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THE INTERNAL MODEL PRINCIPLE FOR SYSTEMS WITH
UNBOUNDED CONTROL AND OBSERVATION∗

LASSI PAUNONEN† AND SEPPO POHJOLAINEN†

Abstract. In this paper the theory of robust output regulation of distributed parameter systems
with infinite-dimensional exosystems is extended for plants with unbounded control and observation.
As the main result, we present the internal model principle for linear infinite-dimensional systems with
unbounded input and output operators. We do this for two different definitions of an internal model
found in the literature, namely, the p-copy internal model and the G-conditions. We also introduce
a new way of defining an internal model for infinite-dimensional systems. The theoretic results are
illustrated with an example where we consider robust output tracking for a one-dimensional heat
equation with boundary control and pointwise measurements.
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1. Introduction. The topic of this paper is the theory of robust output regu-
lation for distributed parameter systems. Research in this branch of control of linear
systems has been active for over 30 years [23, 21, 8, 22, 2]. The main goal in robust
output regulation is to design a control law in such a way that the output y(t) of the
system

ẋ(t) = Ax(t) +Bu(t) + w(t), x(0) = x0 ∈ X,(1.1a)

y(t) = Cx(t) +Du(t)(1.1b)

tracks a given reference signal yref (t) despite the external disturbance signals w(t).
Moreover, the control law needs to be robust with respect to uncertainties in the
parameters (A,B,C,D) of the plant. The considered reference and disturbance signals
are assumed to be generated by an exosystem of the form

v̇(t) = Sv(t), v(0) = v0 ∈W,(1.2a)

w(t) = Ev(t),(1.2b)

yref (t) = −Fv(t)(1.2c)

(the minus sign is for notational convenience). With a suitable choice of a finite-
dimensional space W and a matrix S with eigenvalues on the imaginary axis, the
class of signals generated by (1.2) includes trigonometric functions, polynomials of t,
and their linear combinations. However, if we are interested in nonsmooth reference
and disturbance signals, the underlying space W becomes a separable Hilbert space
and S is a generator of a strongly continuous group. In particular, robust tracking
and disturbance rejection of any given continuous periodic reference and disturbance
signals y∗ref (t) and w

∗(t), respectively, can be formulated as a robust output regulation
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problem for an infinite-dimensional exosystem [12, 15]. Tracking of nonsmooth peri-
odic and almost periodic signals with high accuracy is necessary, e.g., in the control
of disk drive systems and robot arms [29, 10] and in power electronics [3].

Recent years have seen many successful efforts in the development of the state
space theory of robust output regulation for distributed parameter systems with
infinite-dimensional exosystems [11, 16, 9, 19]. In particular, the p-copy internal
model principle of Francis and Wonham [7] and Davison [5] was extended for infinite-
dimensional linear systems by the current authors in [16]. This fundamental theorem
states that a stabilizing feedback controller solves the robust output regulation prob-
lem if and only if it contains a suitable internal model, i.e., a part that is capable of
reproducing the dynamic behavior of the exosystem (1.2). One of the most impor-
tant implications of the internal model principle is that the robust output regulation
problem can be divided into two parts: One of (i) building an internal model of
the exosystem’s dynamics into the controller, and (ii) stabilizing the closed-loop sys-
tem. This subdivision proves to be especially useful in the case of infinite-dimensional
exosystems. For such signal generators exponential closed-loop stability is usually un-
achievable, and stabilizing the closed-loop system becomes a difficult problem on its
own. The internal model principle allows considering the two challenging parts of the
main problem separately. In this paper we concentrate on the first subproblem and,
in particular, on showing that the internal model in the controller is both necessary
and sufficient for the solvability of the robust output regulation problem.

The purpose of this paper is to extend the theory of robust output regula-
tion and the internal model principle for a larger class of linear systems. In refer-
ences [11, 16, 9, 19] the control and observation operators of the plant (1.1) were
assumed to be bounded. This standing assumption severely limits the applicability
of the theoretic results, because control schemes involving unbounded control and
observation are frequently encountered in practical applications. Most notably, such
situations arise in the control of partial differential equations with boundary control
or pointwise measurements [25, Ch. 10]. We extend the most important parts of the
theory presented in the previous references to systems with possibly unbounded B
and C. In the main part of the manuscript we work under the standing assumption
that the closed-loop system operator with maximal domain generates a strongly con-
tinuous semigroup. This assumption guarantees that the closed-loop system with the
dynamic error feedback controller has a well-defined state. Subsequently in section 8
we show that the results presented in this paper can be used in the situation where
both the plant and the controller are regular linear systems [26, 27, 24].

In the frequency domain the robust output regulation problem for systems with
unbounded control and observation has been considered previously in [22, 8, 13] for
finite-dimensional exosystems and in [28] for a diagonal infinite-dimensional exosys-
tem. In the state space the robust output regulation for systems with unbounded
inputs and outputs has not been considered together with infinite-dimensional exo-
systems. Moreover, the main results of this paper, especially the internal model
principle, are also new for an exosystem (1.2) on a finite-dimensional space W = C

r.
Recently in [17] the robust output regulation problem was studied in a situation

where the controller was not required to be robust with respect to all perturbations
to the parameters of the plant, but robustness was instead required with respect to
some smaller class of uncertainties. The motivation for this study was that some
perturbations of the parameters of the plant may be unrealistic in applications. It
was demonstrated in [17] that there are situations where robustness (with respect
to a smaller class of perturbations) does not require a “full” internal model in the
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controller. One of the key results was that the robustness of a controller can be char-
acterized using the solvability of a set of linear equations involving only the transfer
function of the plant evaluated at the frequencies of the exosystem and the operators
of the controller. In this paper we extend these results to plants and controllers with
unbounded input and output operators. Also, in [17] the exosystem was assumed to be
finite-dimensional and the closed-loop system to be exponentially stabilizable. In this
paper we consider an infinite-dimensional exosystem and strongly stabilizable closed-
loop systems. Finally, our results also generalize those in [17] by allowing disturbance
signals w(t) to the state of the plant (1.1).

The most important contribution of this paper is the extension of the p-copy
internal model principle to distributed parameter systems with unbounded input and
output operators. The proof of the internal model principle given in [16] contains parts
that cannot be extended to the class of systems considered in this paper. Instead,
we present a new, more direct, proof for the p-copy internal model principle. As a
byproduct, the new proof yields a new way of characterizing controllers incorporating
an internal model of the exosystem.

We also show that the robustness properties of the controller can equivalently be
characterized using the so-called G-conditions [9, 16]. The G-conditions can be seen as
an alternative way of defining an internal model in the controller. The p-copy internal
model and the G-conditions both have their strengths and weaknesses. In particular,
the G-conditions can be used in characterizing robustness even if the output space of
the plant is infinite-dimensional.

In addition to the unbounded inputs and outputs in the plant (1.1), we also
allow the output operator of the dynamic error feedback controller to be unbounded.
We conjecture that an unbounded operator in the controller will help achieve better
stability properties for the closed-loop system, especially if the closed-loop system is
being stabilized polynomially [18].

We conclude the paper by considering robust output regulation for a one-dimen-
sional heat equation with boundary control and point observation. In the first part of
the example, we design a feedback controller with a two-dimensional internal model
to solve the robust output regulation problem for tracking and rejecting constant
exogenous signals. In the second part, we consider tracking of nonsmooth periodic
signals using an infinite-dimensional diagonal exosystem. We construct a controller
satisfying the G-conditions. The theory presented in this paper shows that the con-
troller solves the robust output regulation problem provided that the remaining pa-
rameters of the controller can be chosen in such a way that the closed-loop system is
strongly stable.

The organization of the paper is as follows. In section 2 we introduce notation
and state the standing assumptions on the plant, the exosystem, and the controller.
We also define the class of perturbations considered in robust output regulation. In
sections 3 and 4 we formulate the robust output regulation problem and show that the
solvability of this problem without the requirement of robustness can be characterized
using the solvability of regulator equations. Ways of characterizing robustness with
respect to a given set of perturbations are studied in section 5. The p-copy internal
model principle is presented in section 6, and in section 7 we show that the robustness
properties of a controller can also be characterized using the G-conditions. In section 8
we prove that the results presented in this paper can be used in the situation where
the plant and the controller are regular linear systems. In section 9 we present an
example where we design controllers for robust output tracking of a one-dimensional
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heat equation. Section 10 contains concluding remarks.

2. Mathematical preliminaries. In this section we introduce the notation
and state the assumptions on the plant, the exosystem, and the controller. While
the input and output operators of the plant and the controller are allowed to be
unbounded operators, we assume that the closed-loop system is well defined in the
sense that the closed-loop system operator with maximal domain generates a strongly
continuous semigroup.

If X and Y are Banach spaces and A : X → Y is a linear operator, we denote by
D(A), N (A), and R(A) the domain, kernel, and range of A, respectively. The space
of bounded linear operators from X to Y is denoted by L(X,Y ). If A : X → X , then
σ(A), σp(A), and ρ(A) denote the spectrum, the point spectrum, and the resolvent set
of A, respectively. For λ ∈ ρ(A) the resolvent operator is given by R(λ,A) = (λ−A)−1.
The inner product on a Hilbert space and the dual pairing on a Banach space are
both denoted by 〈·, ·〉.

For n ∈ N we denoteXn = X×X×· · ·×X and D(A)n = D(A)×· · ·×D(A), where
a Banach space X and the domain D(A), respectively, are repeated n times. If T ∈
L(X,Y ) and x = (x1, x2, . . . , xn)

T ∈ Xn for some n ∈ N, then by Tx we mean that the
operator T is applied to all of the components of x, i.e., Tx = (Tx1, . . . , T xn)

T ∈ Y n.
We consider a linear system (1.1) where x(t) ∈ X is the state of the system, y(t) ∈

Y is the output, and u(t) ∈ U is the input. The spacesX , U , and Y are Banach spaces.
Here w(t) ∈ X denotes the disturbance signal to the state of the plant. We assume
that A : D(A) ⊂ X → X generates a strongly continuous semigroup T (t) on X . For
a fixed λ0 > ω0(T (t)) we define the scale spaces X1 = (D(A), ‖(λ0−A)·‖) and X−1 =
(X, ‖R(λ0, A)·‖) (the completion of X with respect to the norm ‖R(λ0, A)·‖) [25],
[6, sec. II.5]. We assume the input and output operators of the plant are such that
B ∈ L(U,X−1), C ∈ L(X1, Y ), and the feedthrough operator satisfies D ∈ L(U, Y ).
We denote by A−1 : X ⊂ X−1 → X−1 and T−1(t) the extensions of the operator A
and the semigroup T (t), respectively, to the space X−1. We assume the operators B
and C satisfy R(R(λ0, A−1)B) ⊂ D(C) and CR(λ0, A−1)B ∈ L(U, Y ) for some/all
λ0 ∈ ρ(A). The transfer function of the system is defined as

P (λ) = CR(λ,A−1)B +D ∈ L(U, Y )

for λ ∈ ρ(A).
In the following we construct an infinite-dimensional block diagonal exosystem

with frequencies with eigenvalues (ωk)k∈Z ⊂ R to generate the reference and distur-
bance signals. We do this by choosing the parameters of the system (1.2) appro-
priately. The resulting classes of reference and disturbance signals are analyzed in
greater detail in [19, sec. 3]. Let W be a separable Hilbert space with an orthonormal
basis

{
φlk

}
kl

:=

{
φlk ∈W

∣∣∣∣ k ∈ Z, l = 1, . . . , nk

}
.

More precisely, we haveW = span
{
φlk

}
kl
and 〈φlk, φmn 〉 = δknδlm. The lengths nk ∈ N

of the subsequences are uniformly bounded. For given (ωk)k∈Z ⊂ R the operators
Sk ∈ L(W ) representing finite-dimensional Jordan blocks are defined as

Sk = iωk〈·, φ1k〉φ1k +

nk∑
l=2

〈·, φlk〉
(
iωkφ

l
k + φl−1

k

)
.
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The operators Sk have the property that (iωk − Sk)φ
1
k = 0, and (Sk − iωk)φ

l
k = φl−1

k

for all l ∈ {2, . . . , nk}. The system operator S is defined as

Sv =
∑
k∈Z

Skv, D(S) =

{
v ∈W

∣∣∣∣ ∑
k∈Z

‖Skv‖2 <∞
}
.

The spectrum of the operator S satisfies σ(S) = σp(S) = {iωk}k∈Z
. The operator

S generates a strongly continuous group TS(t) on W , and

TS(t)v =
∑
k∈Z

eiωkt
nk∑
l=1

〈v, φlk〉
l∑

j=1

tl−j

(l − j)!
φjk

for all v ∈ W and t ∈ R. For any nS ∈ N such that nS ≥ nk for all k ∈ Z there
exists MS ≥ 1 such that ‖TS(t)‖ ≤MS(|t|nS + 1) for all t ∈ R. The operators E and
F are assumed to be bounded in such a way that E ∈ L(W,X) and F ∈ L(W,Y ).

For k ∈ Z we define the orthogonal projection Pk =
∑nk

l=1〈·, φlk〉φlk onto the
finite-dimensional subspace span{φlk}nk

l=1 of W . With this notation the domain of the
operator S satisfies

D(S) =

{
v ∈W

∣∣∣∣ ∑
k∈Z

(1 + ω2
k)‖Pkv‖2 <∞

}
.

We define scale spaces Wα ⊂W related to the system operator S of the exosystem.
Definition 2.1. For α ≥ 0 we denote by (Wα, ‖·‖α) the Hilbert space

Wα =

{
v ∈ W

∣∣∣∣ ∑
k∈Z

(1 + ω2
k)

α‖Pkv‖2 <∞
}

with norm ‖·‖α defined by ‖v‖2α =
∑

k∈Z
(1 + ω2

k)
α‖Pkv‖2 for v ∈ Wα.

The spaces Wα are invariant under the group TS(t), the restrictions TS(t)|Wα are
strongly continuous groups on Wα, and the generators of these groups are S|Wα :
D(S|Wα) ⊂Wα →Wα with domains D(S|Wα) =Wα+1.

