
Robust Output Regulation and the Preservation of
Polynomial Closed-Loop Stability

L. Paunonen ∗ S. Pohjolainen †

Abstract

In this paper we study the robust output regulation problem for distributed parameter systems with
infinite-dimensional exosystems. The main purpose of this paper is to demonstrate the several advan-
tages of using a controller that achieves polynomial closed-loop stability, instead of a one stabilizing the
closed-loop system strongly. In particular, the most serious unresolved issue related to strongly stabi-
lizing controllers is that they do not possess any known robustness properties. In this paper we apply
recent results on the robustness of polynomial stability of semigroups to show that, on the other hand,
many controllers achieving polynomial closed-loop stability are robust with respect to large and eas-
ily identifiable classes of perturbations to the parameters of the plant. We construct an observer based
feedback controller that stabilizes the closed-loop system polynomially and solves the robust output reg-
ulation problem. Subsequently, we derive concrete conditions for finite rank perturbations of the plant’s
parameters to preserve the closed-loop stability and the output regulation property. The theoretic re-
sults are illustrated with an example where we consider the problem of robust output tracking for a
one-dimensional heat equation.

KEY WORDS: Robust output regulation, distributed parameter system, polynomial stability, internal
model principle

1 Introduction
Robust tracking of reference signals and rejection of disturbance signals — known together as robust out-
put regulation — for a linear system form a fundamental problem in engineering, as well as an actively
studied theoretical problem for mathematical control systems. For infinite-dimensional linear systems the
theory of robust output regulation has been developed since the early 1980’s, see [18, 20, 3, 19, 7, 11]
and references therein. More recently, there has also been interest in considering robust output tracking
and disturbance rejection of signals generated by an infinite-dimensional exosystem [9, 8, 14, 15]. Such
a setting allows considering tracking and rejection signals that are nonsmooth periodic or almost peri-
odic functions. In particular, the well-known internal model principle by Francis and Wonham [6], and
Davison [5] was extended for linear systems with infinite-dimensional exosystems in [14]. Although the
internal model principle provides a conclusive answer concerning certain properties of a robust controller,
there is freedom in stabilizing the closed-loop system consisting of the plant and the controller. Because
of this, designing actual control laws for infinite-dimensional exosystems is still in many ways an open
research problem. This paper is devoted to addressing some of the most important open questions, namely,
choosing and achieving an appropriate type of closed-loop stability, and studying the robustness properties
of the resulting control law.

The infinite-dimensional systems considered in this paper are of the form

ẋ(t) = Ax(t) +Bu(t) + ws(t), x(0) = x0 ∈ X (1a)
y(t) = Cx(t) +Du(t), (1b)

where the state x(t) belongs to a Hilbert space X . Our aim is to design a feedback controller that is
capable of steering the output y(t) of the plant to given nonsmooth periodic and almost periodic reference
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trajectories, despite disturbance signals ws(t) of the same type. In order to study this class of signals,
we assume the reference signals yref (t) and disturbance signals are generated by an infinite-dimensional
exosystem

v̇(t) = Sv(t), v(0) = v0 ∈W (2a)
ws(t) = Ev(t) (2b)
yref (t) = −Fv(t), (2c)

where the state v(t) belongs to a separable Hilbert space W (the minus sign is for notational convenience).
The operator S is allowed to be a diagonal or, more generally, a block diagonal operator with eigenvalues
on the imaginary axis. For example, if S is chosen to be a diagonal operator with eigenvalues i 2πk

τ for
k ∈ Z, then the exosystem (2) will be capable of generating the class of continuous τ -periodic signals [15].

The robust output regulation requires choosing the parameters of a feedback controller in such a way
that

• The closed-loop system consisting of the plant and the controller is stable and the output asymptoti-
cally tracks the reference signal.

• If the operators (A,B,C,D) of the plant (1) are perturbed in such a way that the closed-loop stability
is preserved, the tracking of the reference signal is preserved.

One of the main difficulties in studying output regulation with an infinite-dimensional signal generator
is that exponential stabilization of the closed-loop system is no longer possible. This follows from the fact
that by the internal model principle, a controller achieving robust output regulation must be able to redupli-
cate the dynamics of the exosystem. In particular, the system operator of the controller must therefore have
an infinite number of eigenvalues on the imaginary axis. These unstable eigenvalues will inevitably make
the exponential stabilization of the closed-loop an impossible task. Due to this limitation, the previous
papers considering infinite-dimensional exosystems redefine the robust output regulation problem in such
a way that the closed-loop semigroup is required to be strongly stable [8, 15]. After this small modifica-
tion, the robust output regulation problem becomes solvable with a suitable choice of an observer based
dynamic error feedback controller. However, there are two serious downsides to using strong closed-loop
stability. First of all, the existing theory must be modified by including an additional assumption on the
solvability of a Sylvester equation

ΣS = AeΣ +Be (3)

where Ae and Be are operators of the closed-loop system. For an exponentially stable closed-loop system
this equation will always have a solution, but this is no longer true for strongly stable closed-loop systems.
The solvability of (3) can be characterized using the properties of the closed-loop system, but this leads to
conditions that are often difficult to verify [8, Lem. 6]. Moreover, same condition on the solvability of (3)
must also be verified for any perturbations we wish to consider.

The second drawback is that the robustness properties of a strongly stable closed-loop are very difficult
to study. This is due to the fact that general strongly stable semigroups do not have any known robustness
properties. The situation is in contrast with the case of exponential stability, which is preserved in particular
for all bounded perturbations of small enough norms. This difference between the two stability types has
a concrete effect on robust output regulation, since the second part of the problem requires determining
classes of perturbations that preserve the closed-loop stability.

In this paper we show that we can overcome the above difficulties by modifying the robust output reg-
ulation problem in such a way that we aim at polynomial stability of the closed-loop system. First of all,
we will show that the polynomial stability will immediately imply the solvability of the Sylvester equa-
tion (3) in an appropriate sense, and we can therefore remove the extraneous assumptions from the theory.
However, the real main advantage of polynomial stability over strong stability is that recent results have
shown polynomially stable semigroups to possess certain robustness properties [16, 12, 13]. In this paper
we use the robustness results in [13] to characterize classes of finite rank perturbations of the operators
(A,B,C,D) under which the polynomial stability of the closed-loop system and the output tracking are
preserved. The perturbation results require conditions on the degree of polynomial stability of the closed-
loop system. Nevertheless, these conditions can be met for large classes of systems, and are usually easy
to verify. For example, the results in Section 4.1 show that for a stable single-input single-output system
together with a diagonal exosystem the highest achievable degree of polynomial closed-loop stability can
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be determined based on the behavior of the transfer function of the plant on the imaginary axis. As we
pointed out earlier, analyzing the robustness properties of a controller with an infinite-dimensional internal
model has until now been impossible due to lack of results on preservation of nonexponential stability
types.

As another main result of this paper we show that an observer based controller of the same form as the
one used in [8, 15] can be used in polynomial stabilizing the closed-loop system. The construction of the
controller generalizes techniques from [8], where the exosystem was diagonal, and from [15], where only
the single-input single-output situation was studied. We begin by showing that the proposed controller
stabilizes the closed-loop polynomially provided that the copy of the exosystem’s dynamics — the internal
model — in the controller is stabilized polynomially. In particular, this first result does not depend on the
way the dynamics of the exosystem are reduplicated in the controller. This is convenient, since we will
also see that the choice of the operators of the internal model can have a crucial effect on its stabilization.
For systems with multiple outputs the internal model principle implies that the internal model will have an
infinite number of repeated eigenvalues on the imaginary axis. Polynomial stabilization of such semigroups
is in general an open research problem. We complete construction of the controller by presenting a method
for the polynomial stabilization of the internal model in the case where the exosystem is diagonal and the
plant has an equal number of inputs and outputs.

Finally, as another desirable consequence of the polynomial stability we show that the stability of the
closed-loop system also immediately yields a polynomial decay rate for the regulation error. This result
extends the results in [2], where such a decay rate for the regulation error was presented in connection to
output regulation with a feedforward control law.

The construction of a controller solving the robust output regulation problem, as well as the conditions
for the preservation of the closed-loop stability, are illustrated in an example where we consider output
tracking for a stable one-dimensional heat equation. We design controllers for the robust output regu-
lation problem for two different infinite-dimensional exosystems, and derive concrete conditions for the
preservation of the closed-loop stability and output tracking under rank one perturbations of the plant’s
parameters.

In Section 2 we introduce the standing assumptions on the plant, the controller, the resulting closed-loop
system, and the classes of perturbations we consider. In Section 3 we formulate the robust output regulation
problem mathematically, and show that the polynomial closed-loop stability implies a polynomial decay
rate for the regulation error. In Section 4 we introduce the form of the observer based controller and choose
its parameters in such a way that the closed-loop system is stabilized polynomially. Section 5 contains the
analysis for the preservation of the stability of the closed-loop system. In Section 6 we study the robust
output regulation problem for a one-dimensional heat equation. Section 7 contains concluding remarks. In
Appendix A we collect some helpful lemmata used in proving the main results of the paper.

2 Mathematical Preliminaries
In this section we state the basic assumptions on the system, the exosystem and the controller. We begin
by introducing the notation used in this paper.

