G2Cx+ (G1,−1 + G2DK)z

)
∈ X × Z

}
.

This is the maximal domain such that Ae is an operator on
Xe, i.e., maximal domain such that R(Ae) ⊂ Xe. Also the



operator Ce is unbounded with domain D(Ce) = D(C) ×
D(K) ⊃ D(Ae) and Be ∈ L(W,X × Z−1)

Assumption 2.2: Throughout the paper (A,B,C,D) and
(G1,G2,K) are such that Ae with the given domain generates
a strongly continuous semigroup Te(t) on Xe, and that Ce
is relatively bounded with respect to Ae.

If λ0 ∈ ρ(Ae), then the Ae-boundedness of Ce is equiva-
lent to the condition Ce(Ae − λ0I)−1 ∈ L(Xe, Y ).

The results in this paper are presented using only the
parameters of the closed-loop system. Because of this, they
are also applicable for any type of controller for which the
closed-loop system can be written in the form (4).

III. THE OUTPUT REGULATION PROBLEM

The output regulation problem on Wα consists of choosing
the controller parameters in such a way that the controlled
system can track the reference signals and reject the distur-
bance signals originating from the initial states v0 ∈ Wα

of the infinite-dimensional exosystem. As shown in [6], in
the case of the periodic reference and disturbance signals
the choices of the initial states of the exosystem are directly
related to the level of smoothness of the signals to be tracked
and rejected.

The Output Regulation Problem on Wα: Let α ≥ 0. Find
(G1,G2,K) such that the following are satisfied:

1) The closed-loop system operator Ae generates a
strongly stable semigroup on Xe.

2) For all initial states v0 ∈Wα+1 and xe0 ∈ D(Ae) the
regulation error goes to zero asymptotically, i.e.,

lim
t→∞

e(t) = 0.

The following theorem shows that solvability of the output
regulation problem can be characterized using the solvability
of the regulator equations. For this result we need to assume
that the operator G2 of the controller is bounded. The main
difficulty resulting from unboundedness of this operator is
that then also the operator Be will be unbounded, and the
Sylvester equation in Theorem 3.1 must be interpreted on a
space larger than Xe.

Theorem 3.1: Assume the controller (G1,G2,K) is such
that G2 ∈ L(Y, Z), that Ae generates a strongly stable
semigroup on Xe, and that the Sylvester equation ΣS =
AeΣ + Be on Wα+1 has a solution Σ ∈ L(Wα, Xe). Then
the following are equivalent:

(a) The controller (G1,G2,K) solves the output regulation
problem on Wα.

(b) The regulator equations

ΣS = AeΣ +Be (5a)
0 = CeΣ +De (5b)

on Wα+1 have a solution Σ ∈ L(Wα, Xe).
For the proof of the theorem we need some auxiliary

results. In particular, Theorem 3.3 shows that the state of the
closed-loop system and the regulation error can be expressed
using the solution Σ of the Sylvester equation (5a).

Lemma 3.2: If 1 ∈ ρ(Ae) and if Σ ∈ L(Wα, Xe) is the
solution of (5a), then CeΣ ∈ L(Wα+1, Y ).

Proof: Let v ∈ Wα+1. The Sylvester equation (5a)
implies Σ(S−I)v = (Ae−I)Σv+Bev. Now Σv ∈ D(Ae) ⊂
D(Ce) and using (5a) we have

‖CeΣv‖ = ‖Ce(Ae − I)−1(Ae − I)Σv‖
= ‖Ce(Ae − I)−1(Σ(S − I)v −Bev)‖
≤ ‖Ce(Ae − I)−1‖L(Xe,Y )

(
‖Σ‖L(Wα,Xe)‖(S − I)v‖α

+ ‖Be‖L(Wα,Xe)‖v‖α
)
,

which implies that CeΣ ∈ L(Wα+1, Y ).
Theorem 3.3: Let Σ ∈ L(Wα, Xe) be a solution of the

Sylvester equation (5a). For all xe0 ∈ Xe and v0 ∈ W and
for all t ≥ 0 the state of the closed-loop system satisfies

xe(t) = Te(t)(xe0 − Σv0) + Σv(t), (6a)

and for all xe0 ∈ D(Ae) and v0 ∈Wα+1 the regulation error
is given by

e(t) = CeTe(t)(xe0 − Σv0) + (CeΣ +De)v(t). (6b)

If xe0 ∈ D(Ae) and v0 ∈ Wα+1, then the regulation error
e(t) is continuous and satisfies

‖e(t)− (CeΣ +De)TS(t)v0‖ → 0

as t→∞.
Proof: Let v ∈ Wα+1. Then Σv ⊂ D(Ae) and for all

t > s we have

Te(t− s)BeTS(s)v = Te(t− s)(ΣS −AeΣ)TS(s)v

= − Te(t− s)AeΣTS(s)v + Te(t− s)ΣSTS(s)v

=
d

ds
(Te(t− s)ΣTS(s)v) .