Remark 2.2. The results in this paper are presented for infinite-dimensional
block diagonal exosystems. However, the main results are also new for systems with
unbounded B and C together with a finite-dimensional exosystem of the form (1.2) on
a finite-dimensional space W = Cr. In this situation the operator S is a matrix in its
Jordan canonical form with distinct eigenvalues σ(S) = {iωk}qk=1. The orthonormal
basis {φlk}kl of W can be chosen to consist of Euclidean basis vectors {ek}rk=1 ⊂ Cr

in such a way that

(e1, . . . , er) = (φ11, . . . , φ
n1
1 , φ12, . . . , φ

n2
2 , . . . , φ1q, . . . φ

nq
q ),

where nk ∈ N is the size of the Jordan block Sk associated to the eigenvalue iωk in S.
If the exosystem is finite-dimensional, then many of the proofs in this paper become
simpler due to the fact that the infinite index set k ∈ Z is replaced by the finite set
k ∈ {1, . . . , q} of indices. For a finite-dimensional exosystem we also have Wα = W
for every α ≥ 0.

We consider a dynamic error feedback controller of the form

ż(t) = G1z(t) + G2e(t), z(0) = z0 ∈ Z,

u(t) = Kz(t)
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on a Banach space Z. The operator G1 : D(G1) ⊂ Z → Z generates a strongly
continuous semigroup TG1(t) on Z, and the scale space Z1 is defined similarly as for
the plant. We assume G2 ∈ L(Y, Z) and K ∈ L(Z1, U).

The system and the controller can be written together as a closed-loop system on
the Banach space Xe = X×Z. This composite system with state xe(t) = (x(t), z(t))T

can be written formally on X−1 × Z as

ẋe(t) = Aexe(t) +Bev(t), xe(0) = xe0,

e(t) = Cexe(t) +Dev(t),

where e(t) = y(t) − yref (t) is the regulation error, xe0 = (x0, z0)
T , Ce =

(
C, DK

)
,

De = F ,

Ae =

(
A−1 BK
G2C G1 + G2DK

)
, Be =

(
E

G2F

)
.

Due to the unboundedness of the operators B, C, and K the domain of the operators
Ae will not be D(A)×D(G1) as in references [9, 19]. Instead, we consider the maximal
domain such that Ae is an operator on Xe, i.e., maximal domain for which R(Ae) ⊂
Xe = X×Z. Since G2Cx+(G1+G2DK)z ∈ Z if and only if x ∈ D(C) and z ∈ D(G1),
this domain is given by

D(Ae) =

{(
x
z

)
∈ D(C)×D(G1)

∣∣∣∣ A−1x+BKz ∈ X

}
.

The operator Ce is unbounded with domain D(Ce) = D(C) × D(K) ⊃ D(Ae) and
Be ∈ L(W,X × Z).

Assumption 2.3. Throughout the paper we assume (A,B,C,D) and (G1,G2,K)
are such that Ae with the given domain generates a strongly continuous semigroup
Te(t) on Xe and that Ce is relatively bounded with respect to Ae.

Later in section 8 we show that Assumption 2.3 is in particular satisfied if the plant
and the controller are regular linear systems. If λ0 ∈ ρ(Ae), then the Ae-boundedness
of Ce is equivalent to the condition Ce(λ0 −Ae)

−1 ∈ L(Xe, Y ).

2.1. The class of perturbations. In this paper we consider a situation where
parameters of the plant are perturbed in such a way that the operators A, B, C,
and D are changed into Ã : D(Ã) ⊂ X → X , B̃ ∈ L(U, X̃−1), C̃ ∈ L(X̃1, Y ), and
D̃ ∈ L(U, Y ), respectively. Here X̃1 and X̃−1 are the scale spaces of X related to
the operator Ã. Moreover, the operators E and F are perturbed in such a way that
Ẽ ∈ L(W,X) and F̃ ∈ L(W,Y ). For λ ∈ ρ(Ã) we denote by P̃ (λ) = C̃R(λ, Ã−1)B̃+D̃
the transfer function of the perturbed plant. We likewise denote the operators of
the closed-loop system consisting of the perturbed plant and the controller by C̃e =(
C̃, D̃K

)
, D̃e = F̃ , and

Ãe =

(
Ã−1 B̃K

G2C̃ G1 + G2D̃K

)
, B̃e =

(
Ẽ

G2F̃

)
.

Assumption 2.4. The perturbations (Ã, B̃, C̃, D̃, Ẽ, F̃ ) in the class O of consid-
ered perturbations are assumed to satisfy the following conditions:

(a) The perturbed system operator Ã generates a strongly continuous semigroup
on X and satisfies iωk ∈ ρ(Ã) for all k ∈ Z. The operators B̃ and C̃ are such
that R(R(λ0, Ã−1)B̃) ⊂ D(C̃) and C̃R(λ,0 , Ã−1)B̃ ∈ L(U, Y ) for some/all
λ0 ∈ ρ(Ã).
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(b) The perturbed closed-loop system operator Ãe with maximal domain gener-
ates a strongly stable strongly continuous semigroup on Xe and C̃e is Ãe-
bounded.

(c) The Sylvester equation Σ̃S = ÃeΣ̃ + B̃e has a solution Σ̃ ∈ L(Wα, Xe) satis-
fying Σ̃(Wα+1) ⊂ D(Ãe).

If the unperturbed closed-loop system is exponentially stable, then the conditions
of Assumption 2.4 are satisfied, in particular for any bounded perturbations of small
enough norms. If the exosystem is finite-dimensional (see Remark 2.2), then the
Sylvester equation ΣS = AeΣ + Be has a solution Σ ∈ L(W,Xe) satisfying R(Σ) ⊂
D(Ae) provided that σ(Ae) ∩ σ(S) = ∅ [20]. Likewise, part (c) of Assumption 2.4 is
satisfied whenever σ(Ãe) ∩ σ(S) = ∅.

2.2. Special operators. To state some of the main results of the paper, we
need additional notation. For k ∈ Z and n ∈ N we define the operator JG1(iωk) :
D(G1)

n ⊂ Zn → Zn to be a block upper triangular operator with diagonal elements
iωk − G1 and identity operators I on the first superdiagonal, i.e.,

JG1(iωk) =

⎛
⎝ iωk−G1 I

iωk−G1

. . . I
iωk−G1

⎞
⎠.

The form of the operator JG1(iωk) immediately implies that for all z = (znk
, . . . , z1)

T ∈
D(G1)

nk such that z = 0 the condition JG1(iωk)z = 0 is equivalent to (zl)
nk

l=1 forming
a Jordan chain of G1 associated to the eigenvalue iωk, i.e., (iωk − G1)z1 = 0 and
(G1 − iωk)zl = zl−1 for l ∈ {2, . . . , nk}.

For k ∈ Z and for an operator Ã denote R̃k = R(iωk, Ã−1). We define a block
triangular operator R(iωk, Ã−1) ∈ L(Xnk) by

R(iωk, Ã−1) =

⎛
⎜⎝

R̃k −R̃2
k ··· (−1)nk−1R̃

nk
k

R̃k ··· (−1)nk−2R̃
nk−1

k

. . .
...

R̃k

⎞
⎟⎠.

For k ∈ Z and for operators Ã, B̃, C̃, and D̃ satisfying iωk ∈ ρ(Ã), we denote by
P̃(iωk) ∈ L(Unk , Y nk) the operator

P̃(iωk) =

⎛
⎜⎜⎝

P̃ (iωk) −C̃R̃2
kB̃ ··· (−1)nk−1C̃R̃

nk
k B̃

P̃ (iωk) ··· (−1)nk−2C̃R̃
nk−1

k B̃

. . .
...

P̃ (iωk)

⎞
⎟⎟⎠ = C̃R(iωk, Ã−1)B̃ + D̃.

For the operators A, B, C, and D of the nominal plant, we use the notation P(iωk).
Finally, for k ∈ Z we define Φk = (φnk

k , φnk−1
k , . . . , φ1k)

T ∈ Wnk .
It should be noted that if for some k ∈ Z we have nk = 1, then the above operators

reduce to JG1(iωk) = iωk − G1, R(iωk, Ã−1) = R(iωk, Ã−1), and P̃(iωk) = P̃ (iωk).

3. Control objectives. In this section we formulate the robust output regula-
tion problem. The problem statement depends on the parameter α > 0. In particular,
the decay of the regulation error is required only for the reference and disturbance
signals corresponding to the initial states v0 ∈ Wα+1 of the exosystem. As shown
in [19, sec. 3], in the case of the periodic reference and disturbance signals the choices
of the initial states of the exosystem are directly related to the level of smoothness of
the signals to be tracked and rejected.
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The robust output regulation problem on Wα. Choose the controller
(G1,G2,K) in such a way that the following are satisfied:

(a) The closed-loop system operator Ae generates a strongly stable semigroup.
(b) For all initial states xe0 ∈ D(Ae) and v0 ∈ Wα+1 the regulation error decays

to zero asymptotically; i.e., e(t) → 0 as t→ ∞.
(c) If the operators (A,B,C,D,E, F ) are perturbed to (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O

(i.e., the perturbed closed-loop system is strongly stable and additional as-
sumptions made in section 2.1 are satisfied), then for all initial states xe0 ∈
D(Ãe) and v0 ∈ Wα+1 the regulation error satisfies e(t) → 0 as t→ ∞.

The parts (a) and (b) of the robust output regulation problem (i.e., the prob-
lem without the requirement for robustness) are referred to as the output regulation
problem.

The output regulation problem on Wα. Choose the controller (G1,G2,K)
in such a way that parts (a) and (b) of the robust output regulation problem are
satisfied.

4. Characterizing the solvability of the output regulation problem. In
this section we show that the solvability of the output regulation problem can be
characterized using the solvability of the so-called regulator equations [7, 2].

Theorem 4.1. Assume the controller (G1,G2,K) is such that Ae generates a
strongly stable semigroup on Xe, and that the Sylvester equation ΣS = AeΣ +Be on
Wα+1 has a solution Σ ∈ L(Wα, Xe). Then the following are equivalent:

(a) The controller (G1,G2,K) solves the output regulation problem on Wα.
(b) The regulator equations

ΣS = AeΣ+ Be,(4.1a)

0 = CeΣ +De(4.1b)

on Wα+1 have a solution Σ ∈ L(Wα, Xe).
For the proof of the theorem we need some auxiliary results. In particular,

Lemma 4.3 shows that the state of the closed-loop system and the regulation error
can be expressed using the solution Σ of the Sylvester equation (4.1a).

Lemma 4.2. If 1 ∈ ρ(Ae) and if Σ ∈ L(Wα, Xe) is the solution of (4.1a), then
CeΣ ∈ L(Wα+1, Y ).

Proof. Let v ∈ Wα+1. The Sylvester equation (4.1a) implies Σ(S − I)v = (Ae −
I)Σv +Bev. Now Σv ∈ D(Ae) ⊂ D(Ce) and using (4.1a) we have

‖CeΣv‖ = ‖Ce(Ae − I)−1(Ae − I)Σv‖ = ‖Ce(Ae − I)−1(Σ(S − I)v −Bev)‖
≤ ‖Ce(Ae − I)−1‖L(Xe,Y )

(‖Σ‖L(Wα,Xe)‖(S − I)v‖α + ‖Be‖L(Wα,Xe)‖v‖α
)
,

which implies that CeΣ ∈ L(Wα+1, Y ).
Lemma 4.3. Let Σ ∈ L(Wα, Xe) be a solution of the Sylvester equation (4.1a).

For all initial states xe0 ∈ Xe and v0 ∈ W and for all t ≥ 0 the state of the closed-
loop system satisfies xe(t) = Te(t)(xe0 − Σv0) + Σv(t), and for all xe0 ∈ D(Ae) and
v0 ∈Wα+1 the regulation error is given by

e(t) = CeTe(t)(xe0 − Σv0) + (CeΣ+De)v(t).

If xe0 ∈ D(Ae) and v0 ∈ Wα+1, then the regulation error e(t) is continuous and
satisfies ‖e(t)− (CeΣ +De)TS(t)v0‖ → 0 as t→ ∞.
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Proof. Let v ∈ Wα+1. Then Σv ∈ D(Ae) and for all t > s we have

Te(t− s)BeTS(s)v = Te(t− s)(ΣS −AeΣ)TS(s)v

= −Te(t− s)AeΣTS(s)v + Te(t− s)ΣSTS(s)v =
d

ds
(Te(t− s)ΣTS(s)v) .

Integrating both sides of this equation from 0 to t > 0 gives∫ t

0

Te(t− s)BeTS(s)vds = ΣTS(t)v − Te(t)Σv.(4.2)

Since the operators on both sides of this equation are in L(Wα, Xe) and since Wα+1

is dense in Wα, we have that (4.2) holds for all v ∈Wα and t > 0.
For all xe0 ∈ Xe and v0 ∈Wα the mild state of the closed-loop system is given by

xe(t) = Te(t)xe0 +

∫ t

0

Te(t− s)BeTS(s)v0ds.

We can now use (4.2) to conclude that

xe(t) = Te(t)xe0 +ΣTS(t)v0 − Te(t)Σv0 = Te(t)(xe0 − Σv0) + ΣTS(t)v0.

If xe0 ∈ D(Ae) and v0 ∈Wα+1, then ΣTS(t)v0 ∈ D(Ae) ⊂ D(Ce) for all t ≥ 0 and the
regulation error is given by

e(t) = Cexe(t) +Dev(t) = CeTe(t)(xe0 − Σv0) + (CeΣ +De)TS(t)v0.