If X and Y are Banach spaces and A : X → Y is a linear operator, we denote by D(A), N (A)
and R(A) the domain, kernel and range of A, respectively. The space of bounded linear operators from
X to Y is denoted by L(X,Y ). If A : X → X , then σ(A), σp(A) and ρ(A) denote the spectrum, the
point spectrum and the resolvent set of A, respectively. For λ ∈ ρ(A) the resolvent operator is given by
R(λ,A) = (λI −A)−1. The inner product on a Hilbert space is denoted by 〈·, ·〉. If f(·) : R → C and
α > 0, we denote f(ω) = O(|ω|α) if there exist constants M > 0 and and ω0 > 0 such that

|f(ω)| ≤M |ω|α

for all ω ∈ R with |ω| ≥ ω0. The following definition introduces the terminology we use when discussing
the polynomial stability of a semigroup. It should be noted that the definition we use requires a polynomi-
ally stable semigroup to be uniformly bounded. This immediately implies that every polynomially stable
semigroup is also strongly stable.

Definition 1. Let α > 0. A semigroup T (t) on a Hilbert space X generated by A : D(A) ⊂ X → X is
polynomially stable with α, if T (t) is uniformly bounded, iR ⊂ ρ(A), and if there exists M ≥ 1 such that

‖T (t)A−1‖ ≤ M

t1/α
, ∀t > 0.
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We use the following characterizations for the polynomial stability of a semigroup on a Hilbert space [1,
Lem. 2.3, Thm. 2.4], [10, Lem. 3.2].

Lemma 2. Assume A generates a uniformly bounded semigroup on a Hilbert space X , and iR ⊂ ρ(A).
For a fixed α > 0 the following are equivalent.

(a) ‖TA(t)A−1‖ ≤ M

t1/α
, ∀t > 0

(b) ‖R(iω,A)‖ = O(|ω|α).

2.1 The Plant and the Infinite-Dimensional Exosystem
In this paper we consider the control of a linear distributed parameter system of form (1) on a Hilbert
space X . Here x(t) ∈ X is the state of the system, u(t) ∈ U the input and y(t) ∈ Y the output. The
input space U and the output space Y are finite-dimensional Hilbert spaces. We assume that A generates
a strongly continuous semigroup on X and that the rest of the operators are bounded in such a way that
B ∈ L(U,X), C ∈ L(X,Y ) and D ∈ L(U, Y ). For λ ∈ ρ(A) the transfer function of the plant is given
by P (λ) = CR(λ,A)B +D ∈ L(U, Y ).

The considered reference signals as well as the disturbance signals ws(t) to the state are assumed to be
generated by an infinite-dimensional exosystem (the minus sign is for notational convenience)

v̇(t) = Sv(t), v(0) = v0 ∈W (4a)
ws(t) = Ev(t), (4b)
yref (t) = −Fv(t). (4c)

The Hilbert space W and the operators S : D(S) ⊂ W → W , E ∈ L(W,X), and F ∈ L(W,Y ) satisfy
the assumptions stated below. In particular, in the following we choose the system operator S to be an
infinite-dimensional block diagonal operator consisting of finite-dimensional Jordan blocks.

The state spaceW of the exosystem is chosen to be a separable Hilbert space with an orthonormal basis
{φlk ∈W | k ∈ Z, l = 1, . . . , nk }. By this we mean that

W = span
{
φlk
}
kl

and 〈φlk, φmn 〉 =

{
1 k = n, l = m
0 otherwise.

The lengths nk ∈ N of the subsequences are assumed to be uniformly bounded. For a given ordered
sequence of frequencies (ωk)k∈Z ⊂ R the operators Sk ∈ L(W ) representing the finite-dimensional
Jordan blocks are defined as

Sk = iωk〈·, φ1
k〉φ1

k +

nk∑
l=2

〈·, φlk〉
(
iωkφ

l
k + φl−1

k

)
.

We assume the frequencies {iωk}k∈Z have no finite accumulation points and that ωk 6= ωl for k 6= l. The
system operator S of the infinite-dimensional exosystem (4) on the space W is defined by

Sv =
∑
k∈Z

Skv, D(S) =

{
v ∈W

∣∣∣∣∣ ∑
k∈Z
‖Skv‖2 <∞

}

and the output operators E and F are assumed to be Hilbert–Schmidt operators, i.e. they satisfy

∑
k∈Z

nk∑
l=1

‖Eφlk‖2 <∞, and
∑
k∈Z

nk∑
l=1

‖Fφlk‖2 <∞.

Defining the regulation error as e(t) = y(t)− yref (t), the plant can be written in a standard form

ẋ(t) = Ax(t) +Bu(t) + Ev(t), x(0) = x0 ∈ X
e(t) = Cx(t) +Du(t) + Fv(t)

where v(t) ∈ W is the state of the exosystem (4). We further assume that σ(A) ∩ σ(S) = ∅ and that the
transfer function of the plant at the frequencies iωk of the exosystem, P (iωk), is surjective for all k ∈ Z.
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The operators Sk in the definition of the infinite-dimensional exosystem satisfy

(iωkI − Sk)φ1
k = 0, (Sk − iωkI)φlk = φl−1

k ∀l ∈ {2, . . . , nk}

and thus they can indeed be viewed as single Jordan blocks of dimensions nk associated to eigenvalues
iωk. Since the operator S is an infinite block diagonal operator consisting of operators the Sk, it can
be considered to be a generalization of a matrix in a Jordan canonical form. Since {iωk}k has no finite
accumulation points, it is straightforward to verify that the spectrum of the operator S satisfies

σ(S) = σp(S) = {iωk}k∈Z,

Moreover, the operator S generates a C0-group TS(t) satisfying

TS(t)v =
∑
k∈Z

eiωkt
nk∑
l=1

〈v, φlk〉
l∑

j=1

tl−j

(l − j)!
φjk, v ∈W, t ∈ R.

This group is polynomially bounded forward and backwards in time. More precisely, for any n ∈ N such
that nk ≤ n for all k ∈ Z there exists MS ≥ 1 such that

‖TS(t)‖ ≤MS(|t|n + 1), ∀t ∈ R.

This implies that the growth bound of the C0-group is ω0(TS(t)) = 0. We define n∞ ∈ N as

n∞ = lim
N→∞

(
max{nk | |k| ≥ N }

)
(or equivalently n∞ = lim supk→∞ nk). The value n∞ can be thought of as the asymptotic maximum of
the dimension of the Jordan blocks of S. For k ∈ Z we denote by Pk the orthogonal projection

Pk =

nk∑
l=1

〈·, φlk〉φlk

onto the finite-dimensional subspace span{φlk}
nk
l=1 of W . With this notation the domain of the operator S

satisfies

D(S) =
{
v ∈W

∣∣ ∑
k∈Z

ω2
k‖Pkv‖2 <∞

}
=
{
v ∈W

∣∣ ∑
k∈Z

(1 + ω2
k)‖Pkv‖2 <∞

}
.

We also define a set of scale spaces Wα ⊂W related to the system operator S of the exosystem.

Definition 3. For α ≥ 0 we denote by (Wα, ‖·‖α) the space

Wα =
{
v ∈W

∣∣ ∑
k∈Z

(1 + ω2
k)α‖Pkv‖2 <∞

}
with norm ‖·‖α defined by

‖v‖2α =
∑
k∈Z

(1 + ω2
k)α‖Pkv‖2, v ∈Wα.

For all α ≥ 0 the spaces (Wα, ‖·‖α) are Hilbert spaces, and for 0 ≤ β ≤ α we have Wα ⊂Wβ and

‖v‖β ≤ ‖v‖α ∀v ∈Wα.

For nonnegative integer values m ∈ N0 the spaces Wm coincide with the domains D((S + I)m) and the
norms ‖·‖m are equivalent to the norms defined by the mappings v 7→ ‖(S + I)mv‖ on Wm. It can also
be verified that the spaces Wα are invariant under the group TS(t), the restrictions TS(t)|Wα

are strongly
continuous groups on Wα and the generators of these groups are S|Wα : D(S|Wα) ⊂ Wα → Wα with
domains D(S|Wα) = Wα+1.
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2.2 The Controller and the Closed-Loop System
We consider the dynamic error feedback controller

ż(t) = G1z(t) + G2e(t), z(0) = z0 ∈ Z
u(t) = Kz(t)

on a Hilbert space Z. Here z(t) ∈ Z is the state of the controller, G1 : D(G1) ⊂ Z → Z generates a
C0-semigroup on Z, G2 ∈ L(Y, Z) and K ∈ L(Z,U). The closed-loop system consisting of the plant
and the controller on the Hilbert space Xe = X × Z (with norm ‖(x, z)T ‖2 = ‖x‖2 + ‖z‖2) with state
xe(t) = (x(t), z(t))T is given by

ẋe(t) = Aexe(t) +Bev(t), xe(0) = xe0 = (x0, z0)T

e(t) = Cexe(t) +Dev(t),

where Ce = (C DK), De = F ,

Ae =

(
A BK
G2C G1 + G2DK

)
and Be =

(
E
G2F

)
.

The operator Ae : D(A) × D(G1) ⊂ Xe → Xe generates a C0-semigroup TAe(t) on Xe. Furthermore,
since E and F are Hilbert-Schmidt operators and G2 is bounded, it is easy to see that also Be is Hilbert-
Schmidt, i.e. (Beφ

l
k)kl ∈ `2(Xe).

2.3 Classes of Perturbations
In this paper we consider a situation where parameters of the plant are perturbed in such a way that the
operators A, B, C, D, E, and F are changed into A′ : D(A′) ⊂ X → X , B′ ∈ L(U,X), C ′ ∈ L(X,Y ),
andD′ ∈ L(U, Y ), E′ ∈ L(W,X), and F ′ ∈ L(W,Y ), respectively. We assume the operatorA′ generates
a semigroup on X and the difference A′ − A is relatively bounded with respect to A, i.e. D(A′) ⊃ D(A)
and there exist constants c1, c2 ≥ 0 such that

‖(A′ −A)x‖ ≤ c1‖Ax‖+ c2‖x‖, ∀x ∈ D(A).

