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Abstract— In this paper we study the asymptotic out-
put tracking for distributed parameter systems with general
infinite-dimensional exosystems. We present conditions for the
solvability of the problem and construct the appropriate open
loop control law using the states of the system and the
exosystem. In particular the results do not assume the exosystem
to have a block diagonal structure. As an example we consider
asymptotic output tracking for a heat equation.

I. INTRODUCTION

In this paper we consider the problem of asymptotic
output tracking for linear infinite-dimensional systems [9],
[1], [3], [5]. In particular we are interested in solving the
problem in a situation where the plant is exponentially
stabilizable, the reference signal is generated with a very
general infinite-dimensional exosystem, and the states of
both the plant and the exosystem are available for feedback.
Motivation for considering infinite-dimensional exosystems
arises from applications such as control of robot arms,
disk drive systems, and magnetic power supplies for proton
synchrotrons [10, and references therein], where the goal is
to track nonsmooth functions with high accuracy. Generating
such reference signals is not possible with finite-dimensional
exosystems.

The general problem formulation states that for a linear
distributed parameter system P with output y(t) and for a
given reference signal yref(t) we are to design a control law
C producing a control signal u(t) in such a way that

lim
t→∞
‖y(t)− yref(t)‖ = 0.

The reference signal yref(t) is obtained as an output of
another linear system called the exosystem S

v̇(t) = Sv(t), v(0) = v0 (1a)
yref(t) = Fv(t). (1b)

The open loop control scheme is depicted in Figure 1.
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v(t) u(t) y(t)

Fig. 1. The open loop control scheme

Most of the results concerning asymptotic output tracking
for distributed parameter systems require that the exosystem
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is a finite-dimensional linear system and S and F are
matrices with appropriate dimensions. Recently in [4], [3],
[5] the theory has been extended to a situation where also the
exosystem (1) is allowed to be an infinite-dimensional system
on a Hilbert space W . Using such exosystems allows us to
consider asymptotic tracking of a larger class of signals, e.g.,
nonsmooth periodic signals and almost periodic functions.
In the previous references the system operator S of the
considered infinite-dimensional exosystem has been of some
particular form, e.g., a diagonal [4], [3] or a block diago-
nal [5], [7] operator. In this paper we consider the asymptotic
output tracking without assuming any such structure, but
instead only assuming that the generated reference signals do
not decay to zero as t→∞. The main benefits of not making
assumptions on the structure of the exosystem are that the
results on the solvability of the output tracking problem are
simplified and the presentation of the theory for different
types of exosystems can be unified. More general conditions
on the exosystems also gives us hope to further enlarge the
classes of reference signals for asymptotic output tracking,
and also to be able to distinguish the appropriate classes of
signals and exosystems from the less suitable ones.

As our main results we present conditions under which the
asymptotic output tracking problem can be solved using an
open loop control law employing the states of the system to
be controlled and the exosystem. We also derive expressions
for the parameters in the control law. The presented results
generalize the conditions familiar from the output track-
ing of linear systems with finite-dimensional and infinite-
dimensional block diagonal exosystems.

It has been shown in [3], [5], [7] that when considering
error feedback control of distributed parameter systems with
a block diagonal infinite-dimensional exosystem, it is possi-
ble to choose the controller in such a way that the control
structure is robust with respect to pertubrations preserving
the stability of the closed-loop system. However, the internal
model principle of control theory [2], [5] implies that any
such controller must contain a copy of the dynamics of the
exosystem. In particular, it was also observed in [3], [7] that
one of the main difficulties in the construction of robust
error feedback controllers is that this copy of the exosystem’s
dynamics must be appropriately stabilized in order to achieve
output tracking. Whereas in the previous references it was
shown that in the case of diagonal and some block diagonal
exosystems there are ways of achieving strong closed-loop
stability, this is not in general possible if the exosystem does
not have such special structure.

Our main motivation for considering open loop control



instead of error feedback control is that the control scheme is
extremely simple, and the design does not require knowledge
on how to stabilize the dynamics of the exosystem. The
drawback of open loop control, on the other hand, is that
the resulting control structure will not be robust with respect
to perturbations in the parameters of the system.

In addition to considering the asymptotic output tracking
problem for general infinite-dimensional exosystem, we in-
troduce more easily verifiable conditions for the solvability
of the problem for an infinite-dimensional block diagonal
exosystem. The conditions relate in a very concrete way
the high frequency behavior of the transfer function of
the stabilized plant and the smoothness of the considered
reference signals.