Since t �→ TS(t)v0 ∈Wα+1 is continuous and since by Lemma 4.2 we have CeΣ+De ∈
L(Wα+1, Y ), we can see that t �→ (CeΣ+De)TS(t)v0 is continuous. Since we have

CeTe(t)(xe0 − Σv0) = Ce(Ae − I)−1(Ae − I)Te(t)(xe0 − Σv0)

= Ce(Ae − I)−1Te(t)(Ae − I)(xe0 − Σv0),

where Ce(Ae − I)−1 ∈ L(Xe, Y ), we can conclude that e(t) is continuous. Moreover,

‖e(t)− (CeΣ+De)TS(t)v0‖ = ‖CeTe(t)(xe0 − Σv0)‖
≤ ‖Ce(Ae − I)−1‖‖Te(t)(Ae − I)(xe0 − Σv0)‖ → 0

as t→ ∞ due to the strong stability of Te(t).
We can now use the previous results to prove Theorem 4.1.
Proof of Theorem 4.1. We will first show that (b) implies (a). Assume the

regulator equations (4.1) have a solution Σ ∈ L(Wα, Xe). Since Te(t) is strongly
stable, we have from Lemma 4.3 that for all initial states xe0 ∈ D(Ae) and v0 ∈Wα+1

lim
t→∞ ‖e(t)‖ = lim

t→∞ ‖e(t)− (CeΣ +De)v(t)‖ = 0,

since CeΣ + De = 0 on Wα+1. Thus the controller solves the output regulation
problem on Wα.

It remains to prove that (a) implies (b). Assume the controller solves the output
regulation problem on Wα and Σ ∈ L(Wα, Xe) is a solution of the Sylvester equa-
tion (4.1a) on Wα+1. Since the regulation error decays to zero asymptotically for all
initial states of the closed-loop system and the exosystem, Lemma 4.3 implies that
for all xe0 ∈ D(Ae) and v0 ∈Wα+1 we must have

‖(CeΣ+De)TS(t)v0‖ ≤ ‖(CeΣ +De)TS(t)v0 − e(t)‖+ ‖e(t)‖ t→∞−→ 0,

and thus limt→∞(CeΣ + De)TS(t)v0 = 0 for every v0 ∈ Wα+1. Since CeΣ + De ∈
L(Wα+1, Y ), we have from Lemma A.1 that Σ satisfies (4.1b).
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4.1. Properties of the Sylvester equation ΣS = AeΣ+Be. We conclude
the section by stating some relevant properties of the Sylvester equation in Theo-
rem 4.1. It should be noted that there are more convenient sufficient conditions for
the solvability of the equation than the one given in Theorem 4.4(b). In particular,
this is the case if the norms ‖R(iω,Ae)‖ are polynomially bounded with respect to |ω|
for ω ∈ R [19, 18]. If X and Z are Hilbert spaces, this is equivalent to the closed-loop
system being polynomially stable [1]. Also, if the exosystem is finite-dimensional, then
S is a bounded operator and the Sylvester equation ΣS = AeΣ + Be has a unique
bounded solution whenever σ(Ae) ∩ σ(S) = ∅ [20].

Theorem 4.4. Assume the closed-loop system is strongly stable, and let α ≥ 0.
Then the Sylvester equation

ΣS = AeΣ+Be(4.3)

has the following properties.
(a) Equation (4.3) may have at most one solution.
(b) If iωk ∈ ρ(Ae) for all k ∈ Z, and if

sup
‖x′

e‖≤1

∑
k∈Z

1

(1 + ω2
k)

α

nk∑
l=1

∣∣∣∣∣∣
l∑

j=1

(−1)l−j〈R(iωk, Ae)
l+1−jBeφ

j
k, x

′
e〉
∣∣∣∣∣∣
2

<∞,(4.4)

where x′e ∈ X ′
e, the dual space of Xe, then (4.3) has a unique solution Σ ∈

L(Wα, Xe) satisfying Σ(Wα+1) ⊂ D(Ae). The solution is given by

Σv =
∑
k∈Z

nk∑
l=1

〈v, φlk〉
l∑

j=1

(−1)l−jR(iωk, Ae)
l+1−jBeφ

j
k, v ∈ Wα.(4.5)

(c) If iωk ∈ ρ(Ae) for all k ∈ Z and if (4.3) has a solution Σ ∈ L(Wα, Xe), then
the condition (4.4) is satisfied, and Σ is given by (4.5).

(d) If (4.3) has a solution Σ ∈ L(Wα, Xe), then for every k ∈ Z the equation
ΣkS = AeΣk +BePk has a unique solution Σk = ΣPk ∈ L(W,Xe).

Proof. For the proof of part (a) let Σ1,Σ2 ∈ L(Wα, Xe) be two solutions of the
Sylvester equation. We have{

Σ1S = AeΣ1 +Be

Σ2S = AeΣ2 +Be
⇒ (Σ1 − Σ2)S = Ae(Σ1 − Σ2)

on Wα+1. Denote Δ = Σ1 − Σ2. For all t > 0 and v ∈ Wα+1

ΔTS(t)v − Te(t)Δv =
[
Te(t− s)ΔTS(s)v

]t
s=0

=

∫ t

0

d

ds

(
Te(t− s)ΔTS(s)v

)
ds

=

∫ t

0

Te(t− s) (−AeΔ+ΔS)TS(s)vds = 0,

and thus (Σ1 − Σ2)TS(t)v = Te(t)(Σ1 − Σ2)v for all t ≥ 0. Since for all t ≥ 0 the
operators on both sides of the equation are in L(Wα, Xe) and since Wα+1 is dense in
Wα, the above identity holds for all v ∈ Wα.

Since Te(t) is strongly stable, for all v ∈Wα we have

‖(Σ1 − Σ2)TS(t)v0‖ = ‖Te(t)(Σ1 − Σ2)v0‖ → 0
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as t → ∞. Since Σ1 − Σ2 ∈ L(Wα, Xe), Lemma A.1 implies that Σ1 − Σ2 = 0. This
concludes that the Sylvester equation may have at most one solution.

We will next prove part (b). Since iωk ∈ ρ(Ae) for all k ∈ Z, we have that
Beφ

l
k ∈ R(iωk − Ae)

nk−l+1 for every k ∈ Z and l ∈ {1, . . . , nk}. Since (4.4) is
satisfied, we have from Lemma 3.2 in [16] that the Sylvester equation (4.3) has a
solution Σ ∈ L(Wα, Xe) given by (4.5) (in [16] α was assumed to be an integer, but
the result remains valid for all nonnegative α).

In order to prove (c) assume that iωk ∈ ρ(Ae) for all k ∈ Z and that the Sylvester
equation has a solution Σ ∈ L(Wα, Xe). Let k ∈ Z. Applying both sides of the
equation ΣS = AeΣ +Be to the elements {φlk}nk

l=1, we obtain

(iωk −Ae)Σφ
1
k = Beφ

1
k,

(iωk −Ae)Σφ
2
k +Σφ1k = Beφ

2
k

...

(iωk −Ae)Σφ
nk

k +Σφnk−1
k = Beφ

nk

k .

Solving the equations recursively shows that for any v ∈ PkW = span{φlk}nk

l=1 we have

Σv =

nk∑
l=1

〈v, φlk〉
l∑

j=1

(−1)l−jR(iωk, Ae)
l+1−jBeφ

j
k.

Since k ∈ Z was arbitrary, we have that the operator defined by (4.5) is equal to the
unique solution of the Sylvester equation (4.3) on all subspaces PkW . Therefore, the
operator defined by (4.5) is in L(Wα, Xe). Finally, we have from [16, Lem. 3.4] that
since Σ is in L(Wα, Xe), the condition (4.4) is satisfied.

To prove (d), let k ∈ Z. If (4.3) has a solution Σ ∈ L(Wα, Xe), then clearly
ΣPk ∈ L(W,Xe) (since R(Pk) ⊂Wα). For all v ∈ D(S) we have Pkv ∈ Wα+1 and

ΣPkSv = ΣSPkv = AeΣPkv +BePkv.

This concludes that ΣPk is a solution of the Sylvester equation ΣkS = AeΣk +BePk.
The uniqueness of the solution follows from part (a) when we change Be to BePk.

5. Characterizing robustness with respect to given perturbations. In
this section we present a way of testing the robustness of a controller with respect
to given perturbations. The following theorem extends the results presented in [17],
where the system had bounded input and output operators, the exosystem was finite-
dimensional, and the closed-loop system was exponentially stable. Theorem 5.1 and its
corollaries will also be instrumental in the proofs of the results presented in sections 6
and 7.

Theorem 5.1. A controller (G1,G2,K) solving the output regulation problem is
robust with respect to given perturbations (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O if and only if the
equations

P̃(iωk)Kzk = −C̃R(iωk, Ã)ẼΦk − F̃Φk,(5.1a)

JG1(iωk)z
k = 0(5.1b)

have a solution zk = (zknk
, . . . , zk1 )

T ∈ D(G1)
nk for all k ∈ Z. Moreover, for every

k ∈ Z the solution of (5.1) is unique.
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The proof of the theorem is based on the following lemma and certain properties
of the regulator equations.

Lemma 5.2. Assume the controller (G1,G2,K) solves the output regulation prob-
lem on Wα. The controller is robust with respect to perturbations (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈
O if and only if C̃eΣ̃ + D̃e = 0 on Wα+1.

Proof. Since the controller solves the output regulation problem onWα, it remains
to verify the third part of the robust output regulation problem. This part requires
that the controller solves the output regulation problem for the perturbed operators
(Ã, B̃, C̃, D̃, Ẽ, F̃ ). However, since Ãe generates a strongly stable semigroup and since
Σ̃S = ÃeΣ̃ + B̃e has a solution Σ̃ ∈ L(Wα, Xe), we have from Theorem 4.1 that this
is true if and only if C̃eΣ̃ + D̃e = 0 is satisfied on Wα+1.

The proof of Lemma 5.3 is presented in Appendix A.
Lemma 5.3. Assume (Ã, B̃, C̃, D̃, Ẽ, F̃ ) satisfy parts (a) and (b) of Assump-

tion 2.4, and let k ∈ Z. For an operator Σ = (Π,Γ)T ∈ L(Wα, Xe) the following are
equivalent.

(a) The operator Σ satisfies R(ΣPk) ⊂ D(Ãe) and ΣPkS = ÃeΣPk + B̃ePk.
(b) The operator Σ satisfies R(ΣPk) ⊂ D(C̃)×D(G1) and

JG1(iωk)ΓΦk = G2

(
P̃(iωk)KΓΦk + C̃R(iωk, Ã)ẼΦk + F̃Φk

)
,(5.2a)

ΠΦk = R(iωk, Ã−1)
(
B̃KΓΦk + ẼΦk

)
.(5.2b)

If Σ = (Π,Γ)T satisfies one of the above conditions, then

C̃eΣΦk + D̃eΦk = P̃(iωk)KΓΦk + C̃R(iωk, Ã)ẼΦk + F̃Φk.(5.3)

Moreover, if (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O, then for an operator Σ : D(Σ) ⊂ W → Xe

the following are equivalent.
(c) The operator Σ (or its extension) satisfies Σ ∈ L(Wα, Xe) and Σ(Wα+1) ⊂

D(Ãe), and it is a solution of the Sylvester equation ΣS = ÃeΣ+ B̃e.
(d) The operator Σ satisfies R(ΣPk) ⊂ D(C̃)×D(G1) and (5.2) for all k ∈ Z.

If one of the above conditions is satisfied, then (5.3) is satisfied for all k ∈ Z.
The uniqueness of the solution of the Sylvester equation and Lemma 5.3 imply

the following.
Lemma 5.4. Assume (Ã, B̃, C̃, D̃, Ẽ, F̃ ) satisfy parts (a) and (b) of Assump-

tion 2.4, and let k ∈ Z. If the equation

JG1(iωk)z
k = G2

(
P̃(iωk)Kzk + C̃R(iωk, Ã)ẼΦk + F̃Φk

)
(5.4)

has a solution zk ∈ D(G1)
nk , then ΣkS = ÃeΣk+B̃ePk has a solution Σk ∈ L(W,Xe).

On the other hand, if (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O, then for every k ∈ Z (5.4) has a
unique solution zk ∈ D(G1)

nk .
Proof. To prove the first part of the lemma, let k ∈ Z, and let zk ∈ D(G1)

nk be
a solution of (5.4). Define Π ∈ L(W,X), Γ ∈ L(W,Z), and Σ = (Π,Γ)T by

Γ =

nk∑
l=1

〈·, φlk〉zkl , Π =

nk∑
l=1

〈·, φlk〉
l−1∑
j=0

(−1)jR(iωk, Ã−1)
j+1

(
B̃Kzkl−j + Ẽφl−j

k

)
.(5.5)

The definitions imply that Πφlk ∈ D(C̃) and Γφlk ∈ D(G1) for all l ∈ {1, . . . , nk}, and
thus R(ΣPk) ⊂ D(C̃)×D(G1). For l ∈ {1, . . . , nk} we have Γφlk = zkl , which together
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with the definition of Π shows that

ΠΦk = R(iωk, Ã−1)
(
B̃KΓΦk + ẼΦk

)
.

Furthermore, since ΓΦk = zk, (5.4) implies

JG1(iωk)ΓΦk = JG1(iωk)z
k = G2

(
P̃(iωk)Kzk + C̃R(iωk, Ã)EΦk + FΦk

)
= G2

(
P̃(iωk)KΓΦk + C̃R(iωk, Ã)EΦk + FΦk

)
.

This concludes that Σ satisfies (5.2), and thus we have from Lemma 5.3 that ΣPk = Σ
is a solution of the Sylvester equation ΣkS = ÃeΣk + B̃ePk.

To prove the second part, assume (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O, and let k ∈ Z. We
have from Assumption 2.4 that the Sylvester equation ΣS = ÃeΣ+ B̃e has a solution
Σ ∈ L(Wα, Xe). If we let k ∈ Z and denote zk = ΓΦk ∈ D(G1)

nk , then we have
from (5.2a) and Lemma 5.3 that zk is the solution of (5.4).