Finally, we assume that E′ and F ′ are Hilbert-Schmidt operators. We denote the operators of the closed-
loop system consisting of the perturbed plant and the controller by

A′e =

(
A′ B′K
G2C

′ G1 + G2D
′K

)
, B′e =

(
E′

G2F
′

)
,

C ′e =
(
C ′ D′K

)
, and D′e = F ′. The operator A′e generates a strongly continuous semigroup and it is

straightforward to verify that (B′eφ
l
k)kl ∈ `2(Xe).

3 The Robust Output Regulation Problem
We begin this section by presenting a more precise mathematical definition for the robust output regulation
problem. It should be noted that the problem studied in this paper differs from the one considered in [8, 14].
In particular, we are required to choose the parameters of the controller in such a way that the closed-loop
system is polynomially stable.

The statement of the problem depends on a parameter α > 0, the value of which affects two things.
First of all, we require that the closed-loop system is polynomially stable with α. Moreover, in the second
and third parts we consider regulation for initial states of the exosystem that are in a scale space of S. It
was shown in [15, Sec. 2] that for periodic exogeneous signals the choice of the initial state v0 corresponds
to the degree of smoothness of the generated signals. In the problem statement also the asymptotic Jordan
block structure of S affects the initial states of the exosystem for which the controller is required to achieve
output tracking and disturbance rejection. If all but a finite number of the Jordan blocks of S are trivial, we
then have n∞ = 1 and the problem is solvable for all initial states v0 ∈Wα.

The Robust Output Regulation Problem. Let α > 0 and denote α0 = n∞α. Find (G1,G2,K) such that
the following are satisfied:
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(1) The semigroup Te(t) generated by the closed-loop system operator Ae is polynomially stable with
α.

(2) For all initial states v0 ∈ Wα0 and xe0 ∈ Xe the regulation error goes to zero asymptotically, i.e.,
limt→∞ e(t) = 0.

(3) If the parameters (A,B,C,D,E, F ) are perturbed to (A′, B′, C ′, D′, E′, F ′) in such a way that the
new closed-loop system (A′e, B

′
e, C

′
e, D

′
e) is polynomially stable with α, then we have limt→∞ e(t) =

0 for all initial states v0 ∈Wα0 and xe0 ∈ Xe.

We saw in Section 2 that a higher value of α in polynomial stability means that the decay is slower.
Therefore, if the value of α > 0 in the robust output regulation problem is increased, it means that (1) the
closed-loop stability becomes weaker and that (2) the class of reference and disturbance signals we can
consider becomes smaller.

In this paper we use the following definition for an internal model of an infinite-dimensional exosystem
in the controller [14].

Definition 4 (The G-conditions). A controller (G1,G2) is said to satisfy the G-conditions related to the
infinite-dimensional exosystem if

R(iωkI − G1) ∩R(G2) = {0} ∀k ∈ Z, (6a)
N (G2) = {0}, (6b)

and
N (iωkI − G1)nk−1 ⊂ R(iωkI − G1) ∀k ∈ Z. (6c)

The following theorem shows that a controller that stabilizes the closed-loop system polynomially
and satisfies the G-conditions solves the robust output regulation problem. It should be noted that unlike
in [8, 14], we do not need additional assumptions to ensure the solvability of the Sylvester equation in the
regulator equations, but instead this is already guaranteed by the polynomial stability of the closed-loop
system.

Theorem 5. Assume the controller (G1,G2,K) satisfies the G-conditions and it stabilizes the closed-loop
system polynomially with some α > 0. Then the controller solves the robust output regulation problem.

In particular, for any perturbations of the parameters of the plant there exists M ′ > 0 such that

‖e(t)‖ ≤ M ′

t1/α
(‖Aexe0‖+ ‖xe0‖+ ‖Sv0‖+ ‖v0‖) ∀t > 0. (7)

for all initial states satisfying xe0 ∈ D(A′e) and v0 ∈Wα0+1, where α0 = n∞α.

Proof. It is sufficient to show that the regulation error decays to zero asymptotically for the nominal system
as well as for all systems where the operators have been perturbed in such a way that the closed-loop system
is polynomially stable with α, and that for all perturbations we get the polynomial decay rate (7).

Let A′, B′, C ′, D′, E′ and F ′ be the perturbed operators of the system. We denote the closed-loop
system operators related to the perturbed system as A′e, B

′
e, C

′
e, and D′e. We begin by showing that the

regulator equations

Σ′eS = A′eΣ
′
e +B′e (8a)

0 = C ′eΣ
′
e +D′e (8b)

have a solution Σ′e ∈ L(Wα0
, Xe) satisfying Σ′e(Wα0+1) ⊂ D(A′e). For this, we will use results in

Sections 3 and 4 in [14]. In [14] the scale spaces Wα0
were only defined for α0 = m ∈ N0. However, the

choice of the space only affects the conditions for the operator Σ′e solving the Sylvester equation (8a) to be
in L(Wα0 , Xe), and the results in [14] can be used as they are once we replace m ∈ N0 with α0 ≥ 0.

We begin by verifying the conditions in Assumption 1 in [14]. Since σ(A′e) ∩ σp(S) = ∅, we have
R(iωk − A′e)l = Xe for all l ∈ {1, . . . , nk}. Let N ∈ N be such that nk ≤ n∞ and |ωk| ≥ 1 whenever
|k| ≥ N . Such a choice is always possible due to the definition of n∞ and because {ωk} has no finite
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accumulation points. Then for any k ∈ Z with |k| ≥ N and for all x′e ∈ Xe with ‖x′e‖ ≤ 1 we have∣∣∣∣∣∣
l∑

j=1

(−1)l−j〈R(iωk, A
′
e)
l+1−jB′eφ

j
k, x
′
e〉

∣∣∣∣∣∣ ≤
l∑

j=1

‖R(iωk, A
′
e)‖l+1−j‖B′eφ

j
k‖ · ‖x

′
e‖

≤ max{‖R(iωk, A
′
e)‖, ‖R(iωk, A

′
e)‖n∞} ·

nk∑
j=1

‖B′eφ
j
k‖

≤ max{1, ‖R(iωk, A
′
e)‖n∞} ·

√
n∞ ·

 nk∑
j=1

‖B′eφ
j
k‖

2

 1
2

.

Since the closed-loop system is polynomially stable with α, we have from Lemma 2 that there exists
M̃ > 0 such that ‖R(iωk, A

′
e)‖ ≤ M̃(1 + |ωk|α). Using Lemma 18 we thus have for α0 = n∞α

sup
|k|≥N

‖R(iωk, A
′
e)‖2n∞

(1 + ω2
k)α0

≤ sup
|k|≥N

M̃2n∞(1 + |ωk|α)2n∞

(1 + ω2
k)n∞α

≤ sup
|k|≥N

M̃2n∞(2|ωk|α)2n∞

(ω2
k)n∞α

= (2M̃)2n∞ <∞.

This implies that there exists M ≥ 0 such that

max{1, ‖R(iωk, A
′
e)‖2n∞}

(1 + ω2
k)α0

≤M

for all k ∈ Z with |k| ≥ N . Since by assumption the operator B′e satisfies (B′eφ
l
k)kl ∈ `2(Xe), we have

sup
‖x′
e‖≤1

∑
|k|≥N

1

(1 + ω2
k)α0

nk∑
l=1

∣∣∣∣∣∣
l∑

j=1

(−1)l−j〈R(iωk, A
′
e)
l+1−jB′eφ

j
k, x
′
e〉

∣∣∣∣∣∣
2

≤
∑
|k|≥N

max{1, ‖R(iωk, A
′
e)‖2n∞}

(1 + ω2
k)α0

nk∑
l=1

n∞

nk∑
j=1

‖B′eφ
j
k‖

2 ≤Mn2
∞

∑
k∈Z

nk∑
j=1

‖B′eφ
j
k‖

2

and

sup
‖x′
e‖≤1

∑
k∈Z

1

(1 + ω2
k)α0

nk∑
l=1

∣∣∣∣∣∣
l∑

j=1

(−1)l−j〈R(iωk, A
′
e)
l+1−jB′eφ

j
k, x
′
e〉

∣∣∣∣∣∣
2

≤ sup
‖x′
e‖≤1

∑
|k|<N

1

(1 + ω2
k)α0

nk∑
l=1

 l∑
j=1

‖R(iωk, A
′
e)
l+1−jB′eφ

j
k‖‖x

′
e‖

2

+Mn2
∞

∑
k∈Z

nk∑
j=1

‖B′eφ
j
k‖

2 <∞

because the sum over k ∈ Z satisfying |k| < N consists of finitely many terms. The above condition
together with Lemma 3.2 in [14] implies that the Sylvester equation (8a) has a unique solution Σ′e ∈
L(Wα0 , Xe) satisfying Σ′e(Wα0+1) ⊂ D(A′e).