As an example we consider asymptotic output tracking
for a stable heat equation together with diagonal exosystem
whose eigenmodes consist of the rational points on the inter-
val [−i, i] ⊂ iR. Such an exosystem is, in particular, capable
of producing any sinusoidal reference signal whose fre-
quency is a rational number on the interval [−1, 1], whereas
for a finite-dimensional exosystem the generated signals may
only contain components of prespecified fixed frequencies.
In applications, such an exosystem would correspond to a
situation where, e.g., the frequencies of disturbance signals
to the heat equation are not known accurately.

II. MATHEMATICAL PRELIMINARIES

If X and Y are Banach spaces and A : X → Y is
a linear operator, we denote by D(A), N (A) and R(A)
the domain, kernel and range of A, respectively. The space
of bounded linear operators from X to Y is denoted by
L(X,Y ). If A : X → X , then σ(A), σp(A) and ρ(A) denote
the spectrum, the point spectrum and the resolvent set of A,
respectively. For λ ∈ ρ(A) the resolvent operator is given
by R(λ,A) = (λI −A)−1. The inner product on a Hilbert
space is denoted by 〈·, ·〉.

In this paper we consider a linear system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X
y(t) = Cx(t) +Du(t)

where x(t) ∈ X is the state of the system, y(t) ∈ Y
is the output, and u(t) ∈ U the input. The spaces X , U
and Y are general Banach spaces. We assume that A :
D(A) ⊂ X → X generates a C0-semigroup on X and the
other operators are bounded, B ∈ L(U,X), C ∈ L(X,Y ),
D ∈ L(U, Y ). The transfer function of the plant is given by
P (λ) = CR(λ,A)B + D ∈ L(U, Y ) for all λ ∈ ρ(A). For
the solvability of the output tracking problem we assume that
iR ⊂ ρ(A) and that the transfer function P (λ) is boundedly
invertible for all λ ∈ iR.

The reference signal yref(t) to be tracked is generated using
a possibly infinite-dimensional exosystem

v̇(t) = Sv(t) v(0) = v0 ∈W (2a)
yref(t) = Fv(t) (2b)

on a Banach space W . We assume S generates a strongly
continuous group TS(t) on W and that F ∈ L(W,Y ). We

assume the group TS(t) is polynomially bounded, i.e., there
exist N ∈ N and M ≥ 1 such that ‖TS(t)‖ ≤ M(1 + |t|N )
for all t ∈ R. This implies that the growth bound of the
group is zero, i.e., ω0(TS(t)) = 0, and that σ(S) ⊂ iR.

To be able to use the results presented in [6] make the
following assumption on the exosystem. The content of this
nondecay condition is that regardless of the choice of the
operator F , the exosystem (2) may not generate reference
signals that decay to zero asymptotically.

Assumption 2.1: The exosystem is such that for all Q ∈
L(W,Y ) and all v0 ∈W we have

QTS(t)v0
t→∞−→ 0 ⇒ QTS(t0)v0 = 0 ∀t0 ≥ 0. (3)

As a control law we consider a state feedback (K,L) of the
form

u(t) = Kx(t) + Lv(t),

where K ∈ L(X,U) and L ∈ L(W,U).
The closed-loop system consisting of the plant and the

controller is a linear system on X described by equations

ẋ(t) = Aex(t) +Bev(t), x(0) = x0 ∈ X (4a)
e(t) = Cex(t) +Dev(t), (4b)

where Ae = A + BK, Be = BL, Ce = C + DK, and
De = DL− F .

III. THE OUTPUT REGULATION PROBLEM

The main control problem studied in this paper is stated
as follows.

The Output Tracking Problem Choose the parameters
(L,K) of the state feedback law in such a way that the
following are satisfied:
(a) The closed-loop system operator Ae generates a

strongly stable semigroup on X;
(b) For all initial states v0 ∈ W and x0 ∈ X the output

of the plant asymptotically tracks the reference signal
yref(t), i.e.,

lim
t→∞

‖y(t)− yref(t)‖ = 0.

It is well-known that in the case of finite-dimensional
and certain infinite-dimensional exosystems the solvability
of the output tracking problem can be characterized using
the solvability of the so-called regulator equations [1], [3],
[5]. It was shown in [6] that if the exosystem satisfies
Assumption 2.1, we can use the following theorem.