Integrating both sides of this equation from 0 to t > 0 gives∫ t

0

Te(t− s)BeTS(s)vds = ΣTS(t)v − Te(t)Σv. (7)

Since the operators on both sides are in L(Wα, Xe) and since
Wα+1 is dense in Wα, equation (7) holds for all v ∈ Wα

and t > 0.
For all xe0 ∈ Xe and v0 ∈ Wα the mild state of the

closed-loop system is given by

xe(t) = Te(t)xe0 +

∫ t

0

Te(t− s)BeTS(s)v0ds.

We can now use (7) to conclude that

xe(t) = Te(t)xe0 + ΣTS(t)v0 − Te(t)Σv0
= Te(t)(xe0 − Σv0) + ΣTS(t)v0.

If xe0 ∈ D(Ae) and v0 ∈Wα+1, then ΣTS(t)v0 ∈ D(Ae) ⊂
D(Ce) for all t ≥ 0 and the regulation error is given by

e(t) = Cexe(t) +Dev(t)

= CeTe(t)(xe0 − Σv0) + (CeΣ +De)TS(t)v0.



The function t 7→ TS(t)v0 ∈ Wα+1 is continuous and by
Lemma 3.2 we have CeΣ + De ∈ L(Wα+1, Y ). Therefore
t 7→ (CeΣ +De)TS(t)v0 is continuous. Since we have

CeTe(t)(xe0 − Σv0)

= Ce(Ae − I)−1(Ae − I)Te(t)(xe0 − Σv0)

= Ce(Ae − I)−1Te(t)(Ae − I)(xe0 − Σv0),

where Ce(Ae−I)−1 ∈ L(Xe, Y ), we can conclude that e(t)
is continuous. Moreover, we have

‖e(t)− (CeΣ +De)TS(t)v0‖ = ‖CeTe(t)(xe0 − Σv0)‖
≤ ‖Ce(Ae − I)−1‖‖Te(t)(Ae − I)(xe0 − Σv0)‖ → 0

as t→∞ due to the strong stability of Te(t).
Lemma 3.4: Let X̃ be a Banach space, and let α ≥ 0. If

Q : Wα → X̃ is such that

QTS(t)v0 → 0

for all v0 ∈Wα, then Q = 0.
Proof: Let k ∈ Z and v0 ∈ PkW be arbitrary. Then

for all t ∈ R we have TS(t)v0 ∈ PkW ⊂Wα, and

QTS(t)v0 = eiωkt
nk∑
l=1

〈v0, φlk〉
l∑

j=1

tl−j

(l − j)!
Qφjk (8a)

= eiωkt
nk−1∑
j=0

tj · 1

j!

nk∑
l=j+1

〈v0, φlk〉Qφ
l−j
k (8b)

depends continuously on t. If QTS(t)v0 → 0, it is easy to
see that we must have

nk∑
l=j+1

〈v0, φlk〉Qφ
l−j
k = 0 ∀j ∈ {0, . . . , nk − 1}.

Moreover, for j = 0 we in particular have 0 =∑nk
l=1〈v0, φlk〉Qφlk = Qv0. Since k ∈ Z and v0 ∈ PkW

were arbitrary, we can conclude that Qφlk = 0 for all k ∈ Z
and l ∈ {1, . . . , nk}. Since {φlk | k ∈ Z, l = 1, . . . , nk } is
a basis of Wα, this concludes Q = 0.

We can now collect the above results to prove Theo-
rem 3.1.

Proof of Theorem 3.1 We will first show that (b) im-
plies (a). Assume the regulator equations (5) have a solution
Σ ∈ L(Wα, Xe). Since Te(t) is strongly stable, we have
from Theorem 3.3 that for all initial states xe0 ∈ D(Ae) and
v0 ∈Wα+1

lim
t→∞

‖e(t)‖ = lim
t→∞

‖e(t)− (CeΣ +De)v(t)‖ = 0,

since CeΣ + De = 0 on Wα+1. Thus the controller solves
the output regulation problem on Wα.