Since the Sylvester equation (8a) has a solution Σ′e, the controller satisfies the G-conditions, and σ(S)∩
σ(Ae) = ∅, we have from Theorem 4.3, Theorem 5.2, and Lemma 5.7 in [14] that C ′eΣ

′
e + D′e = 0, and

thus Σ′e is a solution of the regulator equations (8). By Lemma 3.3 in [14] for initial states xe0 ∈ Xe and
v0 ∈Wα0

the regulation error is given by

e(t) = C ′eTe(t)(xe0 − Σ′ev0) + (C ′eΣ
′
e +D′e)TS(t)v0 = C ′eTe(t)(xe0 − Σ′ev0). (9)

Since Te(t) is strongly stable, we immediately get

‖e(t)‖ ≤ ‖C ′e‖‖Te(t)(xe0 − Σ′ev0)‖ → 0
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as t→∞.
It remains to prove the polynomial decay rate for the regulation error. This can be done by extending

techniques used in [2], where a similar decay rate was shown for feedforward output regulation. We begin
by proving a couple of helpful estimates. Since the difference A′ − A is relatively bounded, there exist
c̃1, c̃2 ≥ 0 such that ‖(A′ −A)x‖ ≤ c̃1‖Ax‖+ c̃2‖x‖ for all x ∈ D(A).

We will first show that the relative boundedness of A′ − A also implies that A′e − Ae is relatively
bounded with respect to Ae. Since D(A′e) = D(A′) × D(G1), we have D(A′e − Ae) = D(Ae). For any
xe = (x, z)T ∈ D(Ae) we have

‖(A′e −Ae)xe‖ =

∥∥∥∥( (A′ −A)x+ (B′ −B)Kz
G2(C ′ − C)x+ G2(D′ −D)Kz

)∥∥∥∥ .
Since (A′ − A) is relatively bounded with respect to A and the other operators are bounded, it is straight-
forward to verify that there exist c1, c2 ≥ 0 such that

‖(A′e −Ae)xe‖ ≤ c1‖Aexe‖+ c2‖xe‖.

We therefore also have

‖A′exe0‖ = ‖(A′e −Ae)xe0 +Aexe0‖ ≤ ‖(A′e −Ae)xe0‖+ ‖Aexe0‖
≤ c1‖Aexe0‖+ c2‖xe0‖+ ‖Aexe0‖ = (c1 + 1)‖Aexe0‖+ c2‖xe0‖.

Finally, for all initial states xe0 ∈ D(A′e) and v0 ∈ Wα0+1 we have xe0 − Σ′ev0 ∈ D(A′e), and using
Σ′eS = A′eΣ

′
e +B′e we get an estimate

‖e(t)‖ = ‖C ′eTe(t)(A′e)−1(A′exe0 −A′eΣ′ev0)‖ ≤ ‖C ′e‖‖Te(t)(A′e)−1‖ (‖A′exe0‖+ ‖A′eΣ′ev0‖)
= ‖C ′e‖‖Te(t)(A′e)−1‖ (‖A′exe0‖+ ‖(Σ′eS −B′e)v0‖)

≤ ‖C ′e‖
M ′′

t1/α
(‖A′exe0‖+ ‖Σ′e‖‖Sv0‖+ ‖B′e‖‖v0‖)

≤ ‖C ′e‖
M ′′

t1/α
((c1 + 1)‖Aexe0‖+ c2‖xe0‖+ ‖Σ′e‖‖Sv0‖+ ‖B′e‖‖v0‖)

≤ M ′′‖C ′e‖max{c1 + 1, c2, ‖Σ′e‖, ‖B′e‖}
t1/α

(‖Aexe0‖+ ‖xe0‖+ ‖Sv0‖+ ‖v0‖) .

Choosing M ′ = M ′′‖C ′e‖max{c1 + 1, c2, ‖Σ′e‖, ‖B′e‖} > 0 concludes the proof.

4 Construction of a Robust Controller
In this section we construct an observer based feedback controller that solves the robust output regulation
problem. We being by showing how the closed-loop system can be stabilized polynomially provided that
the internal model in the controller is polynomially stable. At this point we do not make any specific
assumptions on the structure of the internal model, but instead assume the internal model satisfies the G-
conditions in Definition 4. The internal model can be chosen to be of an appropriate form depending on
requirements of the case at hand. We continue in Section 4.1 where we present a method for constructing
and stabilizing the internal model for a system with an equal number of inputs and outputs together with a
diagonal exosystem.

Assumption 6. Assume that the pair (A,B) is exponentially stabilizable and the pair (C,A) exponentially
detectable.

We begin by introducing the general structure of the feedback controller used in solving the robust
output regulation problem.

Definition 7. The parameters of the error feedback controller (G1,G2,K) on the Hilbert spaceZ = X×Z2

are chosen such that

G1 =

(
A+BK1 + L(C +DK1) (B + LD)K2

0 G1

)
, G2 =

(
−L
G2

)
, K =

(
K1 K2

)
,

where the operators G1 : D(G1) ⊂ Z2 → Z2, G2 ∈ L(Y, Z2), and where K1 ∈ L(X,U), K2 ∈
L(Z2, U), and L ∈ L(Y,X) have the following properties.
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• G1 generates a polynomially bounded group on Z2.

• (G1, G2) satisfy the G-conditions.

Our task is to show that the free parameters in the controller can be fixed in such a way that the controller
solves the robust output regulation problem. Since the internal model (G1, G2) in the controller satisfies the
G-conditions, Lemma 20 shows that also the full controller (G1,G2,K) satisfies the G-conditions provided
that the closed-loop system is polynomially stable. The main task is therefore to choose appropriate K1,
K2 and L to achieve closed-loop stability.

The following theorem states that if the internal model in the controller can be stabilized polynomially,
then also the full closed-loop system will be polynomially stable with the same exponent.

Theorem 8. ChooseK11 ∈ L(X,U) and L ∈ L(Y,X) such thatA+BK11 andA+LC are exponentially
stable. Then the Sylvester equation

G1He1 = He1(A+BK11) +G2(C +DK11)

on D(A) has a unique solution He1 ∈ L(X,Z2) satisfying He1(D(A)) ⊂ D(G1).
Denote B1 = He1B + G2D and assume K2 ∈ L(Z2, U) can be chosen in such a way that the

semigroup generated by the operator G1 + B1K2 is polynomially stable with α > 0. Then for the choice
K1 = K11 +K2He1 the closed-loop system is polynomially stable with α.

Finally, the controller solves the robust output regulation problem.

Proof. Since A + BK11 generates an exponentially stable semigroup and since the semigroup generated
by −G1 is polynomially bounded, we have from [17] that the Sylvester equation has a unique solution
He1 ∈ L(X,Z2) and He1(D(A)) ⊂ D(G1).

It was shown in the proof of Theorem 13 in [8] that the operator Ae is similar to an operator A+BK1 BK2 BK1

G2(C +DK1) G1 +G2DK2 G2DK1

0 0 A+ LC

 .

Since A + LC generates an exponentially stable semigroup, the similarity and Lemma 19 imply that the
closed-loop system is polynomially stable with α if the same is true for the semigroup generated by the
operator

Ae1 =

(
A+BK1 BK2

G2(C +DK1) G1 +G2DK2

)
.

It was further shown in the proof of Theorem 13 in [8] that with the given choices of operators K11, He1,
and K1, the operator Ae1 is similar to a block triangular operator(

A+BK11 BK2

0 G1 +B1K2

)
.

Since A+BK11 is exponentially stable and G1 +B1K2 is polynomially stable with α by assumption, we
have from Lemma 19 that the semigroup generated by the above operator is polynomially stable with α.
This concludes that the closed-loop system is polynomially stable with α.

Since the operators (G1, G2) satisfy the G-conditions and iR ⊂ ρ(Ae), we have from Lemma 20 that
the controller (G1,G2) satisfies the G-conditions. Theorem 5 therefore concludes that the controller solves
the robust output regulation problem.

4.1 Constructing an Internal Model for Diagonal Exosystems
In this section we demonstrate how to choose the internal model (G1, G2) and how to stabilize it polyno-
mially in the case where the exosystem is diagonal, the frequencies {ωk}k∈Z have a uniform gap, and the
plant has an equal number of inputs and outputs.

Throughout this section we assume dimU = dimY = p, and that nk = 1 for all k ∈ Z. Since we
assumed P (iωk) are surjective, the first assumption implies that P (iωk) are invertible for all k ∈ Z. We
denote the transfer function of the stabilized plant by PK(λ) = (C +DK11)R(λ,A+ BK11)B +D for
all λ ∈ ρ(A+BK11). Since the invertibility of the transfer function is invariant under bounded feedback,
we have that PK(iωk) are invertible for all k ∈ Z.
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Choose Z2 = W ×W × · · · ×W = W p and choose the appropriate inner product such that it is a
Hilbert space. The space Z2 has an orthonormal basis {ϕlk | k ∈ Z, l = 1, . . . , p } ⊂ Z2 defined in such a
way that

ϕ1
k = (φ1

k, 0, . . . , 0), ϕ2
k = (0, φ1

k, . . . , 0), · · · ϕpk = (0, . . . , 0, φ1
k)

for all k ∈ Z. Define G1 = diag (S, S, . . . , S) : D(S)p ⊂ W p → W p and let g2 ∈ W be such that
〈g2, φ

1
k〉 6= 0 for all k ∈ Z. Finally, define G2 ∈ L(Y,Z2) by

G2y =

p∑
l=1

∑
k∈Z

〈g2, φ
1
k〉(PK(iωk)−1y)l
‖PK(iωk)−1‖

ϕlk,

where (PK(iωk)−1y)l denotes the lth element of the vector PK(iωk)−1y ∈ Cp.
It is immediate that G1 generates a uniformly bounded group on Z2. The following lemma shows that

the internal model (G1, G2) satisfies the G-conditions.

Lemma 9. The operators (G1, G2) satisfy the G-conditions.