Theorem 3.1: Assume the exosystem satisfies Assump-
tion 2.1, the state feedback control law is such that Ae =
A+BK generates a strongly stable C0-semigroup on X and
that the Sylvester equation

ΣS = AeΣ +Be (5)

has a solution Σ ∈ L(W,X) satisfying Σ(D(S)) ⊂ D(Ae).
Then the following are equivalent:

(a) The control law (K,L) solves the output tracking
problem.



(b) The solution Σ of the Sylvester equation (5) satisfies

CeΣ +De = 0. (6)
Together the operators equations (5) and (6) are called the

regulator equations.
Before constructing the control law to solve the asymptotic

output tracking problem we will further illustrate the nonde-
cay condition in Assumption 2.1. We will do this by showing
that it is not in general sufficient that the group generated
by S is unstable or even isometric. In the following example
the group TS(t) is completely unstable, i.e., TS(t)v0 → 0 as
t → ∞ if and only if v0 = 0, but for all reference signals
generated by the exosystem we have yref(t) = FTS(t)v0 → 0
as t→∞.

Counterexample 3.2: Let W = L2(a, b) for some a < b
and let S ∈ L(W ) be a multiplication operator defined
by (Sv)(ξ) = iξv(ξ) for all v ∈ W . It is easy to see
that σ(S) = σc(S) = [ia, ib] ⊂ iR and that S is skew-
adjoint. The operator S generates a multiplication group
TS(t) defined by (TS(t)v)(ξ) = eiξtv(ξ) on W and this
group is isometric, since

‖TS(t)v‖2L2 =

∫ b

a

|eiξtv(ξ)|2dξ =

∫ b

a

|v(ξ)|2dξ = ‖v‖2L2

for all v ∈W .
Let Y = C and Q ∈ L(W,C). By the Riesz Representa-

tion Theorem there exists w ∈W such that

Qv =

∫ b

a

v(ξ)w(ξ)dξ, ∀v ∈W.

For any initial state v0 ∈W we then have

QTS(t)v0 =

∫ b

a

eiξtv0(ξ)w(ξ)dξ → 0

as t → ∞ due to the Riemann-Lebesgue Lemma, since
v0(·)w(·) ∈ L1(a, b). This concludes that this exosystem
does not satisfy the nondecay condition in Assumption 2.1.

IV. SOLUTION OF THE OUTPUT REGULATION PROBLEM

Theorem 4.1: Assume the pair (A,B) is exponentially
stabilizable and that the constrained Sylvester equation

ΠS = AΠ +BΓ (7a)
0 = CΠ +DΓ− F (7b)

has a solution Π ∈ L(X,W ) with Π(D(S)) ⊂ D(A), and
Γ ∈ L(W,U). The output tracking problem is solved by a
state feedback law with parameters K ∈ L(X,U) and L ∈
L(W,U), where K is chosen in such a way that the operator
A+BK generates an exponentially stable C0-semigroup and
L = Γ−KΠ. The state feedback law is thus given by

u(t) = Kx(t) + (Γ−KΠ)v(t).

Proof: Since Ae = A+BK, we have from the choice
of the operator K ∈ L(X,U) that the closed-loop system
is exponentially stable. We have from [8, Cor. 8] that since
S generates a group with growth bound ω0(TS(t)) = 0, the
Sylvester equation (5) has a unique solution Σ ∈ L(W,X).

Therefore we have from Theorem 3.1 that the state feedback
law solves the output tracking problem if this solution
satisfies the regulation constraint (6).

We will first show that Π is the unique solution of (5). If
we write L = Γ −KΠ, we have that for all v ∈ D(S) we
have

(AeΠ +Be)v = (A+BK)Πv +BLv

= AΠv +BKΠv +B(Γ−KΠ)v

= AΠv +BΓv = ΠSv

since Π(D(S)) ⊂ D(A) and Π satisfies (7a). Since v ∈ D(S)
was arbitrary, we have ΠS = AeΠ +Be. Since the solution
of this equation is unique, we must have Σ = Π.

Using (7b) we can now see that

CeΣ +De = (C +DK)Π +DL− F
= CΠ +D(KΠ + L)− F = CΠ +DΓ− F = 0.