To prove the uniqueness of the solution, let zk, z̃k ∈ D(G1)
nk be two solutions

of (5.4). We can now use formulas (5.5) to define operators Σ = (Π,Γ)T and Σ̃ =
(Π̃, Γ̃)T corresponding to zk and z̃k, respectively. As in the beginning of this proof,
we get that Σ and Σ̃ are solutions of the Sylvester equation Σk = ÃeΣk + B̃ePk.
However, by Theorem 4.4 the solution of this equation is unique, and we must thus
have Σk = Σ̃k and, in particular, Γk = Γ̃k. From the definitions of these operators it
is clear that this is only possible if zk = z̃k. This results in the conclusion that the
solution of (5.4) is unique.

Proof of Theorem 5.1. Let (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O.
We will first show that robustness of a controller with respect to the given pertur-

bations implies that the equations (5.1) have solutions for all k ∈ Z. The robustness
of the controller together with Lemma 5.2 implies that

Σ̃S = ÃeΣ̃ + B̃e,(5.6a)

0 = C̃eΣ̃ + D̃e(5.6b)

have a solution Σ̃ = (Π̃, Γ̃)T ∈ L(Wα, Xe). Let k ∈ Z. We now have from (5.2a)
and (5.3) in Lemma 5.3 that the perturbed regulator equations (5.6) in particular
imply

JG1(iωk)Γ̃Φk = G2

(
P̃(iωk)KΓ̃Φk + C̃R(iωk, Ã)ẼΦk + F̃Φk

)
,

0 = P̃(iωk)KΓ̃Φk + C̃R(iωk, Ã)ẼΦk + F̃Φk.

If we choose zk = ΓΦk ∈ D(G1)
nk , then (5.1a) follows immediately from the second

equation. Furthermore, substituting the second equation into the right-hand side of
the first, we further conclude that JG1(iωk)z

k = 0, and thus zk is the solution of the
equations (5.1). Since k ∈ Z was arbitrary, this concludes the first part of the proof.

Now assume that for all k ∈ Z equations (5.1) have solutions zk = (zknk
, . . . , zk1 )

T ∈
D(G1)

nk . Define operators Π : D(Π) ⊂ Wα → X , Γ : D(Γ) ⊂ Wα → Z, and
Σ : D(Σ) ⊂Wα → Xe by

Γ =
∑
k∈Z

nk∑
l=1

〈·, φl
k〉zkl , Π =

∑
k∈Z

nk∑
l=1

〈·, φl
k〉

l−1∑
j=0

(−1)jR(iωk, Ã−1)
j+1

(
B̃Kzkl−j + Ẽφl−j

k

)
,
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and Σ = (Π,Γ)T . We will show that Σ is the solution of the perturbed Sylvester
equation (5.6a) and that it satisfies the regulation constraint (5.6b).

Let k ∈ Z. For all l ∈ {1, . . . , nk} we have Γφlk = zkl ∈ D(G1), which together

with the definition of Π implies that R(ΠPk) ⊂ D(C̃) and that (5.2b) is satisfied.
Furthermore, since ΓΦk = zk, we have from (5.1) that

JG1(iωk)ΓΦk = JG1(iωk)z
k = 0 = G2

(
P̃(iωk)Kzk + C̃R(iωk, Ã)EΦk + FΦk

)
= G2

(
P̃(iωk)KΓΦk + C̃R(iωk, Ã)EΦk + FΦk

)
,

which is precisely (5.2a). Since (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O, we now have from the second
part of Lemma 5.3 that Σ ∈ L(Wα, Xe) and it is the solution of the Sylvester equation
ΣS = ÃeΣ + B̃e. Finally, Lemma 5.3 and (5.1a) imply that

C̃eΣΦk + D̃eΦk = P̃(iωk)KΓΦk + C̃R(iωk, Ã)ẼΦk + F̃Φk

= P̃(iωk)Kzk + C̃R(iωk, Ã)ẼΦk + F̃Φk = 0.

Since k ∈ Z was arbitrary and C̃eΣ + D̃e ∈ L(Wα+1, Xe) by Lemma 4.2, we have
C̃eΣ + D̃e = 0 on Wα+1. Thus Σ is a solution of the perturbed regulator equa-
tions, and by Lemma 5.2 the controller is robust with respect to the perturbations
(Ã, B̃, C̃, D̃, Ẽ, F̃ ).

It remains to prove the uniqueness of the solution of (5.1). If zk is the solution
of the equations (5.1), then it is also clearly a solution of (5.4). By Lemma 5.4 the
solution of this equation is unique, and therefore the same is also true for the solution
of (5.1).

From Theorem 5.1 and Lemma 5.4 we get the following corollary. This will be
helpful in characterizing the robustness of a controller through the G-conditions.

Corollary 5.5. Assume (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O. The controller is robust with
respect to the perturbations if and only if for every k ∈ Z the unique solution zk ∈
D(G1)

nk of the equation

JG1(iωk)z
k = G2

(
P̃(iωk)Kzk + C̃R(iωk, Ã)ẼΦk + F̃Φk

)
(5.7a)

satisfies

P̃(iωk)Kzk + C̃R(iωk, Ã)ẼΦk + F̃Φk = 0.(5.7b)

6. The p-copy internal model principle. In this section we show that a con-
troller stabilizing the closed-loop system solves the robust output regulation problem
if and only if it incorporates a p-copy internal model of the exosystem. The p in the
term refers to the dimension of the output space, i.e., p = dimY . The significance
of p is that the classical definition of the finite-dimensional internal model states
roughly that “for any Jordan block of S associated to an eigenvalue s, the matrix
G1 must have at least p Jordan blocks of greater or equal size associated to s.” For
infinite-dimensional feedback controllers the p-copy internal model can be defined as
shown below [16]. The definition of the p-copy is meaningful only in the case of a
finite-dimensional output space Y .

Definition 6.1 (the p-copy internal model). Assume dimY < ∞. A con-
troller (G1,G2,K) is said to incorporate a p-copy internal model of the exosystem S
if for all k ∈ Z we have

dimN (iωk − G1) ≥ dim Y
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and G1 has at least dimY independent Jordan chains of length greater than or equal
to nk associated to the eigenvalue iωk.

The following theorem is the main result of this section.
Theorem 6.2. Assume that dimY <∞, the controller (G1,G2,K) stabilizes the

closed-loop system strongly, iωk ∈ ρ(Ae) for all k ∈ Z, and the Sylvester equation
ΣS = AeΣ+Be has a solution Σ ∈ L(Wα, Xe). Then the controller solves the robust
output regulation problem on Wα if and only if it incorporates a p-copy internal model
of the exosystem.

As a byproduct of the proof of Theorem 6.2, we obtain a new way of defining an
“internal model” of the exosystem for infinite-dimensional controllers. This definition
can be given in a compact form using the properties of the operator

(P̃(iωk)K)|N (JG1 (iωk)) : N (JG1(iωk)) ⊂ Znk → Y nk ,(6.1)

i.e., the restriction of the operator P̃(iωk)K to the subspace N (JG1 (iωk)). The fol-
lowing theorem shows that the invertibility of the above operator is equivalent to the
controller incorporating an internal model of the exosystem in the sense of Defini-
tion 6.1. The theorem generalizes the results in [16, sec. 6], where it was shown that
for a diagonal exosystem the invertibility of the operators (P (iωk)K)|N (iωk−G1) for
all frequencies iωk is equivalent to the controller incorporating an internal model.

Theorem 6.3. Assume dimY <∞.
If there exist (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O such that the operator in (6.1) is surjective

for all k ∈ Z, then the controller incorporates a p-copy internal model of the exosystem.
Conversely, if the controller incorporates a p-copy internal model of the exosystem

and if (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O, then the operator (6.1) is boundedly invertible for all
k ∈ Z.

Remark 6.4. The conclusions of Theorem 6.3 are in particular true for the un-
perturbed operators (A,B,C,D,E, F ).

The proof of Theorem 6.3 is based on the following four lemmas. Lemma 6.5 was
first introduced in [16] for the transfer function P (λ) of the unperturbed plant.

Lemma 6.5. Let k ∈ Z. If iωk ∈ ρ(Ã) and iωk /∈ σp(Ãe), then the operator

(P̃ (iωk)K)|N (iωk−G1) is injective.

Proof. Let z ∈ N (iωk − G1) be such that P̃ (iωk)Kz = 0. Since iωk ∈ ρ(Ã) =

ρ(Ã−1), we can choose x = R(iωk, Ã−1)B̃Kz ∈ D(C̃). On X−1 × Z we have

(
(iωk − Ã−1)x− B̃Kz

−G2C̃x+ (iωk − G1)z − G2D̃Kz

)
=

(
B̃Kz − B̃Kz

−G2(C̃R(iωk, Ã−1)B̃ + D̃)Kz + (iωk − G1)z

)

=

(
0

−G2P̃ (iωk)Kz

)
=

(
0
0

)
∈ X × Z.

This shows that (x, z)T ∈ D(iωk− Ãe) and (iωk− Ãe)
(
x
z

)
=
(
0
0

)
. Since iωk /∈ σp(Ãe),

we know that iωk − Ãe is injective. This in particular implies z = 0, from which we
conclude that the restriction of P̃ (iωk)K to N (iωk − G1) is injective.

Lemma 6.6. If (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O, then (P̃(iωk)K)|N (JG1(iωk)) is injective
for all k ∈ Z.

Proof. Let k ∈ Z. We have from Assumption 2.4 that iωk ∈ ρ(Ã), and since
Ãe generates a strongly stable semigroup, we must have σp(Ãe) ∩ iR = ∅. Therefore

the conditions of Lemma 6.5 are satisfied and the operator (P̃ (iωk)K)|N (iωk−G1) is
injective.
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Let z = (znk
, . . . , z1)

T ∈ N (JG1(iωk)) ⊂ D(G1)
nk be such that P̃(iωk)Kz = 0.

If we denote P̃l = (−1)lC̃R(iωk, Ã−1)
l+1B̃ for l ∈ {1, . . . , nk − 1}, then the equation

can be written as⎛
⎜⎝

P̃ (iωk)K P̃1K ··· P̃nk−1K

. . .
P̃ (iωk)K P̃1K

P̃ (iωk)K

⎞
⎟⎠
⎛
⎜⎝
znk

...
z1

⎞
⎟⎠ =

⎛
⎜⎝
0
...
0

⎞
⎟⎠ .

Since z1 ∈ N (iωk−G1) and since (P̃ (iωk)K)|N (iωk−G1) is injective by Lemma 6.5, the
last line implies z1 = 0. Since JG1(iωk)z = 0, we also have (G1− iωk)z2 = z1 = 0, and
thus z2 ∈ N (iωk − G1). Substituting z1 = 0 into the second to last line of the matrix
equation, we get P̃ (iωk)Kz2 = 0, and the injectivity of (P̃ (iωk)K)|N (iωk−G1) implies
z2 = 0.

These steps can be repeated until we have reached z1 = · · · = znk−1 = 0, and
(G1 − iωk)znk

= znk−1 = 0 shows that znk
∈ N (iωk − G1). Substituting these into

the top line of the matrix equation, we get P̃ (iωk)Kznk
= 0, which in turn implies

znk
= 0 due to the injectivity of the operator (P̃ (iωk)K)|N (iωk−G1). This finally

concludes z = 0.
Lemma 6.7. Assume dimY < ∞. If (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O are such that

the operator (P̃(iωk)K)|N (JG1(iωk)) is surjective for all k ∈ Z, then the controller
incorporates a p-copy internal model of the exosystem.

Proof. Let p = dimY and k ∈ Z. By construction, if z = (znk
, . . . , z1)

T ∈
N (JG1(iωk)) is such that z1 = 0, then (zj)

nk
j=1 is a Jordan chain of G1 associated to

the eigenvalue iωk. Let {el}pl=1 ⊂ Y = Cp be the natural basis vectors of Cp. Then

by surjectivity of (P̃(iωk)K)|N (JG1(iωk)) there exist {zl}pl=1 ⊂ N (JG1(iωk)) such that

⎛
⎜⎝

P̃ (iωk)K P̃1K ··· P̃nk−1K

. . .
P̃ (iωk)K P̃1K

P̃ (iωk)K

⎞
⎟⎠
⎛
⎜⎝
zlnk

...
zl1

⎞
⎟⎠ =

⎛
⎜⎝

0
...
el

⎞
⎟⎠

for all l ∈ {1, . . . , p}. The bottom lines of the equations show that P̃ (iωk)Kz
l
1 = el,

and therefore the first elements {zl1}pl=1 must be linearly independent, because {el}pl=1

are linearly independent. We therefore conclude that G1 has p independent Jordan
chains {zlj}nk

j=1 of lengths nk associated to the eigenvalue iωk. Since k ∈ Z was
arbitrary, this concludes the proof.

Lemma 6.8. Assume dim Y < ∞. If the controller incorporates a p-copy
internal model of the exosystem and if (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O, then the operator
(P̃(iωk)K)|N (JG1 (iωk)) is surjective for all k ∈ Z.

Proof. Let p = dimY , (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O, and k ∈ Z. Then iωk ∈ ρ(Ã)
by Assumption 2.4, and since Ãe generates a strongly stable semigroup, we have
iωk /∈ σp(Ãe). Thus we have from Lemma 6.5 that (P̃ (iωk)K)|N (iωk−G1) is injective,
and since dimN (iωk −G1) ≥ p due to the p-copy internal model, it is also surjective.
Actually, the Rank Nullity Theorem [14, Thm. 4.7.7] together with the invertibility
of (P̃ (iωk)K)|N (iωk−G1) implies

dimN (iωk − G1) = dimR
(
(P̃ (iωk)K)|N (iωk−G1)

)
+ dimN

(
(P̃ (iωk)K)|N (iωk−G1)

)
= dimR

(
(P̃ (iωk)K)|N (iωk−G1)

)
= dimY = p.
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We will show that for any y = (ynk
, . . . , y1)

T ∈ Y nk we can choose an element
z = (znk

, . . . , z1)
T ∈ N (JG1 (iωk)) ⊂ D(G1)

nk such that P̃(iωk)Kz = y. Denote
P̃l = (−1)lC̃R(iωk, Ã−1)

l+1B̃ for l ∈ {1, . . . , nk − 1}. The equation can be written as

⎛
⎜⎝

P̃ (iωk)K P̃1K ··· P̃nk−1K

. . .
P̃ (iωk)K P̃1K

P̃ (iωk)K

⎞
⎟⎠
⎛
⎜⎝
znk

...
z1

⎞
⎟⎠ =

⎛
⎜⎝
ynk

...
y1

⎞
⎟⎠ .(6.2)

It was shown in [16, Lem. 6.8] that since the controller incorporates a p-copy internal
model of the exosystem and since dimN (iωk − G1) = p, we have N (iωk − G1)

nk−1 ⊂
R(iωk − G1).