Proof. Because nk = 1 for all k ∈ Z, the condition (6c) is trivially satisfied. Let y ∈ Y be such that
G2y = 0. From the definition of G2 we can see that this immediately implies 〈g2, φ

1
k〉(PK(iωk)−1y)l = 0

for all k ∈ Z and l ∈ {1, . . . , p}. Let k ∈ Z be fixed. Since 〈g2, φ
1
k〉 6= 0 by assumption, we must have

PK(iωk)−1y = 0. Since PK(iωk)−1 is invertible, we have y = 0. The element y ∈ N (G2) was arbitrary,
and thus (6b) is satisfied.

To prove (6a), let k ∈ Z, and let w ∈ W p be such that w = (iωk −G1)v = G2y for some v ∈ D(G1)
and y ∈ Y . Since G1 is skew-adjoint, we have

〈w,ϕlk〉 = 〈(iωk −G1)v, ϕlk〉 = 〈v, (−iωk +G1)ϕlk〉 = 〈v, (−iωk + iωk)ϕlk〉 = 0,

and on the other hand

〈w,ϕlk〉 = 〈G2y, ϕ
l
k〉 =

〈g2, φ
1
k〉(PK(iωk)−1y)l
‖PK(iωk)−1‖

.

Combining these equations we have

〈g2, φ
1
k〉(PK(iωk)−1y)l
‖PK(iωk)−1‖

= 0 ∀l ∈ {1, . . . , p},

which implies PK(iωk)−1y = 0 since 〈g2, φ
1
k〉 6= 0 by assumption. Because PK(iωk)−1 is invertible, we

further have y = 0. This concludes w = G2y = 0, and thus (6a) is satisfied.

The next theorem concludes that the internal model we have constructed can be stabilized polynomially.
For brevity, we make use of the results in [15] to prove the existence of a stabilizing feedback K2. The
procedure for choosing an appropriate feedback operator is illustrated in greater detail in Section 6, where
we also see that the conclusion of Theorem 10 is not optimal, if |ωk| grow faster than at a constant rate
with respect to |k|.

Theorem 10. Assume the operator S is diagonal, the frequencies {ωk}k∈Z have a uniform gap, and
U = Y = Cp. If there exist β, c > 0 such that

|〈g2, φ
1
k〉|

‖PK(iωk)−1‖
≥ c

|k|β
(10)

for large enough |k|, then for any α > β + 1
2 the operator K2 ∈ L(W p, Y ) can be chosen in such a way

that the semigroup generated by the operator G1 +B1K2 is polynomially stable with α.

Proof. Let α > β + 1
2 . If 0 is an eigenvalue of S, we can without loss of generality assume ω0 = 0.

For the stabilization of the internal model we need the solutionHe1 of the Sylvester equationG1He1 =
He1(A + BK11) + G2(C + DK11). Since the operator G1 is diagonal, we can see as in [8, Lem. 19] or
in [15, Lem. 14] that the unique solution He1 is given by

He1x =

p∑
l=1

∑
k∈Z
〈G2(C +DK11)R(iωk, A+BK11)x, ϕlk〉ϕlk
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for all x ∈ X . For u = (u1, . . . , up) ∈ U = Cp and for k ∈ Z and l ∈ {1, . . . , p}, we therefore have

〈B1u, ϕ
l
k〉 = 〈He1Bu+G2Du,ϕ

l
k〉 = 〈G2(C +DK11)R(iωk, A+BK11)Bu+G2Du,ϕ

l
k〉

= 〈G2PK(iωk)u, ϕlk〉 =
〈g2, φ

1
k〉(PK(iωk)−1PK(iωk)u)l
‖PK(iωk)−1‖

=
〈g2, φ

1
k〉

‖PK(iωk)−1‖
ul.

This shows that for an operator K2 ∈ L(W p,Cp) we can write

G1 +B1K2 =


S

S
. . .

S

+


b1

b1
. . .

b1



K11

2 K12
2 · · · K1p

2

K21
2 K22

2
...

. . .
Kp1

2 Kpp
2


whereKkl

2 ∈ L(W,C) and b1 is such that 〈b1, φ1
k〉 = 〈g2, φ

1
k〉/‖PK(iωk)−1‖ for k ∈ Z. We have b1 ∈W ,

since

1 ≤ ‖PK(iωk)−1‖‖PK(iωk)‖ ⇔ 1

‖PK(iωk)−1‖
≤ ‖PK(iωk)‖

and ‖PK(iωk)‖ are uniformly bounded with respect to k ∈ Z due to the exponential stability ofA+BK11.
If we choose Kkl

2 = 0 for k 6= l and Kkk
2 = K11

2 for k ∈ {2, . . . , p}, we have

G1 +B1K2 =


S + b1K

11
2

S + b1K
11
2

. . .
S + b1K

11
2

 .

It is clear that if K11
2 ∈ L(W,C) is chosen in such a way that the semigroup generated by S + b1K

11
2 is

polynomially stable with α, then the same is true for the semigroup generated by G1 +B1K2. Since S is a
diagonal operator with simple eigenvalues that have a uniform gap, we can use pole placement in choosing
K11

2 [21]. In fact, we can directly apply Theorem 15 in [15] (where the single-input single-output case was
considered) once we replace |PK(iωk)| by 1/‖PK(iωk)−1‖. In particular, with this modification the proof
of [15, Thm. 15] implies that we can choose K11

2 in such a way that σ(S + b1K
11
2 ) = {µk}k∈Z, where

µ0 = −1 and µk = − 1

|k|α
+ iωk.

Moreover, S + b1K
11
2 is a Riesz-spectral operator and all but a finite number of its eigenvalues µk are

simple. First of all, this concludes that the semigroup generated by S + b1K
11
2 is uniformly bounded.

Since the eigenvalues {iωk}k∈Z have a uniform gap, we can use some geometric analysis to conclude that
there exists c > 0 such that for ω ∈ R with large enough |ω| we have |iω − µk| ≥ c|ω|−α. The properties
of S + b1K

11
2 imply that there exists a constant M > 0 such that for large |ω| we have

‖R(iω, S + b1K
11
2 )‖ ≤ M

mink |iω − µk|
≤ M

c|ω|−α
=
M

c
|ω|α.

Since W is a Hilbert space, we have from Lemma 2 that S + b1K
11
2 is polynomially stable with α. Due to

the diagonal structure this finally concludes that the semigroup generated by G1 + B1K2 is polynomially
stable with α.

5 Preservation of the Polynomial Stability of the Closed-Loop Sys-
tem

In this section we present classes of perturbations that preserve the stability of the closed-loop system. For
this we use the general perturbation results in [13]. We consider situations where the closed-loop system is
polynomially stable with α, where either α = 1 or α = 2. In these situations it is possible to present easily
verifiable conditions for the preservation of the closed-loop stability.
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We begin by showing that for any bounded finite rank perturbations to the operators A, B, C, and D,
the change in the closed-loop system can be written in the form

A′e = Ae + ∆e∆̃e, (11)

where ∆e ∈ L(Cm, Xe), and ∆̃e ∈ L(Xe,Cm) for some m ∈ N.

Lemma 11. If any one of the operators of the plant is perturbed, then the closed-loop system can be written
in the form (11) where ∆e ∈ L(Cm, Xe), and ∆̃e ∈ L(Xe,Cm) for some m ∈ N. In particular,

1. IfA′ = A+∆A∆̃A with ∆A ∈ L(Cm, X) and ∆̃A ∈ L(X,Cm), then we can choose ∆e =
(

∆A

0

)
,

∆̃e =
(
∆̃A 0

)
.

2. If B′ = B + ∆B with ∆B ∈ L(U,X), then we can choose ∆e =
(

∆B

0

)
, ∆̃e =

(
0 K

)
and

m = dimU .

3. If C ′ = C + ∆C with ∆C ∈ L(X,Y ), then we can choose ∆e =
(

0
G2

)
, ∆̃e =

(
∆C 0

)
and

m = dimY .

4. If D′ = D + ∆D with ∆D ∈ L(U, Y ), then we can choose ∆e =
(

0
G2∆D

)
, ∆̃e =

(
0 K

)
and

m = dimU .

Proof. The conclusions of the lemma follow immediately from

A′e =

(
A+ ∆A∆̃A BK
G2C G1 + G2DK

)
= Ae +

(
∆A

0

)(
∆̃A 0

)
A′e =

(
A (B + ∆B)K
G2C G1 + G2DK

)
= Ae +

(
∆B

0

)(
0 K

)
A′e =

(
A BK

G2(C + ∆C) G1 + G2DK

)
= Ae +

(
0
G2

)(
∆C 0

)
A′e =

(
A BK
G2C G1 + G2(D + ∆D)K

)
= Ae +

(
0

G2∆D

)(
0 K

)
.

For simplicity, in the following we will only consider the case where the operators of the plant are
perturbed one at a time. If two operators are perturbed at the same time, then the perturbed closed-loop
system operator can be written as

A′e = Ae + ∆e1∆̃e1 + ∆e2∆̃e2 = Ae +
(
∆e1 ∆e2

)(∆̃e1

∆̃e2

)
= Ae + ∆e∆̃e,

and analogously for perturbation of three or all four operators at the same time. Therefore, the same
methods for determining conditions for the preservation of the closed-loop stability can also be applied in
these situations.

5.1 General Perturbation Results
We will now present conditions for the preservation of stability of the closed-loop system under general
finite-rank perturbations Ae + ∆e∆̃e, and subsequently apply these results for consider the preservation of
stability under perturbation of the operators A, B, C, and D of the plant. The closed-loop system and the
perturbations of Ae are assumed to satisfy the following assumptions.