It remains to prove that (a) implies (b). Assume the
controller solves the output regulation problem on Wα and
Σ ∈ L(Wα, Xe) is a solution of the Sylvester equation (5a)
on Wα+1. Since the regulation error decays to zero asymp-
totically for all initial states of the closed-loop system and

the exosystem, Theorem 3.3 implies that for all xe0 ∈ D(Ae)
and v0 ∈Wα+1 we must have

‖(CeΣ +De)TS(t)v0‖

≤ ‖(CeΣ +De)TS(t)v0 − e(t)‖+ ‖e(t)‖ t→∞−→ 0,

and thus limt→∞(CeΣ + De)TS(t)v0 = 0 for every v0 ∈
Wα+1. This together with Lemma 3.4 concludes that Σ also
satisfies equation (5b).

IV. THE ROBUST OUTPUT REGULATION PROBLEM

In this section we define the robust output regulation
problem. The problem consists of choosing a controller that
solves the output regulation problem in such a way that the
decay of the regulation error is robust with respect to a
suitable class of perturbations of the operators of the plant.

The Robust Output Regulation Problem on Wα: Choose
the controller (G1,G2,K) in such a way that the following
are satisfied:

(a) The closed-loop system operator Ae generates a
strongly stable semigroup on X;

(b) For all initial states xe0 ∈ D(Ae) and v0 ∈ Wα+1 the
regulation error decays to zero asymptotically, i.e.

lim
t→∞

e(t) = 0.

(c) If the operators (A,B,C,D,E, F ) are perturbed to
(A′, B′, C ′, D′, E′, F ′) in such a way that the perturbed
closed-loop system operator A′e with maximal domain
generates a strongly stable semigroup on Xe, C ′e is A′e-
bounded, and the Sylvester equation Σ′S = A′eΣ

′+B′e
has a solution, then for all initial states xe0 ∈ D(A′e)
and v0 ∈ Wα+1 the regulation error satisfies e(t) → 0
as t→∞.

The regulator equations can also be used to characterize
the controllers solving the robust output regulation problem.

Theorem 4.1: Assume the controller (G1,G2,K) with
G2 ∈ L(Y,Z) solves the output regulation problem on
Wα. The controller also solves the robust output regulation
problem on Wα if and only if for all perturbations for
which the perturbed closed-loop system is strongly stable
and the Sylvester equation Σ′S = A′eΣ

′+B′e has a solution
Σ′ ∈ L(Wα, Xe), we have

C ′eΣ
′ +D′e = 0 (9)

on Wα+1.
Proof: Since the controller solves the output regulation

problem on Wα, it remains to verify the third part of the
robust output regulation problem. This part requires that
the controller solves the output regulation problem for the
perturbed operators (A′, B′, C ′, D′, E′, F ′). However, since
A′e generates a strongly stable semigroup and since Σ′S =
A′eΣ

′ + B′e has a solution Σ′ ∈ L(Wα, Xe), we have from
Theorem 3.1 that this is true if and only if (9) is true.



V. CONDITIONS FOR Ae GENERATING A SEMIGROUP

If xe = (x, z)T ∈ D(Ae), we can write (on X−1 × Z−1)

Aexe =

(
A−1x+BKz

G2Cx+ G1,−1z + G2DKz

)
=

(
A−1 0

0 G1,−1

)(
x
z

)
+

(
B 0
0 G2

)(
0 I
I D

)(
C 0
0 K

)(
x
z

)
= (A−1 + BDC)xe.

Here we have denoted A =
(
A
0

0
G1

)
: D(A) × D(G1) ⊂

X × Z → X × Z. Then X−1 × Z−1 is the extended space
corresponding to A, and A−1 is the extension of A. Our
assumptions imply that we have B ∈ L(U ×Y,X−1×Z−1),
C ∈ L(X1 × Z1, Y × U), and D ∈ L(Y × U,U × Y ). In
fact, due to the above equations we can see that for xe ∈
D(C)×D(K) the requirement Aexe ∈ Xe is equivalent to
requiring (A−1 +BDC)xe ∈ X ×Z. Thus we have that Ae
with maximal domain satisfies

Ae = (A−1 + BDC) |X×Z

(the restriction of A−1+BDC to X×Z). These observations
can be used to derive conditions for the operator Ae to
generate a semigroup on Xe. The following theorem states
conditions in the situation where the operators C and K
are bounded and where B and G2 are admissible control
operators (in the sense of [11, Sec. 4.2]).