Since (P̃ (iωk)K)|N (iωk−G1) is surjective, we can choose z1 ∈ N (iωk − G1) in such

a way that P̃ (iωk)Kz1 = y1. This shows that the bottom line of (6.2) is satisfied. If
nk = 1, the proof is complete. Otherwise we continue as follows.

Since N (iωk −G1) ⊂ N (iωk − G1)
nk−1 ⊂ R(iωk −G1), we can choose z̃2 ∈ D(G1)

such that (G1 − iωk)z̃2 = z1. Now choose δ2 ∈ N (iωk − G1) in such a way that

P̃ (iωk)Kδ2 = y2 − P̃ (iωk)Kz̃2 − P̃1Kz1.

This is possible since (P̃ (iωk)K)|N (iωk−G1) is surjective. If we choose z2 = z̃2 + δ2,
then (G1 − iωk)z2 = z1, and

P̃ (iωk)Kz2 + P̃1Kz1 = y2.

This shows that the second to last line of (6.2) is satisfied.
These same steps can be repeated until we have chosen {zl}nk−1

l=1 in such a way

that nk − 1 lines from the bottom of (6.2) are satisfied and {zl}nk−1
l=1 is a Jordan

chain of G1. Then, since znk−1 ∈ N (iωk − G1)
nk−1 ⊂ R(iωk − G1), we can choose

z̃nk
∈ D(G1) such that (G1 − iωk)z̃nk

= znk−1. Now choose δnk
∈ N (iωk −G1) in such

a way that

P̃ (iωk)Kδnk
= ynk

− P̃ (iωk)Kz̃nk
−

nk−1∑
l=1

P̃lKznk−l.

This is possible since (P̃ (iωk)K)|N (iωk−G1) is surjective. If we choose znk
= z̃nk

+ δnk
,

then (G1 − iωk)znk
= znk−1, and

P̃ (iωk)Kznk
+

nk−1∑
l=1

P̃lKznk−l = ynk
.

This finally shows that the first line of (6.2) is satisfied. By construction we thus
have P̃ (iωk)Kz = y, and {zl}nk

l=1 is a Jordan chain of G1 associated to iωk, i.e.,
JG1(iωk)z = 0. This concludes the proof.

Proof of Theorem 6.3. The first claim follows directly from Lemma 6.7. The
second claim follows from Lemmas 6.6 and 6.8.

We can now use Theorem 6.3 to present a proof for the p-copy internal model
principle in Theorem 6.2.

Proof of Theorem 6.2. We begin by showing that a controller incorporating a
p-copy internal model solves the robust output regulation problem. To this end, let
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(Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O. We have from Theorem 6.3 that (P̃(iωk)K)|N (JG1 (iωk)) are
invertible for all k ∈ Z. This means in particular that for any k ∈ Z we can choose
zk ∈ D(G1)

nk in such a way that JG1(iωk)z
k = 0 and

P̃(iωk)Kzk = −C̃R(iωk, Ã)ẼΦk − F̃Φk.

Therefore the equations (5.1) have a solution for all k ∈ Z, and Theorem 5.1 states
that the controller is robust with respect to the given perturbations. Since the per-
turbations were arbitrary, this concludes the proof.

Conversely, assume that the controller solves the robust output regulation prob-
lem. By Theorem 6.3 it is sufficient to show that for some perturbations in O the
operator (P̃(iωk))|N (JG1 (iωk)) is surjective for all k ∈ Z. We leave the operators
(A,B,C,D) unperturbed and show that (P(iωk))|N (JG1 (iωk)) are surjective by choos-

ing the perturbed operators Ẽ and F̃ in a suitable way. The closed-loop system is
strongly stable and parts (a) and (b) of Assumption 2.4 are satisfied. Let k ∈ Z

be fixed. We have iωk ∈ ρ(Ae) by assumption. Let y = (ynk
, . . . , y1)

T ∈ Y nk , and
choose Ẽ = 0 ∈ L(W,Xe) and F̃ = −∑nk

l=1〈·, φlk〉yl. We then have F̃Φk = −y.

Since B̃eφ
l
k′ = (Ẽφlk′ ,G2F̃ φ

l
k′ )T = 0 for any k′ = k, the supremum in (4.4) is

clearly finite and we have from part (b) of Theorem 4.4 that the Sylvester equation
ΣS = AeΣ + B̃e has a solution Σ ∈ L(Wα, Xe). This shows that the perturbations
satisfy (A,B,C,D, Ẽ, F̃ ) ∈ O.

Since the controller solves the robust output regulation problem and we have
(A,B,C,D, Ẽ, F̃ ) ∈ O, Theorem 5.1 implies that there exists zk ∈ N (JG1 (iωk)) such
that

P(iωk)Kzk = −CR(iωk, A)ẼΦk − F̃Φk

⇔ P(iωk)Kzk = y.

Since y ∈ Y nk was arbitrary, this shows that (P(iωk))|N (JG1 (iωk)) is surjective. The
index k ∈ Z was arbitrary, and thus we have from Theorem 6.3 that the controller
incorporates a p-copy internal model.

7. The G-conditions. In this section we show that also the so-called G-condi-
tions [9, 16] can be used in characterizing controllers that solve the robust output
regulation problem. As we will see in section 9.2, one of the strengths of the G-
conditions is that they are straightforward to verify for a certain type of triangular
controllers. Moreover, this version of the internal model is meaningful even in the
situation where the output space Y is infinite-dimensional.

Definition 7.1 (the G-conditions). A controller (G1,G2,K) is said to satisfy
the G-conditions if

R(iωk − G1) ∩R(G2) = {0} ∀k ∈ Z,(7.1a)

N (G2) = {0},(7.1b)

N (iωk − G1)
nk−1 ⊂ R(iωk − G1) ∀k ∈ Z.(7.1c)

The following theorem is the main result of this section. It was shown in [16, Lem.
5.7] that the condition Z = R(iωk − G1) +R(G2) is in particular true if iωk ∈ ρ(Ae).

Theorem 7.2. Assume that the controller (G1,G2,K) stabilizes the closed-loop
system strongly and satisfies Z = R(iωk−G1)+R(G2) for all k ∈ Z, and the Sylvester
equation ΣS = AeΣ + Be has a solution Σ ∈ L(Wα, Xe). Then the controller solves
the robust output regulation problem on Wα if and only if it satisfies the G-conditions.
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The proof of Theorem 7.2 is a direct consequence of the following four lemmas.
Lemma 7.3. If the controller (G1,G2,K) solves the robust output regulation prob-

lem, then (7.1a) is satisfied.
Proof. Let k ∈ Z and w ∈ R(iωk − G1) ∩R(G2). Then there exist z ∈ D(G1) and

y ∈ Y such that

w = (iωk − G1)z = G2y.

Leave the operators (A,B,C,D) unperturbed, and choose Ẽ = 0 ∈ L(W,X) and
F̃ = 〈·, φnk

k 〉(y − P (iωk)Kz) ∈ L(W,Y ). The operators (A,B,C,D, Ẽ, F̃ ) satisfy
parts (a) and (b) of Assumption 2.4.

Now F̃Φk = (y − P (iωk)Kz, 0, . . . , 0)
T ∈ Y nk . For zk = (z, 0, . . . , 0)T ∈ D(G1)

nk

we have

JG1(iωk)z
k =

⎛
⎝ iωk−G1 I

iωk−G1

. . . I
iωk−G1

⎞
⎠
⎛
⎜⎝
z
...
0

⎞
⎟⎠ =

⎛
⎜⎝
(iωk − G1)z

...
0

⎞
⎟⎠ =

⎛
⎜⎝
G2y
...
0

⎞
⎟⎠

and

G2

(
P(iωk)Kzk + CR(iωk, A)ẼΦk + F̃Φk

)
= G2

[
(P (iωk)Kz, 0, . . . , 0)

T + (y − P (iωk)Kz, 0, . . . , 0)
T
]
= (G2y, 0, . . . , 0)

T
.

Therefore, zk = (z, 0, . . . , 0)T is a solution of (5.4). Using the fact that

B̃ePk =

(
ẼPk

G2F̃Pk

)
=

(
Ẽ

G2F̃

)
= B̃e,

we have from Lemma 5.4 that the Sylvester equation ΣS = ÃeΣ+ B̃e has a solution
Σ ∈ L(W,Xe). This shows that (A,B,C,D, Ẽ, F̃ ) ∈ O.

Since zk is a solution of (5.7a), we have from Corollary 5.5 that it also satisfies

0 = P(iωk)Kzk + CR(iωk, A)ẼΦk + F̃Φk

= (P (iωk)Kz, 0, . . . , 0)
T + (y − P (iωk)Kz, 0, . . . , 0)

T = (y, 0, . . . , 0)T ∈ Y nk ,

which implies y = 0. This further shows that w = G2y = 0. Since w ∈ R(iωk − G1) ∩
N (G2) and k ∈ Z were arbitrary, we have that (7.1a) is satisfied.

Lemma 7.4. If the controller (G1,G2,K) solves the robust output regulation prob-
lem, then (7.1b) is satisfied.

Proof. Let y ∈ N (G2), and let φ ∈ Wα+1 be such that ‖φ‖ = 1. Leave the
operators (A,B,C,D) unperturbed, and choose Ẽ = 0 ∈ L(W,X) and F̃ = 〈·, φ〉y ∈
L(W,Y ). The operators (A,B,C,D, Ẽ, F̃ ) satisfy parts (a) and (b) of Assumption 2.4.

If we choose Σ = 0 ∈ L(Wα, Xe), then Σ(Wα+1) = {0} ⊂ D(Ãe), and for all
v ∈ Wα+1 we have ΣSv = 0 and

ÃeΣv + B̃ev =

(
Ẽv

G2F̃ v

)
=

(
0

〈v, φ〉G2y

)
= 0.

This shows that Σ = 0 is a solution of ΣS = Ãe+B̃e, and thus (A,B,C,D, Ẽ, F̃ ) ∈ O.
Since the controller solves the robust output regulation problem, we have from

Lemma 5.2 that C̃eΣ+ D̃e = 0 on Wα+1. In particular, using ‖φ‖ = 1 gives

0 = C̃eΣφ+ D̃eφ = F̃φ = 〈φ, φ〉y = y.
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Since y ∈ N (G2) was arbitrary, this concludes the proof.
Lemma 7.5. If Z = R(iωk − G1) + R(G2) for all k ∈ Z, and if the controller

(G1,G2,K) solves the robust output regulation problem, then (7.1c) is satisfied.
Proof. Let k ∈ Z and z ∈ N (iωk − G1)

nk−1. Since Z = R(iωk − G1) + R(G2),
there exist z1 ∈ D(G1) and y ∈ Y such that

z = (iωk − G1)z1 + G2y.

To prove the claim it is now sufficient to show that y = 0. Leave the operators
(A,B,C,D) unperturbed, and choose Ẽ = 0 ∈ L(W,X). Choose zk ∈ D(G1)

nk in
such a way that

zk =
(
(−1)nk−1z1, (−1)nk−2z, (−1)nk−3(iωk − G1)z, . . . , (iωk − G1)

nk−2z
)T
,

i.e., zk =
(
(zk)nk

, . . . , (zk)1
)T

with components (zk)nk
= (−1)nk−1z1 and

(zk)l = (−1)l−1(iωk − G1)
nk−1−lz

for l = {1, . . . , nk − 1}. Choose the operator F̃ ∈ L(W,Y ) in such a way that

F̃ =

(
nk−1∑
l=1

−〈·, φlk〉(P(iωk)Kzk)l

)
+ 〈·, φnk

k 〉((−1)nky − (P(iωk)Kzk)nk
),

where (P(iωk)Kzk)l denotes a component of the nk-dimensional vector P(iωk)Kzk =(
(P(iωk)Kzk)nk

, . . . , (P(iωk)Kzk)1
)T

. The operators (A,B,C,D, Ẽ, F̃ ) satisfy parts
(a) and (b) of Assumption 2.4.

We have F̃Φk = −P(iωk)Kzk + ((−1)nky, 0, . . . , 0)
T
. Now

G2

(
P(iωk)Kzk + CR(iωk, A)ẼΦk + F̃Φk

)
= G2

(
P(iωk)Kzk − P(iωk)Kzk + ((−1)nky, 0, . . . , 0)

T
)
= ((−1)nkG2y, 0, . . . , 0)

T
.

On the other hand,

JG1(iωk)z
k =

⎛
⎝ iωk−G1 I

iωk−G1

. . . I
iωk−G1

⎞
⎠
⎛
⎜⎜⎜⎝

(−1)nk−1z1
(−1)nk−2z

...
(iωk − G1)

nk−2z

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

(−1)nk−1((iωk − G1)z1 − z)
(−1)nk−2((iωk − G1)z − (iωk − G1)z)

...
(−1)((iωk − G1)

nk−2z − (iωk − G1)
nk−2z)

(iωk − G1)
nk−1z

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
(−1)nkG2y

0
...
0

⎞
⎟⎟⎟⎠ ,

where we have used (iωk −G1)
nk−1z = 0 and (iωk −G1)z1 − z = −G2y. Therefore, z

k

is a solution of (5.4). Using the fact that B̃ePk = B̃e, we have from Lemma 5.4 that
the Sylvester equation ΣS = ÃeΣ+ B̃e has a solution Σ ∈ L(W,Xe). This shows that
(A,B,C,D, Ẽ, F̃ ) ∈ O.