Assumption 12. Assume that the closed-loop system and the operators ∆e ∈ L(Cm, Xe), and ∆̃e ∈
L(Xe,Cm) satisfy the following for some α ∈ {1, 2}, and β, γ ∈ {0, 1}.

1. The semigroup Te(t) generated by Ae is polynomially stable with α.

2. We haveR(∆e) ⊂ D(Aβe ) andR(∆̃∗e) ⊂ D((A∗e)
γ)
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The following theorem gives sufficient conditions for the preservation of the polynomial stability of the
closed-loop system in terms of perturbations of Ae. For the powers of the operators we use the convention
that A0

e = I and (A∗e)
0 = I . This means that in the case β = 0 the condition R(∆e) ⊂ D(Aβe ) becomes

redundant and ‖Aβe∆e‖ = ‖∆e‖, and similarly for γ = 0. We do not consider situations α > 2, because
for β > 1 or γ > 1 the powers Aβe and (A∗e)

γ become difficult to compute, and the analysis does not yield
any useful perturbation results.

Theorem 13. Let Assumption 12 be satisfied for some β, γ ∈ N0 such that β + γ = α. Then there exists
δe > 0 such that if

‖Aβe∆e‖ · ‖(A∗e)γ∆̃∗e‖ < δe, (12)

then the semigroup generated by A′e = Ae + ∆e∆̃e is polynomially stable with α.

Proof. The conclusion of the theorem is a direct consequence of [13, Thm. 2].

Remark 1. From the proofs of Theorems 2 and 6 in [13] we can see that as the bound for the graph
norms (12) we can choose any δe > 0 satisfying

δe <
1

sup
λ∈C+

‖R(λ,Ae)A
−α
e ‖

.

The adjoint of the system operator of the closed-loop system is given by

A∗e =

(
A∗ C∗G∗2

K∗B∗ G∗1 +K∗D∗G∗2

)
: D(A∗e) = D(A∗)×D(G∗1 ) ⊂ Xe → Xe.

5.2 Perturbations in the Parameters of the Plant
Throughout the rest of Section 5 we assume that the controller (G1,G2,K) satisfies the G-conditions and
stabilizes the closed-loop system polynomially with α. Due to Theorem 5 the controller solves the robust
output regulation problem.

In the following we present conditions on the perturbations of the individual operators A, B, C, and
D. Our main goal is to derive conditions that only involve range conditions on the components of the
perturbation. In the case where α = 2 this is only possible for the perturbation of the operator A. In all
other cases we in addition encounter conditions of the form

R(G2) ⊂ D(G1) and/or R(K∗) ⊂ D(G∗1 ).

Such conditions are inconvenient, because the operators K and G2 are fixed parameters of the controller.
However, we will see that in the case α = 1 we can remove such conditions when perturbing operators B
and C.

The next two theorems summarize the main results of this section.

Theorem 14. Assume the controller (G1,G2,K) satisfies the G-conditions and the closed-loop system is
polynomially stable with α = 2.

(a) If A′ = A + ∆A∆̃A with ∆A ∈ L(Cm, X), ∆̃A ∈ L(X,Cm), then there exists δA > 0 such that
the perturbed closed-loop system is polynomially stable with α provided that

R(∆A) ⊂ D(A) and R(∆̃∗A) ⊂ D(A∗), (13)

and (‖A∆A‖+ ‖∆A‖) · (‖A∗∆̃∗A‖+ ‖∆̃A‖) < δA.

(b) If R(K∗) ⊂ D(G∗1 ) and if B′ = B + ∆B with ∆B ∈ L(U,X), then there exists δB > 0 such that
the perturbed closed-loop system is polynomially stable with α provided that

R(∆B) ⊂ D(A) (14)

and ‖A∆B‖+ ‖∆B‖ < δB .
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(c) IfR(G2) ⊂ D(G1) and if C ′ = C + ∆C with ∆C ∈ L(X,C), then there exists δC > 0 such that the
perturbed closed-loop system is polynomially stable with α provided that

R(∆∗C) ⊂ D(A∗), (15)

and ‖A∗∆∗C‖+ ‖∆C‖ < δC .

(d) If R(G2) ⊂ D(G1), R(K∗) ⊂ D(G∗1 ), and if D′ = D + ∆D with ∆D ∈ L(U, Y ), then there
exists δD > 0 such that the perturbed closed-loop system is polynomially stable with α provided that
‖∆D‖ < δD.

In each of the above cases the regulation error decays asymptotically as in Theorem 5.

Theorem 15. Assume the controller (G1,G2,K) satisfies the G-conditions and the closed-loop system is
polynomially stable with α = 1.

(a1) If A′ = A+ ∆A∆̃A, there exists δA > 0 such that the perturbed closed-loop system is polynomially
stable with α provided thatR(∆A) ⊂ D(A) and (‖A∆A‖+ ‖∆A‖)‖∆̃A‖ < δA.

(a2) If A′ = A+ ∆A∆̃A, there exists δA > 0 such that the perturbed closed-loop system is polynomially
stable with α provided thatR(∆̃∗A) ⊂ D(A∗), and (‖A∗∆̃∗A‖+ ‖∆̃A‖)‖∆A‖ < δA.

(b) If B′ = B + ∆B , there exists δB > 0 such that the perturbed closed-loop system is polynomially
stable with α provided thatR(∆B) ⊂ D(A) and (‖A∆B‖+ ‖∆B‖) < δB .

(c) If C ′ = C + ∆C , there exists δC > 0 such that the perturbed closed-loop system is polynomially
stable with α provided thatR(∆∗C) ⊂ D(A∗), and (‖A∗∆∗C‖+ ‖∆C‖) < δC .

(d) If R(G2) ⊂ D(G1) or R(K∗) ⊂ D(G∗1 ), and if D′ = D + ∆D, there exists δD > 0 such that the
perturbed closed-loop system is polynomially stable with α provided that ‖∆D‖ < δD.

In each of the above cases the regulation error decays asymptotically as in Theorem 5.

The proofs of Theorems 14 and 15 are based on straightforward norm estimates, but they require some
work due to the large number of different cases we need to consider. For the proofs we need some prelim-
inary estimates on the graph norms of the closed-loop system. We saw in Lemma 11 that for perturbations
in the parameters operators A, B, C, and D the resulting perturbations in the closed-loop system operator
Ae can be written in forms

∆e =

(
∆e1

0

)
or ∆e =

(
0

G2∆e2

)
, and ∆̃e =

(
∆̃e1 0

)
, or ∆̃e =

(
0 K

)
,

where ∆e1 ∈ L(Cm, X), ∆e2 ∈ L(Cm, Y ), and ∆̃e1 ∈ L(X,Cm). Therefore, the range conditions in
Assumption 12 can be given in terms of the perturbations of the operators A, B, C, and D, as shown in the
following lemma.

Lemma 16. For perturbations A′ = A+ ∆A∆̃A we have

R(∆e) ⊂ D(Ae) ⇔ R(∆A) ⊂ D(A)

R(∆̃∗e) ⊂ D(A∗e) ⇔ R(∆̃∗A) ⊂ D(A∗).

For perturbations B′ = B + ∆B we have

R(∆e) ⊂ D(Ae) ⇔ R(∆B) ⊂ D(A)

R(∆̃∗e) ⊂ D(A∗e) ⇔ R(K∗) ⊂ D(G∗1 ).

For perturbations C ′ = C + ∆C we have

R(∆e) ⊂ D(Ae) ⇔ R(G2) ⊂ D(G1)

R(∆̃∗e) ⊂ D(A∗e) ⇔ R(∆∗C) ⊂ D(A∗).

For perturbations D′ = D + ∆D we have

R(∆e) ⊂ D(Ae) ⇔ R(G2) ⊂ D(G1)

R(∆̃∗e) ⊂ D(A∗e) ⇔ R(K∗) ⊂ D(G∗1 ).
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Proof. The equivalences are direct consequences of Lemma 11.

The estimates in the following lemma form the basis for the perturbation results in the rest of this
section.

Lemma 17. The perturbations of the closed-loop satisfy the following estimates.

• IfR(∆) ⊂ D(A), then∥∥∥∥Ae(∆
0

)∥∥∥∥ ≤ √2 max{1, ‖G2C‖} (‖A∆‖+ ‖∆‖) . (16a)

• IfR(G2) ⊂ D(G1), then∥∥∥∥Ae( 0
G2

)∥∥∥∥ ≤ √2 (‖BKG2‖+ ‖(G1 + G2DK)G2‖) . (16b)

• IfR(∆̃∗) ⊂ D(A∗), then∥∥∥∥A∗e (∆̃∗

0

)∥∥∥∥ ≤ √2 max{1, ‖BK‖}
(
‖A∗∆̃∗‖+ ‖∆̃‖

)
. (16c)

• IfR(K∗) ⊂ D(G∗1 ), then∥∥∥∥A∗e ( 0
K∗

)∥∥∥∥ ≤ √2 (‖KG2C‖+ ‖(G∗1 +K∗D∗G∗2 )K∗‖) . (16d)

Proof. The estimates employ the scalar inequalities in Lemma 18. IfR(∆) ⊂ D(A), then∥∥∥∥Ae(∆
0

)∥∥∥∥ =

∥∥∥∥( A∆
G2C∆

)∥∥∥∥ ≤ (‖A∆‖2 + ‖G2C‖2‖∆‖2
)1/2

≤ max{1, ‖G2C‖}
(
‖A∆‖2 + ‖∆‖2

)1/2 ≤ √2 max{1, ‖G2C‖} (‖A∆‖+ ‖∆‖) .