As stated above, Theorem 3.1 now implies that the state
feedback law u(t) = Kx(t) + (Γ − KΠ)v(t) solves the
output tracking problem.

V. OUTPUT REGULATION FOR BLOCK DIAGONAL
EXOSYSTEMS

In this section present conditions for asymptotic output
tracking in the case where the system operator of the
exosystem consists of finite-dimensional Jordan blocks. Such
exosystems have been studied in [5], [7]. It should be noted
that we make very few assumptions, e.g., on the eigenvalues
of exosystem. In the next section we will solve an example
for an exosystem whose eigenvalues are the rational points
on the interval [−i, i] ⊂ iR.

The block diagonal exosystem with eigenvalues
(ωk)k∈Z ⊂ R is constructed by first choosing the
state space W of the exosystem in such a way that it is a
separable Hilbert space with an orthonormal basis{

φlk
}
kl

:=
{
φlk ∈W

∣∣ k ∈ Z, l = 1, . . . , nk
}
.

In other words, we have

W = span
{
φlk
}
kl
, 〈φlk, φmn 〉 =

{
1 k = n, l = m
0 otherwise.

Here the lengths nk ∈ N of the subsequences are uniformly
bounded. For given (ωk)k∈Z ⊂ R the operators Sk ∈ L(W )
representing the finite-dimensional Jordan blocks are defined
as

Sk = iωk〈·, φ1k〉φ1k +

nk∑
l=2

〈·, φlk〉
(
iωkφ

l
k + φl−1k

)
.

The operators Sk have the property that (iωkI−Sk)φ1k = 0,
and (Sk − iωkI)φlk = φl−1k for all l ∈ {2, . . . , nk}, and
thus they represent single Jordan blocks of dimensions nk
associated to eigenvalues iωk. Finally, the system operator
S of the exosystem is chosen as

Sv =
∑
k∈Z

Skv, D(S) =

{
v ∈W

∣∣∣∣ ∑
k∈Z
‖Skv‖2 <∞

}
.



It is straightforward to show that the spectrum of the
operator S satisfies

σ(S) = σp(S) = {iωk}k∈Z.

The operator S generates a C0-group TS(t) on W , and

TS(t)v =
∑
k∈Z

eiωkt
nk∑
l=1

〈v, φlk〉
l∑

j=1

tl−j

(l − j)!
φjk,

for all v ∈W , and t ∈ R. For any nS ∈ N such that nS ≥ nk
for all k ∈ Z there exists MS ≥ 1 such that

‖TS(t)‖ ≤MS(|t|nS + 1), ∀t ∈ R.

This also implies that the growth bound of the C0-group is
ω0(TS(t)) = 0.

We will first show that this exosystem satisfies Assump-
tion 2.1.

Lemma 5.1: The block diagonal exosystem satisfies the
nondecay condition in Assumption 2.1.

Proof: Since the spaces Wk := span{φlk}
nk

l=1 are TS(t)-
invariant for all k ∈ Z, we can consider v0 ∈Wk separately
for k ∈ Z. For any Q ∈ L(W,Y ) and for all k ∈ Z and
v0 ∈Wk we have

QTS(t)v0 = eiωkt
nk∑
l=1

〈v0, φlk〉
l∑

j=1

tl−j

(l − j)!
Qφjk (8a)

= eiωkt
nk−1∑
j=0

tj · 1

j!

nk∑
l=j+1

〈v0, φlk〉Qφ
l−j
k (8b)

If QTS(t)v0 → 0, it is easy to see that we must have
nk∑

l=j+1

〈v0, φlk〉Qφ
l−j
k = 0 ∀j ∈ {0, . . . , nk − 1}.

However, by (8) this also implies QTS(t0)v0 = 0 for all
t0 ∈ R.

We can now turn to conditions for existence of a state feed-
back law solving the asymptotic output tracking problem. In
order to state the conditions, we denote by PK(λ) = (C +
DK)R(λ,A+BK)B +D ∈ L(U, Y ) for λ ∈ ρ(A+BK)
the transfer function of the plant stabilized with a feedback
u = Kx + ũ. We then have that PK(iωk) is invertible for
all k ∈ Z because of the assumption on invertibility of
P (iωk), and the fact that this property is preserved under
state feedback. Furthermore, the differentiability properties
of the resolvent operator show that for all n ∈ N we have

P
(n)
K (λ) =

dn

dλn
PK(λ) =

dn

dλn
[(C+DK)R(λ,A+BK)B+D]

= (−1)nn!(C+DK)R(λ,A+BK)n+1B.