Theorem 5.1: Assume C and K are bounded operators.
If B is T (t)-admissible and G2 is TG1(t)-admissible, then
Ae with maximal domain generates a strongly continuous
semigroup on Xe.

Proof: Let t > 0 and (f, g)T ∈ L2([0, t], X×Z). Since
C, D, and K are bounded, we have Kg(·) ∈ L2([0, t], U)
and Cf(·) + DKg(·) ∈ L2([0, t], Y ). By Proposition 4.2.2
in [11], the admissibility of B and G2 imply∫ t

0

TA,−1(t− s)BDC
(
f(s)
g(s)

)
ds

=

∫ t

0

(
TA,−1(t)BKg(s)

TG1,−1G2(Cf(s) +DKg(s))

)
ds ∈ X × Z.

Corollary III.3.4 in [2] concludes that Ae generates a strongly
continuous semigroup on Xe.

VI. ROBUST OUTPUT TRACKING FOR A 1D HEAT
EQUATION

In this section we consider robust output tracking of
constant reference signals for a stable one-dimensional heat
equation with point observation.

We choose X = L2(0, 1),

Ax =

∞∑
k=1

−k2π2〈x, ϕk〉L2ϕk(·)

x ∈ D(A) =
{
x ∈ X

∣∣ ∞∑
k=1

k4|〈x, ϕk〉L2 |2 <∞
}
,

where ϕk(z) =
√

2 sin(2πk). With this choice of a system
operator, the plant (1) becomes a one-dimensional heat
equation on the interval (0, 1) with homogeneous Dirichlet
boundary conditions. The operator A is boundedly invertible
and generates an exponentially stable analytic semigroup
on X . As a control operator we choose Bu = bu with
b = 1√

2π

∑∞
k=1

1
kϕk(·) (which corresponds to distributed

control (Bu)(z) = (1− z)u on (0, 1)).
We consider an unbounded observation operator Cx =

x(1/
√

2) with domain D(C) =
{
x ∈ X

∣∣ x(·) is cont.
}

.
Then D(A) ⊂ D(C) and for all x ∈ D(A) we have

‖Cx‖ =

∣∣∣∣∣
∞∑
k=1

〈x, ϕk〉Cϕk

∣∣∣∣∣ ≤
∞∑
k=1

|〈x, ϕk〉||ϕk(1/
√

2)|

≤
√

2

∞∑
k=1

1

k2π2
k2π2|〈x, ϕk〉|

≤
√

2

( ∞∑
k=1

1

k4π4

) 1
2
( ∞∑
k=1

k4π4|〈x, ϕk〉|2
) 1

2

≤ ‖Ax‖
3
√

5
.

This concludes that C ∈ L(X1,C). Since D(A) ⊂ D(C), the
transfer function P (λ) = CR(λ,A)B is well-defined for all
λ ∈ ρ(A). It can also be verified that P (0) = −CA−1B 6= 0.

We consider tracking of constant reference signals. To this
end, we choose the operators of exosystem as W = C, S =
0 ∈ C, E = 0 ∈ X , F = −1 ∈ C. Then for the initial state
v0 ∈ C the reference signal generated by the exosystem is

yref (t) = −FeStv0 = −(−1) · 1 · v0 = v0.

We begin by constructing a one-dimensional feedback
controller such that the closed-loop system is well-posed
and the controller solves the output regulation problem.
Subsequently, we use Theorem 4.1 to show that the controller
also solves the robust output regulation problem.

We choose the parameters of the controller on Z = C
in such a way that G1 = 0 ∈ C, G2 = ε > 0, and K =
−P (0)−1 = 1

CA−1B ∈ C.
Since the operators B, G2, and K are bounded, the

maximal domain of the operator Ae is D(Ae) = D(A)×C.
If we denote H = εCA−1 ∈ L(X,C), and T = T−1 =(
I
H

0
−1

)
∈ L(X × C), then HBK = εCA−1B 1

CA−1B = ε

and

TAeT
−1 =

(
I 0
H −1

)(
A BK
εC 0

)(
I 0
H −1

)
=

(
A+BKH −BK

HA− εC +HBKH −HBK

)
=

(
A+ εBKCA−1 −BK

0 −ε

)
+ ε2

(
0 0

CA−1 0

)
.

Since the operator CA−1 is bounded, it is clear that TAeT−1

generates a strongly continuous semigroups on Xe, and
the same is therefore also true for Ae. Moreover, since
TA(t) is exponentially stable, standard perturbation theory
for exponentially stable semigroups can be used to deduce
that there exists ε∗ > 0 such that for all 0 < ε < ε∗ the



semigroups generated by TAeT−1 and Ae are exponentially
stable.