IfR(G2) ⊂ D(G1), then∥∥∥∥Ae( 0
G2

)∥∥∥∥ =

∥∥∥∥( BKG2

(G1 + G2DK)G2

)∥∥∥∥ ≤ (‖BKG2‖2 + ‖(G1 + G2DK)G2‖2
)1/2

≤
√

2 (‖BKG2‖+ ‖(G1 + G2DK)G2‖) .

IfR(∆̃∗) ⊂ D(A∗), then∥∥∥∥A∗e (∆̃∗

0

)∥∥∥∥ =

∥∥∥∥( A∗∆̃∗

K∗B∗∆̃∗

)∥∥∥∥ ≤ (‖A∗∆̃∗‖2 + ‖K∗B∗‖‖∆̃∗‖2
)1/2

≤
√

2 max{1, ‖BK‖}
(
‖A∗∆̃∗‖+ ‖∆̃‖

)
.

IfR(K∗) ⊂ D(G∗1 ), then∥∥∥∥A∗e ( 0
K∗

)∥∥∥∥ =

∥∥∥∥( C∗G∗2K∗
(G∗1 +K∗D∗G∗2 )K∗

)∥∥∥∥ ≤ √2 (‖KG2C‖+ ‖(G∗1 +K∗D∗G∗2 )K∗‖) .

Proof of Theorem 14. We have α = 2, and we choose β = γ = 1 in Assumption 12. Since β + γ = α, we
have from Theorem 13 that there exists δe > 0 such that the perturbed closed-loop system is polynomially
stable wheneverR(∆e) ⊂ D(Ae),R(∆̃∗e) ⊂ D(A∗e), and

‖Ae∆e‖ · ‖A∗e∆̃∗e‖ < δe. (17)

It therefore suffices to show that in each of the cases the range conditions are satisfied, and the bounds on
the perturbations can be chosen in such a way that (17) is satisfied.
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(a) If A′ = A + ∆A∆̃A with ∆A ∈ L(Cm, X), ∆̃A ∈ L(X,Cm) and the perturbation satisfies (13),
we then have from Lemma 16 thatR(∆e) ⊂ D(Ae) andR(∆̃∗e) ⊂ D(A∗e). Choose δA > 0 in such a way
that

δA =
δe

2 max{1, ‖G2C‖}max{1, ‖BK‖}
.

Using Lemmas 11 and 17 we can now see that for any perturbations satisfying (‖A∆A‖ + ‖∆A‖) ·
(‖A∗∆̃∗A‖+ ‖∆̃A‖) < δA we have

‖Ae∆e‖ · ‖A∗e∆̃∗e‖ =

∥∥∥∥Ae(∆A

0

)∥∥∥∥ · ∥∥∥∥A∗e (∆̃∗A
0

)∥∥∥∥
≤
√

2 max{1, ‖G2C‖}(‖A∆A‖+ ‖∆A‖) ·
√

2 max{1, ‖BK‖}(‖A∗∆̃∗A‖+ ‖∆̃A‖) < δe.

(b) If B′ = B + ∆B with ∆B ∈ L(U,X) and the perturbation satisfies (14), we then have from
Lemma 16 thatR(∆e) ⊂ D(Ae) andR(∆̃∗e) ⊂ D(A∗e). Choose δB > 0 in such a way that

δB =
δe

2 max{1, ‖G2C‖}(‖KG2C‖+ ‖(G∗1 +K∗D∗G∗2 )K∗‖)
.

Using Lemmas 11 and 17 we can now see that for any perturbations satisfying ‖A∆B‖+ ‖∆B‖ < δB we
have

‖Ae∆e‖ · ‖A∗e∆̃∗e‖ =

∥∥∥∥Ae(∆B

0

)∥∥∥∥ · ∥∥∥∥A∗e ( 0
K∗

)∥∥∥∥
≤
√

2 max{1, ‖G2C‖}(‖A∆B‖+ ‖∆B‖) ·
√

2(‖KG2C‖+ ‖(G∗1 +K∗D∗G∗2 )K∗‖) < δe.

(c) If C ′ = C + ∆C with ∆C ∈ L(X,Y ) and the perturbation satisfies (15), we then have from
Lemma 16 thatR(∆e) ⊂ D(Ae) andR(∆̃∗e) ⊂ D(A∗e). Choose δC > 0 in such a way that

δC =
δe

2(‖BKG2‖+ ‖(G1 + G2DK)G2‖) max{1, ‖BK‖}
.

Using Lemmas 11 and 17 we can now see that for any perturbations satisfying ‖A∗∆∗C‖ + ‖∆C‖ < δC
we have

‖Ae∆e‖ · ‖A∗e∆̃∗e‖ =

∥∥∥∥Ae( 0
G2

)∥∥∥∥ · ∥∥∥∥A∗e (∆∗C
0

)∥∥∥∥
≤
√

2(‖BKG2‖+ ‖(G1 + G2DK)G2‖) ·
√

2 max{1, ‖BK‖}(‖A∗∆∗C‖+ ‖∆C‖) < δe.

(d) If D′ = D + ∆D with ∆D ∈ L(U, Y ), we have from Lemma 16 that R(∆e) ⊂ D(Ae) and
R(∆̃∗e) ⊂ D(A∗e). Choose δD > 0 in such a way that

δD =
δe

2(‖BKG2‖+ ‖(G1 + G2DK)G2‖)(‖KG2C‖+ ‖(G∗1 +K∗D∗G∗2 )K∗‖)
.

Using Lemmas 11 and 17 we can now see that for any perturbations satisfying ‖∆D‖ < δD we have

‖Ae∆e‖ · ‖A∗e∆̃∗e‖ =

∥∥∥∥Ae( 0
G2∆D

)∥∥∥∥ · ∥∥∥∥A∗e ( 0
K∗

)∥∥∥∥ ≤ ∥∥∥∥Ae( 0
G2

)∥∥∥∥ · ‖∆D‖ ·
∥∥∥∥A∗e ( 0

K∗

)∥∥∥∥
≤ 2(‖BKG2‖+ ‖(G1 + G2DK)G2‖)‖∆D‖(‖KG2C‖+ ‖(G∗1 +K∗D∗G∗2 )K∗‖) < δe.

Proof of Theorem 15. We have α = 1, and we choose either β = 1 and γ = 0 or β = 0 and γ = 1 in
Assumption 12. Since β + γ = α, we have from Theorem 13 that there exists δe > 0 such that the closed-
loop system is polynomially stable whenever we have either R(∆e) ⊂ D(Ae) and ‖Ae∆e‖ · ‖∆̃e‖ < δe,
or alternatively R(∆̃∗e) ⊂ D(A∗e) and ‖∆e‖ · ‖A∗e∆̃∗e‖ < δe. It is therefore again sufficient to check that
in each of the cases one of the range conditions is satisfied, and the bounds on the perturbations can be
chosen in such a way that the corresponding norm bound is satisfied.
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(a1) IfA′ = A+∆A∆̃A andR(∆A) ⊂ D(A) we have from Lemma 16 thatR(∆e) ⊂ D(Ae). Choose
δA = δe/(

√
2 max{1, ‖G2C‖}) > 0. Using Lemmas 11 and 17 we can see that if (‖A∆A‖ + ‖∆A‖) ·

‖∆̃A‖ < δA, then

‖Ae∆e‖ · ‖∆̃e‖ =

∥∥∥∥Ae(∆A

0

)∥∥∥∥ · ∥∥∥∥(∆̃∗A
0

)∥∥∥∥ ≤ √2 max{1, ‖G2C‖}(‖A∆A‖+ ‖∆A‖)‖∆̃A‖ < δe.

(a2) If A′ = A + ∆A∆̃A and R(∆̃∗A) ⊂ D(A∗) we have from Lemma 16 that R(∆̃∗e) ⊂ D(A∗e).
Choose δA = δe/(

√
2 max{1, ‖BK‖}) > 0. Using Lemmas 11 and 17 we can see that if ‖∆A‖ ·

(‖A∗∆̃A‖+ ‖∆̃A‖) < δA, then

‖∆e‖ · ‖A∗e∆̃e‖ =

∥∥∥∥(∆A

0

)∥∥∥∥ · ∥∥∥∥A∗e (∆̃∗A
0

)∥∥∥∥ ≤ ‖∆A‖
√

2 max{1, ‖BK‖}(‖A∗∆̃∗A‖+ ‖∆̃A‖) < δe.

(b) If B′ = B + ∆B and R(∆B) ⊂ D(A) we have from Lemma 16 that R(∆e) ⊂ D(Ae). Choose
δB = δe/(

√
2 max{1, ‖G2C‖}‖K‖) > 0. Using Lemmas 11 and 17 we can see that if ‖A∆B‖+‖∆B‖ <

δB , then

‖Ae∆e‖ · ‖∆̃e‖ =

∥∥∥∥Ae(∆B

0

)∥∥∥∥ · ∥∥∥∥( 0
K∗

)∥∥∥∥ ≤ √2 max{1, ‖G2C‖}(‖A∆A‖+ ‖∆A‖)‖K‖ < δe.

(c) If C ′ = C + ∆C and R(∆∗C) ⊂ D(A∗) we have from Lemma 16 that R(∆̃∗e) ⊂ D(A∗e). Choose
δC = δe/(

√
2‖G2‖max{1, ‖BK‖}) > 0. Using Lemmas 11 and 17 we can see that if ‖A∗∆C‖+‖∆C‖ <

δC , then

‖∆e‖ · ‖A∗e∆̃e‖ =

∥∥∥∥( 0
G2

)∥∥∥∥ · ∥∥∥∥A∗e (∆̃∗C
0

)∥∥∥∥ ≤ ‖G2‖
√

2 max{1, ‖BK‖}(‖A∗∆∗C‖+ ‖∆C‖) < δe.