Theorem 5.2: Let K ∈ L(U,X) be chosen in such a way
that A+BK generates an exponentially stable semigroup. If
P

(l)
K (iωk) ∈ L(U, Y ) are boundedly invertible for all k ∈ Z

and l ∈ {1, . . . , nk − 1} and if F ∈ L(W,Y ) is such that
(Fφlk)k,l ∈ `2(Y ) and∑
k∈Z

nk∑
l=1

‖PK(iωk)−1‖2(nk−l)‖PK(iωk)−1Fφlk‖2 <∞, (9)

then there exists a state feedback law solving the output
tracking problem for the block diagonal exosystem.

Proof: For brevity, we denote Pk = PK(iωk) and
P

(j)
k = P

(j)
K (iωk). We will first need to show that the con-

strained Sylvester equation (7) has a solution Π ∈ L(W,X)
and Γ ∈ L(W,U).

If we denote Γ = KΠ + L with L ∈ L(W,U), we can
rewrite (7) as

ΠS = (A+BK)Π +BL (10a)
0 = (C +DK)Π +DL− F. (10b)

Since ω0(TS(t)) = 0 and since A + BK generates an
exponentially stable semigroup, we have from [8, Cor. 8]
that for any L ∈ L(W,U) the equation (10a) has a unique
solution Π ∈ L(W,X).

Let k ∈ Z. If we apply both sides of (10a) to
φ1k, φ

2
k, . . . , φ

nk

k , we obtain

BLφ1k = (iωkI −A−BK)Πφ1k,

BLφ2k = (iωkI −A−BK)Πφ2k + Πφ1k
...

BLφnk

k = (iωkI −A−BK)Πφnk

k + Πφnk−1
k

Since iωk ∈ ρ(A+BK), a direct computation yields

Πφlk =

l∑
j=1

(−1)l−jR(iωk, A+BK)l+1−jBLφjk (11)

for all l ∈ {1, . . . , nk}. Applying both sides of (10b) to φlk
and substituting the above expression we obtain

Fφl
k =DLφl

k+

l∑
j=1

(−1)l−j(C+DK)R(iωk, A+BK)l+1−jBLφj
k

=

l∑
j=1

1

(l − j)!
P

(l−j)
k Lφj

k.

Collecting the equations for l ∈ {1, . . . , nk} we obtain a
triangular system of equations for (Lφlk)nk

l=1
1
0!Pk
1
1!P

(1)
k

1
0!Pk

...
. . .

1
(nk−1)!P

(nk−1)
k · · · 11!P

(1)
k

1
0!Pk



Lφ1k
Lφ2k

...
Lφnk

k

 =


Fφ1k
Fφ2k

...
Fφnk

k

 .

Since by assumptions the operators P (l)
K (iωk) ∈ L(U, Y ) are

invertible for all l ∈ {0, . . . , nk}, this system can be solved
by forward substitution. The general form of the solution
itself becomes very complicated, but in order to prove our
result we only need to verify that the operator L defined in
this manner is bounded. In order to do this, we will estimate
the norms of the terms Lφlk. This can be accomplised fairly
easily.

We will first note that since A + BK generates an
exponentially stable semigroup, the operator norm of the
resolvent operator R(iω,A + BK) and its powers are uni-
formly bounded for ω ∈ R. This also implies that for all



l ∈ {1, . . . , nk − 1} the norms ‖P (l)
K (iω)‖ are uniformly

bounded with respect to ω ∈ R. We will first show that
there exist constants Ml ≥ 1 independent of k ∈ Z such that

‖Lφlk‖ ≤Ml

l∑
j=1

max{1, ‖P−1k ‖
l−j}‖P−1k Fφjk‖, (12)

for all l ∈ {1, . . . , nk}. We can show this using induction.
Choose M̃ ≥ 1 and N ∈ N such that nk ≤ N for all k ∈ Z
and

sup
ω∈R

∥∥∥P (l)
K (iω)

∥∥∥ ≤ M̃, ∀l ∈ {1, . . . , nk − 1}.