THE INTERNAL MODEL PRINCIPLE 3987

Since zk is a solution of (5.7a), we have from Corollary 5.5 that it also satisfies

0 = P(iωk)Kzk + CR(iωk, A)ẼΦk + F̃Φk = F̃Φk

= P(iωk)Kzk − P(iωk)Kzk + ((−1)nky, 0, . . . , 0)T = ((−1)nky, 0, . . . , 0)T ∈ Y nk ,

which implies y = 0, and we therefore have z = (iωk − G1)z1 ∈ R(iωk − G1). Since
z ∈ N (iωk − G1)

nk−1 was arbitrary, this concludes the proof.
Finally, Lemma 7.6 proves that the G-conditions are sufficient for the robustness

of the controller.
Lemma 7.6. Assume that the controller (G1,G2,K) satisfies the G-conditions,

the closed-loop system is strongly stable, and the Sylvester equation ΣS = AeΣ + Be

has a solution Σ ∈ L(Wα, Xe). Then the controller solves the robust output regulation
problem on Wα.

Proof. In this proof we will show that for all perturbations in O and for all
k ∈ Z the unique solution zk of (5.7a) satisfies (5.7b). Since this will in particular
be true for the operators (A,B,C,D,E, F ) of the unperturbed plant, the results
in section 5 imply that the solution Σ of the Sylvester equation ΣS = AeΣ + Be

satisfies CeΣ + De = 0 on Wα+1. Therefore, by Theorem 4.1 the controller solves
the robust output regulation problem. Moreover, since the unique solutions of (5.7a)
satisfy (5.7b) also for all other perturbations in O, Corollary 5.5 implies that the
controller is robust with respect to all perturbations in O, and thus it solves the
robust output regulation problem on Wα.

Let (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O. Fix k ∈ Z, and let zk ∈ D(G1)
nk be the unique

solution of (5.7a), i.e.,⎛
⎝ iωk−G1 I

iωk−G1

. . . I
iωk−G1

⎞
⎠zk = G2

(
P(iωk)Kzk + CR(iωk, A)ẼΦk + F̃Φk

)
.(7.2)

For brevity denote y = (ynk
, . . . , y1)

T = P(iωk)Kzk+CR(iωk, A)ẼΦk+F̃Φk and zk =
(zknk

, . . . , zk1 ). The bottom line of (7.2) is (iωk −G1)z
k
1 = G2y1. Now conditions (7.1a)

and (7.1b) imply that (iωk − G1)z
k
1 = 0 and y1 = 0.

If nk ≥ 2, the condition (7.1c) implies

zk1 ∈ N (iωk − G1) ⊂ N (iωk − G1)
nk−1 ⊂ R(iωk − G1).

The second to last line of (7.2) is (iωk − G1)z
k
2 + zk1 = G2y2. Since z

k
1 ∈ R(iωk − G1),

conditions (7.1a) and (7.1b) imply (iωk − G1)z
k
2 + zk1 = 0 and y2 = 0. In particular,

this also shows that zk2 ∈ N ((iωk − G1)
2) since (iωk − G1)

2zk2 = −(iωk − G1)z
k
1 = 0.

By repeating the previous step as many times as necessary we can show that
yl = 0 and

zkl ∈ N (iωk − G1)
l ⊂ N (iωk − G1)

nk−1 ⊂ R(iωk − G1)

for all l ∈ {1, . . . , nk − 1}. Finally, the top line of (7.2) is equal to (iωk − G1)z
k
nk

+

zknk−1 = G2ynk
. Since zknk−1 ∈ R(iωk − G1), conditions (7.1a) and (7.1b) imply

(iωk − G1)z
k
nk

+ zknk−1 = 0 and ynk
= 0. We have now concluded that

0 = y = P(iωk)Kzk + CR(iωk, A)ẼΦk + F̃Φk,

and thus we have shown that the unique solution zk of (5.7a) satisfies (5.7b).
As stated in the beginning of the proof, the fact that (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O and

k ∈ Z were arbitrary allows us to conclude that the controller solves the robust output
regulation problem on Wα.
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8. Regular linear systems. In this section we show that Assumption 2.3 is in
particular satisfied if the plant and the controller are regular linear systems [26, 27,
24]. The operator B is said to be an admissible input operator (with respect to the
semigroup T (t) generated by A) if for some τ > 0 (and consequently for all τ > 0)
and u ∈ L2(0, τ ;U) [25, sec. 4.2]

∫ τ

0

T−1(τ − s)Bu(s)ds ∈ X.

Moreover, the operator C is called an admissible output operator if for one/all τ > 0
there exists cτ > 0 such that∫ τ

0

‖CT (s)x‖2ds ≤ cτ‖x‖2 ∀x ∈ D(A).

The admissibility of the output operator K ∈ L(Z1, U) of the controller with respect
to the semigroup generated by G1 is defined analogously. For admissible operators C
and K, we can define their Λ-extensions by [26, 27]

CΛx = lim
λ→∞

λC(λ −A)−1x and KΛz = lim
λ→∞

λK(λ− G1)
−1z,

with domains D(CΛ) and D(KΛ) consisting of those elements x ∈ X and z ∈ Z,
respectively, for which the limits exist. In the system equations (as well as elsewhere
in the paper), the admissible operators C and K can be replaced without loss of
generality with their Λ-extensions CΛ and KΛ.

The plant (A,B,C,D) with admissible input and output operators is said to be
a regular linear system if R(R(λ,A−1)B) ⊂ D(CΛ) for one/all λ ∈ ρ(A) (which is
one of our standing assumptions made in section 2) and if λ �→ ‖P (λ)‖ is uniformly
bounded on some right half-plane C

+
β [27, Prop. 2.1].

If the operator K is an admissible output operator with respect to the semigroup
generated by G1 and the operator G2 is bounded, then also the controller (G1,G2,K)
is a regular linear system (due to [25, Thm. 4.3.7]).

Theorem 8.1. If both the plant (A,B,C,D) and the controller (G1,G2,K) with
G2 ∈ L(Y, Z) are regular linear systems, then Assumption 2.3 is satisfied.

Proof. The plant (without the disturbance signal w(t)) and the controller can be
written together as a composite open loop system

d

dt

(
x
z

)
=

(
A 0
0 G1

)(
x
z

)
+

(
0 B
G2 0

)(
e
u

)
,(

y
u

)
=

(
CΛ 0
0 KΛ

)(
x
z

)
+

(
0 D
0 0

)(
e
u

)
.

Denote x̂ = (x, z)T , ŷ = (y, u)T , û = (e, u)T ,

Â =

(
A 0
0 G1

)
, B̂ =

(
0 B
G2 0

)
, ĈΛ =

(
CΛ 0
0 KΛ

)
, D̂ =

(
0 D
0 0

)
.

We will show that (Â, B̂, Ĉ, D̂) is a regular linear system on Xe = X × Z. The
operator Â generates a strongly continuous semigroup on Xe, and it is immediate
that B̂ and Ĉ are admissible with respect to Â. We have R(R(λ, Â−1)B̂) ⊂ D(Ĉ) for
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all λ ∈ ρ(Â) = ρ(A) ∩ ρ(G1), and the transfer function of (Â, B̂, Ĉ, D̂) is given by

P̂ (λ) = ĈΛR(λ, Â−1)B̂ + D̂

=

(
CΛ 0
0 KΛ

)(
R(λ,A−1) 0

0 R(λ,G1,−1)

)(
0 B
G2 0

)
+

(
0 D
0 0

)

=

(
0 CΛR(λ,A−1)B +D

KΛR(λ,G1)G2 0

)
=

(
0 P (λ)

PG(λ) 0

)
.

Since (A,B,C,D) and (G1,G2,K) are regular linear systems, the mapping λ �→ ‖P̂ (λ)‖
is bounded on some half-plane C+

β̂
. This concludes that (Â, B̂, Ĉ, D̂) is a regular linear

system [27, Prop. 2.1].
We will show that the operators Ae and Ce are the system operator and the

output operator, respectively, of a linear system that is obtained from the open-loop
system (Â, B̂, Ĉ, D̂) by applying a static output feedback û = K̂ŷ+ ũ with K̂ = ( I0

0
I ).

Once we show that K̂ is an admissible feedback operator for (Â, B̂, Ĉ, D̂), the theory
in [26, 27] concludes that the closed-loop system resulting from the static output
feedback is regular as well. This will in particular imply that Ae generates a strongly
continuous semigroup on Xe and that Ce is relatively bounded with respect to Ae.

We begin by showing that K̂ is an admissible feedback operator for (Â, B̂, Ĉ, D̂).
To do this, we need to show that on some right half-plane of C the inverses (I −
P̂ (λ)K̂)−1 exist and are uniformly bounded. This is achieved if we can find β′ ∈ R

and 0 < γ < 1 so that ‖P̂ (λ)K̂‖ ≤ γ < 1 for all λ in the half-plane C
+
β′ .

Since G2 is bounded andK is admissible, by [25, Thm. 4.3.7] there exist ω ∈ R and
M̃ > 0 such that for every λ ∈ C with Reλ > ω we have ‖PG(λ)‖ = ‖KR(λ,G1)G2‖ ≤
M̃‖G2‖/

√
Reλ− ω, and thus ‖PG(λ)‖ → 0 as Reλ → ∞. Since (A,B,C,D) is

regular, P (·) is uniformly bounded on some right half-plane of C. We can therefore
choose β′ > ω in such a way that P (·) and PG(·) are uniformly bounded on C

+
β′ and

‖PG(λ)‖‖P (λ)‖ ≤ γ < 1 for every λ ∈ C
+
β′ . We then have that (I − PG(λ)P (λ))−1

exists and ‖(I − PG(λ)P (λ))−1‖ ≤ 1/(1 − γ) for all λ ∈ C
+
β′ . Furthermore, for every

λ ∈ C
+
β′ we have

(I − P̂ (λ)K̂)−1 =

(
I P (λ)
0 I

)(
I 0
0 (I − PG(λ)P (λ))−1

)(
I 0

PG(λ) I

)
,

and

‖(I − P̂ (λ)K̂)−1‖ ≤ (2 + ‖P (λ)‖)max{1, ‖(I − PG(λ)P (λ))−1‖}(2 + ‖PG(λ)‖)
≤ 1

1− γ
(2 + ‖P (λ)‖)(2 + ‖PG(λ)‖),

which is uniformly bounded on C
+
β′ . This shows that K̂ is an admissible feedback

operator for (Â, B̂, Ĉ, D̂).
By [26], [27, sec. II] the closed-loop system (ÂK , B̂K , ĈK , D̂K) obtained with

output feedback û = K̂ŷ + ũ is a regular linear system. The operators ÂK and ĈK
Λ

can be expressed using the operator

(I − D̂K̂)−1 =

(
I −D
0 I

)−1

=

(
I D
0 I

)
.
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The generator ÂK is given by a formula [27, sec. II]

ÂK x̂ = (Â+ B̂K̂(I − D̂K̂)−1ĈΛ)x̂

=

(
A 0
0 G1

)(
x
z

)
+

(
0 B
G2 0

)(
I D
0 I

)(
CΛ 0
0 KΛ

)(
x
z

)

=

(
A BKΛ

G2CΛ G1 + G2DKΛ

)(
x
z

)

with domain

D(ÂK) =

{
( xz ) ∈ D(CΛ)×D(KΛ)

∣∣∣∣ (Â+ B̂K̂(I − D̂K̂)−1ĈΛ)(
x
z ) ∈ X × Z

}

=

{
( xz ) ∈ D(CΛ)×D(G1)

∣∣∣∣ Ax+BKΛz ∈ X

}
.

This shows that ÂK coincides with Ae in section 2. Moreover,

ĈK x̂ = (I − D̂K̂)−1ĈΛx̂ =

(
I D
0 I

)(
CΛ 0
0 KΛ

)(
x
z

)
=

(
CΛ DKΛ

0 KΛ

)(
x
z

)

with domain D(ĈK) = D(CΛ)×D(KΛ). Because of this, the first lines of Ĉ
K coincide

with the operator Ce in section 2. Because (ÂK , B̂K , ĈK , D̂K) is a regular linear
system, the operator Ae generates a strongly continuous semigroup and Ce is an
admissible observation operator (with respect to the semigroup Te(t)) and relatively
bounded with respect to Ae.

Remark 8.2. As in [27, sec. II], the domain of ÂK can also be expressed in the
form

D(ÂK) =

{
( x
z ) ∈ X̂1

∣∣∣∣ (Â+ B̂K̂(I − D̂K̂)−1ĈΛ)(
x
z ) ∈ X × Z

}
,

where X̂1 = D(Â)+R(R(μ, Â−1)B̂) for some μ ∈ ρ(Â). This together with a straight-
forward computation shows that

D(Ae) =

{
( xz ) ∈ X1 ×D(G1)

∣∣∣∣ A−1x+BKz ∈ X

}
,

where X1 = D(A) +R(R(μ,A−1)B) for some μ ∈ ρ(A).

9. Robust output tracking for a heat equation. In this section we consider
robust output tracking for a stable one-dimensional heat equation with Neumann
boundary control and point measurements. The system is given by

∂x

∂t
(ξ, t) =

∂2x

∂ξ2
(ξ, t)− x(ξ, t),

−∂x
∂ξ

(0, t) = u1(t),
∂x

∂ξ
(1, t) = u2(t)

with initial state x(ξ, 0) = x0(ξ). The temperature of the system is measured at two
points

y(t) =

(
x(1/

√
8, t)

x(1/
√
2, t)

)
.
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The plant can be written in the form (1.1) if we chooseX = L2(0, 1), U = C2, Y = C2,
and

(Ax)(ξ) = x′′(ξ)− x(ξ),

D(A) =

{
x ∈ X

∣∣∣∣ x, x′ abs. cont. x′′ ∈ L2(0, 1), x′(0) = x′(1) = 0

}
.