We will now verify that the operator Ce is Ae-bounded.
For any xe = (x, z)T ∈ D(Ae) = D(A)× C we have

‖Cexe‖2 = ‖Cx+DKz‖2 = ‖Cx‖2

≤ ‖Ax+BKz‖2 +
1

ε2
‖εCx‖2 ≤ max{1, 1

ε2
}‖Aexe‖2.

This concludes Ce is relatively bounded with respect to Ae.
To show that the controller solves the output regulation

problem, it is now sufficient to show that the regulator
equations (5) have a solution. To this end, choose Γ =
−(P (0)K)−1F = −1 ∈ C = L(W,Z), Π = −A−1BKΓ ∈
X = L(W,X), and Σ = (Π,Γ)T ∈ L(W,Xe). Then for all
v ∈W we have ΣSv = Σ · 0 · v = 0 ∈ Xe, and

AeΣv +Bev =

(
AΠv +BKΓv

G2Πv + (G1 + G2DK)Γv

)
+

(
0
G2Fv

)
=

(
−AA−1BKΓv +BKΓv
−G2CA−1BKΓv

)
+

(
0
G2Fv

)
=

(
0

G2(P (0)KΓv + Fv)

)
=

(
0
G2 · 0

)
= 0.

This shows that Σ is a solution of the Sylvester equation
ΣS = AeΣ +Be. Moreover, we have

CeΣv +Dev = CΠv +DKΓv + Fv = P (0)KΓv + Fv

= −Fv + Fv = 0,

which concludes that Σ solves the regulator equations (5).
We will now show that the controller solves the robust

output regulation problem. Since the original closed-loop
system is exponentially stable, it is natural to consider per-
turbations for which also the perturbed closed-loop system
is exponentially stable.

Assume that (A,B,C,D,E, F ) are perturbed to
(A′, B′, C ′, D′, E′, F ′) in such a way that A′e generates an
exponentially stable semigroup. Under this assumption the
Sylvester equation Σ′S = A′eΣ

′+B′e has a unique bounded
solution [7]. The solution is of the form Σ′ = (Π′,Γ′)T ,
and for all v ∈ W we have that the Sylvester equation is
equivalent to

0 =

(
A′−1Π′v +B′KΓ′v

G2C ′Π′v + G1Γ′v + G2D′KΓ′v

)
+

(
E′v
G2F ′v

)
=

(
A′−1Π′v +B′KΓ′v + E′v
ε(C ′Π′v +D′KΓ′v + F ′v)

)
.

In particular, the second line requires that CΠ′v+D′K ′Γ′v+
F ′v = 0 for all v ∈W . However, this immediately implies

C ′eΣ
′v +D′ev = C ′Π′v +D′KΓ′v + F ′v = 0

for all v ∈ W , and thus the solution Σ′ of the Sylvester
equation satisfies C ′eΣ

′ + D′e = 0. Since the perturbations
were arbitrary, Theorem 4.1 concludes that the controller
solves the robust output regulation problem.

VII. CONCLUSIONS

In this paper we have studied the output regulation prob-
lem for infinite-dimensional systems with unbounded control
and observation operators. As our main result we have shown
that under suitable assumptions the solvability of the output
regulation problem can be characterized using the solvability
of the regulator equations. For this result we needed the
input operator G2 of the controller to be bounded. In the case
where G2 ∈ L(Y,Z−1) also the operator Be would become
unbounded, and consequently the Sylvester equation in the
regulator equations would have to be considered on a space
larger than Xe. An alternative approach would be to instead
consider the weak form

〈ΣSv, ϕ〉 = 〈Σv,A∗eϕ〉+ 〈Bev, ϕ〉

of the equation, where v ∈Wα+1 and ϕ ∈ D(A∗e).
The results presented in this paper provide a basis for

extending other results in [3], [5] for systems with un-
bounded control and observation operators. Most notably,
one of the main objectives for future research is the extension
of the internal model principle [5], which characterizes the
controllers solving the robust output regulation problem.
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Shubov. Output regulation problem for linear distributed parameter
systems. IEEE Trans. Automat. Control, 45(12):2236–2252, 2000.

[2] Klaus-Jochen Engel and Rainer Nagel. One-Parameter Semigroups
for Linear Evolution Equations. Springer-Verlag, New York, 2000.
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