Let k ∈ Z. For l = 1 we have ‖Lφ1k‖ = ‖P−1k Fφ1k‖ and
thus (12) is satisfied with M1 = 1, independent of k. On the
other hand, if (12) is satisfied for all l ∈ {1, . . . ,m − 1},
then

‖Lφmk ‖ =

∥∥∥∥∥∥P−1k

Fφmk − m−1∑
j=1

1

j!
P

(j)
k Lφm−jk

∥∥∥∥∥∥
≤‖P−1k Fφmk ‖+ ‖P−1k ‖

m−1∑
j=1

1

(m− j)!
‖P (m−j)

k ‖‖Lφjk‖

≤‖P−1k Fφmk ‖

+M̃‖P−1k ‖
m−1∑
j=1

Mn

j∑
n=1

max{1, ‖P−1k ‖
j−n}‖P−1k Fφnk‖

= ‖P−1k Fφmk ‖

+M̃‖P−1k ‖
m−1∑
n=1

‖P−1k Fφnk‖
m−1∑
j=n

Mj max{1,‖P−1k ‖
j−n}

≤‖P−1k Fφmk ‖

+M̃N max
1≤j≤m−1

{Mj}
m−1∑
n=1

‖P−1k Fφnk‖max{1,‖P−1k ‖
m−n}

≤ M̃N max
1≤j≤m−1

{Mj}
m∑
n=1

max{1, ‖P−1k ‖
m−n}‖P−1k Fφnk‖.

Since the constant Mm := M̃N max1≤j≤m−1{Mj} ≥ 1
is independent of k, this concludes the proof. If we denote
M = max{M1, . . . ,MN}, then for any k ∈ Z such that
‖P−1k ‖ ≤ 1 we have

nk∑
l=1

‖Lφlk‖2≤M2
nk∑
l=1

 l∑
j=1

‖Fφjk‖

2

≤M2N2
nk∑
l=1

‖Fφlk‖2

and if ‖P−1k ‖ > 1, then a direct computation shows that

nk∑
l=1

‖Lφlk‖2 ≤M2N

nk∑
l=1

l∑
j=1

(
‖P−1k ‖

l−j‖P−1k Fφjk‖
)2

≤M2N

nk∑
l=1

nk∑
j=1

(
‖P−1k ‖

nk−j‖P−1k Fφjk‖
)2

≤M2N2
nk∑
j=1

‖P−1k ‖
2(nk−j)‖P−1k Fφjk‖

2

These two estimates together with (9) and (Fφk)k,l ∈ `2(Y )
conclude that we have∑

k∈Z

nk∑
l=1

‖Lφlk‖2 <∞,

and thus L ∈ L(W,U). The expression for Lφlk can now be
substituted back into the expression (11) for Πφlk, and the
appropriate resolvent identities can be used to further verify
that we indeed have Π(D(S)) ⊂ D(A).

For diagonal exosystems, i.e., if nk = 1 for all k ∈ Z, the
condition (9) for the existence of the state feedback control
law becomes ∑

k∈Z
‖PK(iωk)−1Fφk‖2 <∞,

which is in particular always satisfied if dimY < ∞ (then
(Fφk)k∈Z ∈ `2(Y )) and supk∈Z‖PK(iωk)−1‖ <∞. In this
case the formulas for the solution operators Π and L are also
easier to write out, and we have

Lv =
∑
k∈Z
〈v, φ1k〉PK(iωk)−1Fφ1k,

Πv =
∑
k∈Z
〈v, φ1k〉R(iωk, A+BK)BPK(iωk)−1Fφ1k,

for all v ∈W .

VI. ASYMPTOTIC OUTPUT TRACKING FOR A STABLE
HEAT EQUATION

In this section we consider output tracking of an exponen-
tially stable heat equation

dw

dt
(z, t) =

d2w

dz2
(z, t) + χ[ 12 ,1]

(z)u(t)

with Dirichlet boundary conditions w(0, t) = w(1, t) = 0
and initial state w(z, 0) = w0(z) ∈ L2(0, 1) along with a
measurement

y(t) =

∫ 1
2

0

w(z, t)dz.

The controlled heat equation can be written as a linear system
on X = L2(0, 1) if we choose

Ax = x′′, x ∈ D(A)=
{
x ∈ L2(0, 1)

∣∣ x, x′ abs. cont.,

x′′ ∈ L2(0, 1)
}
,

and

Bu = b(·)u, Cx =

∫ 1
2

0

x(z)dz.