The operator A has a spectral representation [4, Ch. 2]

Ax =

∞∑
k=0

λk〈x, ϕk〉L2ϕk(·),

x ∈ D(A) =

{
x ∈ X

∣∣∣ ∞∑
k=0

|λk|2|〈x, ϕk〉L2 |2 <∞
}
,

where λk = −k2π2 − 1, ϕ0(ξ) ≡ 1, and ϕk(ξ) =
√
2 cos(πkξ) for k ∈ N. Thus the

spectrum of A satisfies σ(A) = σp(A) = {λk}∞k=0. The operator A is boundedly
invertible and generates an exponentially stable analytic semigroup on X . Since {ϕk}
is an orthonormal basis of X , we have ‖R(λ,A)‖ = mink|λ − λk|−1 for all λ ∈ ρ(A).
The space X−1 is given by

X−1 =

{ ∞∑
k=0

〈x, ϕk〉ϕk

∣∣∣ ∞∑
k=0

1

|λk|2 |〈x, ϕk〉|2 <∞
}
.

The operator −A is positive and sectorial, and its fractional powers have representa-
tions

(−A)βx =
∞∑
k=0

(−λk)β〈x, ϕk〉ϕk(·),

x ∈ D((−A)β) =
{ ∞∑

k=0

〈x, ϕk〉ϕk

∣∣∣ ∞∑
k=0

|λk|2β |〈x, ϕk〉|2 <∞
}

for all β ∈ R.
The boundary control can be written formally as B

(
u1

u2

)
= b1u1 + b2u2 with

b1(ξ) = δ(ξ), and b2(ξ) = δ(ξ − 1) (where δ(·) is the Dirac delta function). We
have b1, b2 ∈ X−1. Similarly, the observation operator can be written as Cx =(〈x, c1〉, 〈x, c2〉)T with c1(ξ) = δ(ξ− 1/

√
8), c2(ξ) = δ(ξ− 1/

√
2) and domain D(C) =

{x ∈ X | x(·) is cont.}. For any ξ0 ∈ [0, 1] we have

∞∑
k=0

|λk|2·(−1/2)|〈δ(· − ξ0), ϕk〉|2 =

∞∑
k=0

|ϕk(ξ0)|2
|λk| ≤ 1 +

2

π2

∞∑
k=1

1

k2
=

4

3
.

This shows that b1, b2, c1, c2 ∈ D((−A−1)
−1/2) and that ‖(−A−1)

−1/2bj‖ ≤ √
4/3

and ‖(−A−1)
−1/2cj‖ ≤ √

4/3 for j = 1, 2, which further imply B ∈ L(U,X−1),
C ∈ L(X1, Y ), R(R(λ,A−1)B) ⊂ D((−A)1/2) ⊂ D(C), and P (λ) = CR(λ,A−1)B ∈
L(U, Y ) for all λ ∈ ρ(A).

We have 〈b1, ϕ0〉 = ϕ0(0) = 1, 〈b2, ϕ0〉 = ϕ0(1) = 1 and 〈b1, ϕk〉 = ϕk(0) =√
2, 〈b2, ϕk〉 = ϕk(1) =

√
2 cos(πk) =

√
2(−1)k for k ∈ N. Likewise, 〈c1, ϕ0〉 =
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ϕ0(1/
√
8) = 1, 〈c2, ϕ0〉 = ϕ0(1/

√
2) = 1 and 〈c1, ϕk〉 = ϕk(1/

√
8) =

√
2 cos(πk/

√
8),

and 〈c2, ϕk〉 = ϕk(1/
√
2) =

√
2 cos(πk/

√
2) for k ∈ N. The transfer function of the

plant has a series representation

P (λ)u =

∞∑
k=0

1

λ− λk
〈Bu,ϕk〉Cϕk =

∞∑
k=0

1

λ− λk

(〈ϕk, c1〉
〈ϕk, c2〉

)
(〈b1, ϕk〉u1 + 〈b2, ϕk〉u2)

=
1

λ+ 1

(
1 1
1 1

)
u+ 2

∞∑
k=1

1

λ− λk

(
cos(πk/

√
8)

cos(πk/
√
2)

)(
1, (−1)k

)
u,

and ‖P (λ)‖ can be estimated as

‖P (λ)‖ ≤ 1

|λ+ 1|
∥∥∥∥
(
1 1
1 1

)∥∥∥∥+ 2

∞∑
k=1

1

|λ− λk|
√
2
√
2 ≤ 4

∞∑
k=0

1

|λ− λk| .(9.1)

9.1. Robust tracking of constant reference signals. In the first part of
this example we consider a one-dimensional exosystem. We choose its parameters as
W = C, S = 0 ∈ C, E = 0 ∈ X , F = − 1

5 (1, 3)
T ∈ C2. Then for the initial state

v0 ∈ C the reference signal generated by the exosystem is

yref (t) = −FeStv0 =
1

5

(
1
3

)
v0.

Our aim is to solve the robust output regulation problem using a two-dimensional
controller with an internal model. We choose the parameters of the controller on
Z = C2 in such a way that G1 = 0 ∈ C2×2, G2 = 1

5I, and K = −P (0)−1. We
will show that with these choices the closed-loop system operator Ae generates an
exponentially stable analytic semigroup. To this end, let δ = 0.025, and consider a
sector

Σδ =

{
λ ∈ C

∣∣∣∣ arg(λ+ δ) >
3π

4

}
.

We will show that outside this sector, i.e., on C \Σδ, the resolvent operator R(λ,Ae)
exists and satisfies |λ+ δ|‖R(λ,Ae)‖ ≤M for some constant M > 0.

Let λ ∈ ρ(A), (x, z)T ∈ Xe, and (x1, z1)
T ∈ D(Ae). A direct computation (on

X−1 × Z) shows that

(λ−Ae)

(
x1
z1

)
=

(
x
z

)
⇔

{
(λ −A−1)x1 −BKz1 = x,
−G2Cx1 + (λ− G1)z1 − G2DKz1 = z

⇔
{
x1 = R(λ,A−1)BKz1 +R(λ,A)x,
(λ − G1 − G2P (λ)K)z1 = G2CR(λ,A)x + z.

This shows that if SA(λ) = λ − G1 − G2P (λ)K (the Schur complement of λ − A in
λ−Ae) is boundedly invertible, then λ ∈ ρ(Ae) and

R(λ,Ae)

(
x
z

)
=

(
x1
z1

)
=

(
R(λ,A−1)BKz1 +R(λ,A)x
SA(λ)

−1(G2CR(λ,A)x + z)

)

=

(
R(λ,A−1)BKSA(λ)

−1(G2CR(λ,A)x + z) +R(λ,A)x
SA(λ)

−1(G2CR(λ,A)x + z)

)
.
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For all λ ∈ ρ(A) we have

‖R(λ,A−1)B‖ = ‖(−A)R(λ,A)(−A−1)
−1B‖ ≤ ‖(λ−A− λ)R(λ,A)‖‖(−A−1)

−1B‖
= ‖I − λR(λ,A)‖‖(−A−1)

−1B‖ ≤ (1 + |λ|‖R(λ,A)‖)‖(−A−1)
−1B‖.

The analyticity of the semigroup generated by A thus implies that ‖R(λ,A−1)B‖ is
uniformly bounded outside the sector Σδ. Analogously we can see that the same is true
for ‖CR(λ,A)‖. Because of this, the behavior of R(λ,Ae) on C \ Σδ is characterized
by the behavior of SA(λ). As above, we have that if λ ∈ ρ(A), then

‖P (λ)‖ = ‖CR(λ,A−1)B‖ = ‖C(−A)−1/2(λ−A− λ)R(λ,A)(−A−1)
−1/2B‖

≤ (1 + |λ|‖R(λ,A)‖)‖C(−A)−1/2‖‖(−A−1)
−1/2B‖,

and thus ‖P (λ)‖ is uniformly bounded on C \ Σδ.
We have

SA(λ) = λ− G1 − G2P (λ)K = λ+
1

5
P (λ)P (0)−1 = λ

(
I +

1

5λ
P (λ)P (0)−1

)
,

and using estimate (9.1) we can see that for 0 < q < 1 there exists r > 0 such that

∥∥∥∥ 1

5λ
P (λ)P (0)−1

∥∥∥∥ ≤ 4

5|λ| ‖P (0)
−1‖

∞∑
k=0

1

|λ− λk| ≤ q < 1

whenever λ ∈ C \ Σδ satisfies |λ| ≥ r. Straightforward estimates can now be used to
show that we can choose r = 4. We then have

sup
λ∈C\Σδ

|λ|≥4

|λ+ δ|‖SA(λ)
−1‖ = sup

λ∈C\Σδ

|λ|≥4

|λ+ δ|
|λ|

∥∥∥∥
(
I − 1

5λ
P (λ)P (0)−1

)−1∥∥∥∥
≤ sup

λ∈C\Σδ

|λ|≥4

|λ+ δ|
|λ|

1

1− q
<∞.

Moreover, using the series representation for P (λ), we can numerically verify that
the values λ with |λ| ≤ 4 for which SA(λ) is not invertible belong to the sector Σδ.
Therefore, for λ ∈ C \ Σδ with |λ| ≤ 4 the norms ‖SA(λ)

−1‖ are uniformly bounded.
Together these estimates imply that there existsM1 > 0 such that |λ+δ|‖SA(λ)

−1‖ ≤
M1 for λ ∈ C \ Σδ. We finally conclude from the above properties of the closed-loop
system that σ(Ae) ⊂ Σδ and there exists M > 0 such that ‖R(λ,Ae)‖ ≤ M

|λ+δ| for all
λ ∈ C\Σδ, λ = −δ. Thus the closed-loop system is analytic and exponentially stable.

It remains to verify that the operator Ce is Ae-bounded. For any xe = (x, z)T ∈
D(Ae) ⊂ D(C)× C we have

‖Cexe‖2 = ‖Cx+DKz‖2 = ‖Cx‖2 ≤ ‖A−1x+BKz‖2 + 52
∥∥∥∥15Cx

∥∥∥∥
2

≤ 25‖Aexe‖2.

This shows that Ce is relatively bounded with respect to Ae.
Since the closed-loop system is analytic and exponentially stable, and since S = 0

generates a bounded group on W = C, the Sylvester equation ΣS = AeΣ +Be has a
solution Σ ∈ L(W,Xe) [20, Cor. 8].
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Since iω0 = 0 and dimN (iω0 − G1) = dimC2 = 2, the controller (G1,G2,K)
incorporates a p-copy internal model of the exosystem. Theorem 6.2 thus implies
that the controller solves the robust output regulation problem. More precisely, the
controller achieves asymptotic tracking of constant reference signals, and this property
is robust with respect to any perturbations that preserve the closed-loop stability and
the solvability of the Sylvester equation. In particular, these include sufficiently small
bounded perturbations of the operators (A,B,C,D)—under which the closed-loop
system remains analytic and exponentially stable—as well as arbitrary perturbations
of the operators E and F (which do not affect the closed-loop system operator).

The behavior of the closed-loop system was simulated on the time interval [0, 30]
using a truncated eigenfunction expansion for A with N = 31 eigenfunctions ϕk(·).
The initial states of the plant and the controller were chosen as x0(ξ) =

1
4ξ

3− 3
8ξ

2− 1
4

(which satisfies x0 ∈ D(A)) and z0 = 0 ∈ C
2. Together the initial states satisfy

xe0 = (x0, z0)
T ∈ D(Ae). Figure 1 describes the behavior of the state x(ξ, t) of the

controlled system, and the output y(t) of the controlled system is depicted in Figure 2.

0

1

ξ

0

.4

.8

10

20

30

t

Fig. 1. State x(ξ, t) of the controlled system.

.4

0

–.4

0 10 20 30

Fig. 2. Output y(t) of the controlled system.

9.2. Robust tracking of continuous periodic signals. We conclude the ex-
ample by considering the tracking of continuous periodic signals. In particular, our
approach illustrates dividing the robust output regulation problem into two parts. In
the first part we fix the structure of the controller in such a way that the controller
incorporates an internal model of the exosystem. The second part of the problem
consists of choosing the remaining parameters of the controller in such a way that
the closed-loop system is strongly stable and the Sylvester equation ΣS = AeΣ+Be

has a solution. In this paper we have not considered techniques for stabilizing the
closed-loop system, and therefore the question of how to choose these free parameters
is left open.

We consider an infinite-dimensional exosystem on the spaceW = �2(C). Choosing
φk = ek, the natural basis of �2(C), we define

S =
∑
k∈Z

ik〈·, φk〉φk, D(S) =

{
v ∈W

∣∣∣ ∑
k∈Z

k2|〈v, φk〉|2 <∞
}
,

and F ∈ L(W,C) is chosen in such a way that Fφ0 = 1 and Fφk = 1/|k|3/5 for all
k = 0. For this exosystem the reference signals to be tracked are of the form

yref (t) = FTS(t)v0 =
∑
k∈Z

eikt〈v0, φk〉Fφk = 〈v0, φ0〉+
∑
k �=0

eikt
〈v0, φk〉
|k|3/5 ,
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which are precisely the continuous 2π-periodic signals f with Fourier coefficients f̂0 =
〈v0, φ0〉 and f̂k = 〈v0, φk〉|k|−3/5 for k = 0. As was shown in [19, sec. 3], the choice of
the space Wα of the initial states v0 ∈ Wα determines the smoothness properties of
the generated signals yref (t).

We will now construct a controller that contains an internal model of the exosys-
tem in the sense that (G1,G2,K) satisfy the G-conditions in section 7. Since dimY = 2,
we must include two copies of S in the controller. We let Z1 be a Banach space and
choose Z2 =W ×W and Z = Z1×Z2. The operators G1, G2, and K of the controller
are chosen to be of the form

G1 =

(
R1 R2

0 G1

)
, G2 =

(
R3

G2

)
, K =

(
K1, K2

)
.

The operators G1 and G2 are defined as

G1 =

(
S 0
0 S

)
, G2 =

(
g1 0
0 g2

)
,

whereD(G1) = D(S)×D(S) and g1, g2 ∈ W are such that 〈g1, φk〉 = 0 and 〈g2, φk〉 = 0
for all k ∈ Z. The operator G1 contains the copies of the signal generator. The
operators R1, R2, R3, and K in the controller can be used in stabilizing the closed-
loop system. They should be chosen in such a way that G1 with a suitable domain
generates a strongly continuous semigroup on Z, the closed-loop system operator Ae

generates a strongly stable semigroup, and the Sylvester equation ΣS = AeΣ+Be has
a solution Σ ∈ L(Wα, Xe) for some α ≥ 0. The next lemma shows that the controller
satisfies the G-conditions, and thus by Theorem 7.2 the robust output regulation
problem is solved if the closed-loop system stability is achieved.

Lemma 9.1. The controller (G1,G2,K) satisfies the G-conditions.
Proof. Let y = (y1, y2)

T ∈ N (G2). Then 0 = G2y =
(
g1y1

g2y2

)
. Since g1, g2 = 0, we

must have y = (y1, y2)
T = 0. This shows that N (G2) = {0}.

Let k ∈ Z and z = (z1, z2)
T ∈ R(iωk − G1) ∩R(G2). Then there exist (z11 , z

1
2)

T ∈
D(G1) and y = (y1, y2)

T ∈ Y such that(
z1
z2

)
=

[
iωk −

(
R1 R2

0 G1

)](
z11
z12

)
=

(
R3

G2

)
y.

Due to the structure of G1, we necessarily have z12 ∈ D(G1) = D(S) × D(S), and
z2 = (iωk − G1)z

1
2 = G2y. Denote ψ1

k = (φk, 0)
T and ψ2

k = (0, φk)
T . Then clearly

G1ψ
l
k = iωkψ

l
k for l = 1, 2. Since G1 is skew-adjoint, we have

〈z2, ψl
k〉 = 〈(iωk −G1)z

1
2 , ψ

l
k〉 = 〈z12 , (−iωk +G1)ψ

l
k〉 = 〈z12 , (−iωk + iωk)ψ

l
k〉 = 0

for l = 1, 2 and, on the other hand,

〈z2, ψ1
k〉 =

〈
G2y,

(
φk
0

)〉
= y1〈g1, φk〉, 〈z2, ψ2

k〉 =
〈
G2y,

(
0

φk

)〉
= y2〈g2, φk〉.

Combining these equations, we have yl〈gl, φk〉 = 0 for l = 1, 2. Since 〈g1, φk〉 = 0
and 〈g2, φk〉 = 0 by assumption, we must have y = (y1, y2)

T = 0. This shows that
z2 = G2y = 0 and further shows that (7.1b) is satisfied.

Since nk = 1 for all k ∈ Z, we have N (iωk − G1)
nk−1 = {0} for all k ∈ Z, and

thus the condition (7.1c) is trivially satisfied.



3996 LASSI PAUNONEN AND SEPPO POHJOLAINEN

10. Conclusions. In this paper we have studied the theory of robust output
regulation for distributed parameter systems with unbounded input and output op-
erators. In particular, we have extended the internal model principle for the p-copy
internal model as well as for the G-conditions for this class of infinite-dimensional sys-
tems together with infinite-dimensional block diagonal exosystems. Due to the more
general setting, it was not possible to repeat the earlier proofs of the internal model
principle. Instead, the proofs presented in this paper make use of Theorem 5.1, which
also provides a way of testing the robustness of a controller with respect to specific
perturbations (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O.

The most important topics for future research are the robust controller design and
the stabilization of the closed-loop system. The techniques used previously in [8, 19]
are not applicable without modifications in the case of unbounded control and ob-
servation operators in the plant. In [18] it was shown that many of the technical
assumptions related to the solvability of the Sylvester equations can be simplified if
the controller can achieve polynomial closed-loop stability. Therefore, designing con-
trollers for polynomial stabilization of the closed-loop system is an important research
problem.

Appendix A. Properties of the exosystem and the proof of Lemma 5.3.
Lemma A.1. Let X̃ be a normed linear space, and let α ≥ 0. The infinite-

dimensional exosystem has the property that if Q ∈ L(Wα, X̃), then

QTS(t)v0
t→∞−→ 0 for all v0 ∈Wα(A.1)

if only if Q = 0.
Proof. It is clearly sufficient to show that the property (A.1) implies Q = 0. To

this end, assume (A.1) is satisfied, and let k ∈ Z and v0 ∈ PkW = span{φlk}nk

l=1. Now

QTS(t)v0 = eiωkt
nk∑
l=1

〈v0, φlk〉
l∑

j=1

tl−j

(l − j)!
Qφjk(A.2a)

= eiωkt
nk−1∑
j=0

tj · 1
j!

nk∑
l=j+1

〈v0, φlk〉Qφl−j
k .(A.2b)

Since QTS(t)v0 → 0, it is easy to see that we must have
∑nk

l=j+1〈v0, φlk〉Qφl−j
k = 0

for all j ∈ {0, . . . , nk − 1}. However, by (A.2) this also implies QTS(t0)v0 = 0 for all
t0 ≥ 0, and in particular Qv0 = QTS(0)v0 = 0. Since k ∈ Z and v0 ∈ PkW were
arbitrary, this shows that Qφlk = 0 for all k ∈ Z and l ∈ {1, . . . , nk}. Since {φlk}kl is
a basis of Wα, we conclude that Q = 0.

Proof of Lemma 5.3. Assume (Ã, B̃, C̃, D̃, Ẽ, F̃ ) satisfy parts (a) and (b) of As-
sumption 2.4, and let k ∈ Z.

We begin by showing that (a) implies (b). Let Σ = (Π,Γ)T ∈ L(Wα, Xe) be such
that R(ΣPk) ⊂ D(Ãe) and ΣPkS = ÃeΣPk + B̃ePk. We have R(ΣPk) ⊂ D(Ãe) ⊂
D(C̃) × D(G1), which implies Πφlk ∈ D(C̃), Γφlk ∈ D(G1) for every l ∈ {1, . . . , nk}.
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For all l ∈ {2, . . . , nk} we have (using Sφ1k = iωkφ
1
k and Sφlk = iωkφ

l
k + φl−1

k )

(
Ẽφ1k

G2F̃ φ
1
k

)
= Beφ

1
k = ΣSφ1k − ÃeΣφ

1
k = (iωk − Ãe)Σφ

1
k(A.3a)

=

(
(iωk − Ã−1)Πφ

1
k − B̃KΓφ1k

(iωk − G1)Γφ
1
k − G2(C̃Π+ D̃KΓ)φ1k

)
,(A.3b)

(
Ẽφlk

G2F̃ φ
l
k

)
= Beφ

l
k = ΣSφlk − ÃeΣφ

l
k = (iωk − Ãe)Σφ

l
k + Σφl−1

k(A.3c)

=

(
(iωk − Ã−1)Πφ

l
k − B̃KΓφlk +Πφl−1

k

(iωk − G1)Γφ
l
k − G2(C̃Π+ D̃KΓ)φlk + Γφl−1

k

)
.(A.3d)

We have iωk ∈ ρ(Ã) = ρ(Ã−1), and we denote R̃k = R(iωk, Ã−1) for brevity. The
first lines of the equations (A.3) recursively imply that for l ∈ {2, . . . , nk} we have

Πφ1k = R̃k

(
B̃KΓφ1k + Ẽφ1k

)
,

Πφlk = R̃k

(
B̃KΓφlk + Ẽφlk −Πφl−1

k

)
= R̃k

(
B̃KΓφlk + Ẽφlk

)
− R̃2

k

(
B̃KΓφl−1

k + Ẽφl−1
k −Πφl−2

k

)

= · · · =
l−1∑
j=0

(−1)jR̃j+1
k

(
B̃KΓφl−j

k + Ẽφl−j
k

)
.

In vector notation this is precisely (5.2b). Substituting Πφlk into the second lines of
the equations (A.3), we see that for all l ∈ {2, . . . , nk} we have

(iωk − G1)Γφ
1
k = G2(C̃Πφ1k + D̃KΓφ1k + F̃ φ1k)

=G2

[
(C̃R̃kB̃ + D̃)KΓφ1k + C̃R̃kẼφ

1
k + F̃ φ1k

]
=G2

(
P̃ (iωk)KΓφ1k + C̃R̃kẼφ

1
k + F̃ φ1k

)
,

(iωk − G1)Γφ
l
k + Γφl−1

k = G2(C̃Πφ
l
k + D̃KΓφlk + F̃ φlk)

=G2

⎡
⎣ l−1∑
j=0

(−1)jC̃R̃j+1
k

(
B̃KΓφl−j

k + Ẽφl−j
k

)
+ D̃KΓφlk + F̃ φlk

⎤
⎦

=G2

⎡
⎣P̃ (iωk)KΓφlk +

l−1∑
j=1

(−1)jC̃R̃j+1
k B̃KΓφl−j

k +

l−1∑
j=0

(−1)jC̃R̃j+1
k Ẽφl−j

k + F̃ φlk

⎤
⎦ .

In vector notation this is exactly (5.2a). From this we conclude that (b) is satisfied.
We will now show that (b) implies (a). To this end, assume Σ = (Π,Γ)T ∈

L(Wα, Xe) is such that R(ΣPk) ⊂ D(C̃) × D(G1) and equations (5.2) are satisfied.
For all l ∈ {1, . . . , nk} we have Πφlk ∈ D(C̃) and Γφlk ∈ D(G1), and as above we can
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see that the equations (5.2) imply

ΣSφ1k − ÃeΣφ
1
k = iωkΣφ

1
k − ÃeΣφ

1
k

=

(
(iωk − Ã−1)Πφ

1
k − B̃KΓφ1k

(iωk − G1)Γφ
1
k − G2(C̃Π+ D̃KΓ)φ1k

)
=

(
Ẽφ1k

G2F̃ φ
1
k

)
= B̃eφ

1
k,

ΣSφlk − ÃeΣφ
l
k = (iωk − Ãe)Σφ

l
k +Σφl−1

k

=

(
(iωk − Ã−1)Πφ

l
k − B̃KΓφlk +Πφl−1

k

(iωk − G1)Γφ
l
k − G2(C̃Π+ D̃KΓ)φlk + Γφl−1

k

)
=

(
Ẽφlk

G2F̃ φ
l
k

)
= B̃eφ

l
k.

Since B̃eφ
l
k ∈ Xe and Σφlk ∈ Xe, the second and fourth lines above also show that

(Πφlk,Γφ
l
k)

T ∈ D(iωk − Ãe) = D(Ãe) for all l ∈ {1, . . . , nk}, and thus R(ΣPk) ⊂
D(Ãe). From this we conclude that ΣPk is a solution of the Sylvester equation ΣkS =
ÃeΣk + B̃ePk, and thus (a) is satisfied.

If Σ = (Π,Γ)T satisfies (5.2), then (5.2b) implies

C̃eΣφ
1
k + D̃eφ

1
k = C̃Πφ1k + D̃KΓφ1k+ F̃ φ

1
k = C̃R̃k

(
B̃KΓφ1k + Ẽφ1k

)
+ D̃KΓφ1k+ F̃ φ

1
k

=
(
C̃R̃kB̃ + D̃

)
KΓφ1k + C̃R̃kẼφ

1
k + F̃ φ1k = P̃ (iωk)KΓφ1k + C̃R̃kẼφ

1
k + F̃ φ1k,

C̃eΣφ
l
k + D̃eφ

l
k = C̃Πφlk + D̃KΓφlk + F̃ φlk

=
l−1∑
j=0

(−1)jC̃R̃j+1
k

(
B̃KΓφl−j

k + Ẽφl−j
k

)
+ D̃KΓφlk + F̃ φlk

= P̃ (iωk)KΓφlk +

l−1∑
j=1

(−1)jC̃R̃j+1
k B̃KΓφl−j

k +

l−1∑
j=0

(−1)jC̃R̃j+1
k Ẽφl−j

k + F̃ φlk.

In vector notation, this is exactly (5.3).
It remains to show that (c) and (d) are equivalent. Assume (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈

O. If (c) is satisfied, we have from Theorem 4.4 that for every k ∈ Z the operator
ΣPk is a solution of the Sylvester equation ΣkS = ÃeΣk + B̃ePk. Therefore, part (d)
follows directly from the fact that (a) implies (b).

Assume now that (d) is satisfied, i.e., the operator Σ : D(Σ) ⊂ W → Xe is such
that R(Pk) ⊂ D(Σ), R(ΣPk) ⊂ D(C̃)×D(G1), and equations (5.2) are satisfied for all
k ∈ Z. Since (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O, we have from Assumption 2.4 that there exists
Σ̃ ∈ L(Wα, Xe) such that Σ̃(Wα+1) ⊂ D(Ãe) and Σ̃S = ÃeΣ̃+ B̃e. We will show that
Σ = Σ̃.

For k ∈ Z the equivalence of (a) and (b) implies that ΣPk is a solution of the
Sylvester equation ΣkS = ÃeΣk + B̃ePk. However, by Theorem 4.4 these equations
have unique solutions Σ̃Pk, and thus we must have ΣPk = Σ̃Pk for all k ∈ Z. This in
particular implies that Σv = Σ̃v for all v in the space

W∞ =

{ ∑
|k|≤N

nk∑
l=1

vklφ
l
k

∣∣∣ N ∈ N, vkl ∈ C

}
.

This space satisfies W∞ ⊂Wα, and for all v ∈ W∞ the property Σv = Σ̃v implies

‖Σv‖ = ‖Σ̃v‖ ≤ ‖Σ̃‖L(Wα,Xe)‖v‖α.
The spaceW∞ is dense inWα. Therefore, Σ has a unique extension in L(Wα, Xe), and
this extension is equal to Σ̃. From this we finally conclude that Σ (or its extension)
satisfies Σ(Wα+1) ⊂ D(Ãe), and it is a solution of the Sylvester equation ΣS =
ÃeΣ+ B̃e.
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