As in [3], for all λ ∈ C with Reλ > −π2 the resolvent
operator R(s,A) has the form

R(λ,A)x(z) =

∫ z

0

sinh(ξ
√
λ) sinh

(
(1− z)

√
λ
)

√
λ sinh(

√
λ)

x(ξ)dξ

+

∫ 1

z

sinh(z
√
λ) sinh

(
(1− ξ)

√
λ
)

√
λ sinh(

√
λ)

x(ξ)dξ,



and the transfer function of the plant is given by

P (λ) = CR(λ,A)B =
4 sinh4(

√
λ/4)

λ
√
λ sinh(

√
λ)
.

This function has a removable singularity at λ = 0, and
P (iω) 6= 0 for all ω ∈ R.

The operator A generates an exponentially stable semi-
group, and we can therefore choose K = 0 in the feedback.
Therefore we also have PK(λ) = P (λ) for all λ ∈ ρ(A).

Let ω0 = 0, let (ωk)∞k=1 be the rational points on the
interval (0, 1] (appropriately enumerated), and let ω−k =
−ωk for k ∈ N. As the system operator of the exosystem
we choose

S =
∑
k∈Z

iωk〈·, φk〉φk ∈ L(W )

on the space W = `2(C), where φk = (δkl)l∈Z are the
unit vectors. Then S generates a bounded group TS(t)
on W = span{φk}k∈Z and by Theorem 5.1 it satisfies
the nondecay assumption. As the output operator we can
consider any bounded linear functional F ∈ L(W,C). We
remark that with a proper choice of F , our exosystem is
in particular capable of generating any sinusoidal signal
with a rational frequency ω ∈ [−1, 1]. This is in contrast
with a situation of a finite-dimensional exosystem, whose
signals may only contain components with prespecified fixed
frequencies. Indeed, if we choose F ∈ L(W,C) in such a
way that

Fφk =
1

k
, k ∈ Z,

then for any ω ∈ [−1, 1]∩Q there exists n ∈ Z in such a way
that ωn = ω, and the reference signal yref(t) = ceiωt can be
generated by choosing the initial state v0 of the exosystem
as v0 = cnφn. Indeed, we then have

yref(t) = FTS(t)v0 =
∑
k∈Z

eiωkt〈v0, φk〉Fφk

= eiωntcn〈φn, φn〉
1

n
= ceiωt.

The condition (9) for the existence of a state feedback
law solving the asymptotic output tracking problem for the
heat equation and the diagonal exosystem is now satisfied
automatically, since∑
k∈Z
‖PK(iωk)

−1Fφk‖2≤ sup
ω∈[−1,1]

|P (iω)−1|2
∑
k∈Z
|Fφk|2<∞.

The state feedback solving the asymptotic output tracking
problem is given by

u(t) = Kx(t) + (L−KΠ)v(t) = Lv(t)

= LTS(t)v0 =
∑
k∈Z

eiωkt〈v0, φk〉Lφk

=
∑
k∈Z

eiωkt〈v0, φk〉PK(iωk)−1Fφk

=
∑
k∈Z

eiωkt〈v0, φk〉
iωk
√
iωk sinh(

√
iωk)

4 sinh4(
√
iωk/4)

Fφk.

VII. CONCLUSIONS

In this paper we have studied the theory of asymptotic
output tracking for distributed parameter systems in the
case where the exosystem itself is a very general infinite-
dimensional linear system. In particular we have considered
the conditions for existence of an open loop control law
solving the problem of output tracking for such systems and
exosystems.

As was mentioned in the introduction, the asymptotic out-
put tracking problem can be solved using open loop control
even without knowledge on how to stabilize the dynamics of
the exosystem. This is no longer possible when considering
error feedback control, because any controller of this type
must itself contain a copy of the dynamics of the exosystem.
However, the solutions of these two control problems are
otherwise very similar. In fact, the state feedback used in
the open loop control problem is also present when using
error feedback control, but in the latter case the states x(t)
and v(t) of the system and the exosystem are replaced with
estimates produced by an asymptotic observer. In this way
the solution to the asymptotic output tracking problem with
open loop control also gives us new insights on how to design
error feedback controllers solving the problem, provided we
can find a way to stabilize the dynamics of the exosystem. As
already mentioned, such controllers have the highly desirable
property that the asymptotic output tracking is robust with
respect to perturbations in the parameters of system.
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