(d) Assume D′ = D + ∆D. If R(G2) ⊂ D(G1) we have from Lemma 16 that R(∆e) ⊂ D(Ae).
Choose

δD =
δe√

2(‖BKG2‖+ ‖(G1 + G2DK)G2‖)‖K‖
> 0.

Using Lemmas 11 and 17 we can see that if ‖∆D‖ < δD, then

‖Ae∆e‖ · ‖∆̃e‖ =

∥∥∥∥Ae( 0
G2∆D

)∥∥∥∥ · ∥∥∥∥( 0
K∗

)∥∥∥∥ ≤ ∥∥∥∥Ae( 0
G2

)∥∥∥∥ · ‖∆D‖ ·
∥∥∥∥( 0
K∗

)∥∥∥∥
≤
√

2(‖BKG2‖+ ‖(G1 + G2DK)G2‖) · ‖∆D‖ · ‖K‖ < δe.

On the other hand, ifR(K∗) ⊂ D(G∗1 ) we have from Lemma 16 thatR(∆̃∗e) ⊂ D(A∗e). Choose

δD =
δe√

2‖G2‖(‖KG2C‖+ ‖(G∗1 +K∗D∗G∗2 )K∗‖)
> 0.

Using Lemmas 11 and 17 we can see that if ‖∆D‖ < δD, then

‖∆e‖ · ‖A∗e∆̃∗e‖ =

∥∥∥∥( 0
G2∆D

)∥∥∥∥ · ∥∥∥∥A∗e ( 0
K∗

)∥∥∥∥ ≤ ∥∥∥∥( 0
G2

)∥∥∥∥ · ‖∆D‖ ·
∥∥∥∥A∗e ( 0

K∗

)∥∥∥∥
≤ ‖G2‖ · ‖∆D‖ ·

√
2(‖KG2C‖+ ‖(G∗1 +K∗D∗G∗2 )K∗‖) < δe.

6 Robust Output Tracking for a Stable Heat Equation
In this section we consider an example where we design a controller to achieve robust output tracking for a
heated metal bar. The system can be written as an exponentially stable one-dimensional heat equation. We
design robust controllers for tracking of signals generated by two different infinite-dimensional exosystems.
Finally, we use the theory presented in Section 5 to characterize classes of perturbations preserving the
polynomial closed-loop stability and the output regulation property.
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6.1 The Controlled Heat Equation
We consider a heat equation

dw

dt
(z, t) =

d2w

dz2
(z, t) + χ[ 12 ,1](z)u(t)

on the interval (0, 1) with Dirichlet boundary conditions w(0, t) = w(1, t) = 0 and initial state w(z, 0) =
w0(z) ∈ L2(0, 1). The output of the system is given by

y(t) =

∫ 1
2

0

w(z, t)dz + u(t).

The controlled heat equation can be written as a linear system on X = L2(0, 1), U = C and Y = C if we
choose the operators A, B, C, and D in such a way that

Ax = x′′, x ∈ D(A)=
{
x ∈ L2(0, 1)

∣∣ x, x′ abs. cont., x′′ ∈ L2(0, 1), x(0) = x(1) = 0
}
,

and

Bu = b(·)u, Cx =

∫ 1
2

0

x(z)dz, D = 1.

As in [8] we can see that the system is exponentially stable, for all λ ∈ C with Reλ > −π2 the resolvent
operator R(λ,A) has the form

(R(λ,A)x) (z) =

∫ z

0

sinh(ξ
√
λ) sinh

(
(1− z)

√
λ
)

√
λ sinh(

√
λ)

x(ξ)dξ

+

∫ 1

z

sinh(z
√
λ) sinh

(
(1− ξ)

√
λ
)

√
λ sinh(

√
λ)

x(ξ)dξ,

and the transfer function of the plant is given by

P (λ) = CR(λ,A)B =
4 sinh4(

√
λ/4)

λ
√
λ sinh(

√
λ)

+ 1.

The first term in P (λ) has a removable singularity at λ = 0, and P (iω) 6= 0 for all ω ∈ R. In particular,
1
2 ≤ |P (iω)| ≤ 3

2 for all ω ∈ R.

6.2 The Two Exosystems
We consider output tracking for two different exosystems. In both cases the exosystem is an infinite-
dimensional diagonal operator on the space W = `2(C). Choosing φk = ek, the natural basis of `2(C),
we define

S =
∑
k∈Z

iωk〈·, φk〉φk, D(S) =
{
v ∈W

∣∣ ∑
k∈Z
|ωk|2|〈v, φk〉|2 <∞

}
and F ∈ L(W,C) is chosen in such a way that Fφ0 = −1 and Fφk = −1/|k|3/5 for all k 6= 0.

The difference between the two exosystems we consider is that they have different sets of frequencies
(iωk)k. For the first exosystem we choose ωk = k for all k ∈ Z. With this choice the reference signals to
be tracked are of the form

yref (t) = −FTS(t)v0 = −
∑
k∈Z

eiωkt〈v0, φk〉Fφk = 〈v0, φ0〉+
∑
k 6=0

eikt
〈v0, φk〉
|k|3/5

,

which are precisely the continuous 2π-periodic signals f with Fourier coefficients f̂0 = 〈v0, φ0〉 and
f̂k = 〈v0, φk〉|k|−3/5 for k 6= 0. As was shown in [15, Sec. 3], the choice of the space Wα of the initial
state v0 ∈Wα determines the smoothness properties of the signal yref (t).
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For the second exosystem we choose ωk = k2 for all k ∈ Z. Such frequency distributions are encoun-
tered when studying vibration of undamped beams [4]. The reference signals generated by this exosystem
are given by

yref (t) = −FTS(t)v0 = 〈v0, φ0〉+
∑
k∈Z

eik
2t 〈v0, φk〉
|k|3/5

for v0 ∈W .
For both choices of exosystems the frequencies {ωk} have no finite accumulation points and infk 6=l|ωk−

ωl| = 1.

6.3 Choosing the Parameters of the Controller
Because the operator A generates an exponentially stable semigroup, we can choose K11 = 0 and L = 0
in the feedback controller. Therefore we also have PK(λ) = P (λ) for all λ ∈ ρ(A).

Since dimY = 1, we choose Z2 = W , G1 = S, and g2 ∈ W such that 〈g2, φ0〉 = 1 and 〈g2, φk〉 =
1/|k|3/5 for all k 6= 0. We then have from Section 4.1 that G2 ∈ L(C,W ) is defined by

G2y =
∑
k∈Z

〈g2, φk〉P (iωk)−1y

‖P (iωk)−1‖
φk = y

∑
k∈Z

〈g2, φk〉|P (iωk)|
P (iωk)

φk

Since G1 and G2 are of the same form as in Section 4.1, we have from Lemma 9 that the internal model
(G1, G2) satisfies the G-conditions.

As in the proof of Theorem 10 we have that the operatorB1 ∈ L(C,W ) is such thatB1u = b1u, where
b1 ∈W satisfies

〈b1, φk〉 =
〈g2, φk〉
‖P (iωk)−1‖

= 〈g2, φk〉|P (iωk)|.

In the following we will stabilize the internal model by choosing K2 = K11
2 in such a way that G1 + b1K2

is generates a polynomially stable semigroup. We demonstrate how to do this using pole placement [21].
Our aim is to choose K2 = 〈·, h〉 ∈ L(W,C) in such a way that G1 + b1K2 is a Riesz-spectral operator
with eigenvalues

σ(G1 + b1K2) = {µk}k∈Z

where µ0 = −1 and µk = − 1
k2 + iωk for k 6= 0. We use Theorem 1 in [21] to show that such K2 exists. In

order to do this, we need to verify convergence of three series. For all λ ∈ C such that dist(λ, {iωk}k) >
1
3 infk 6=l|iωk − iωl| = 1/3 we have

∑
k∈Z

∣∣∣∣ 〈b1, φk〉λ− iωk

∣∣∣∣2 ≤ 9
∑
k∈Z
|〈b1, φk〉|2 = 9‖b1‖2 <∞

∑
k∈Z
k 6=l

∣∣∣∣ 〈b1, φk〉iωk − iωl

∣∣∣∣2 ≤∑
k∈Z
|〈b1, φk〉|2 = ‖b1‖2 <∞.

Finally, we have∑
k∈Z

∣∣∣∣µk − iωk〈b1, φk〉

∣∣∣∣2 =
1

|〈g2, φk〉|2|P (iω0)|2
+
∑
k 6=0

k−4

|〈g2, φk〉|2|P (iωk)|2

≤ 1

|P (iω0)|2
+

1

infk 6=0|P (iωk)|2
·
∑
k 6=0

1

k4 · k−6/5
<∞.

Theorem 1 in [21] now concludes that there exists K2 = 〈·, h〉 ∈ L(W,C) such that G1 + b1K2 is a Riesz-
spectral operator with eigenvalues σ(G1 + b1K2) = {µk}k ⊂ C−. Furthermore, all but a finite number of
these eigenvalues are simple. This immediately concludes that the semigroup generated by G1 + b1K2 is
uniformly bounded and that for ω ∈ R with large |ω| the norm ‖R(iω,G1 + b1K2)‖ satisfies

‖R(iω,G1 + b1K2)‖ ≤ M

dist(iω, σ(G1 + b1K2))
=

M

mink∈Z|iω − µk|
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for some M > 0. We have from [21, Thm. 1] that the appropriate feedback K2 = 〈·, h〉 is achieved by
choosing h ∈W in such a way that

h =
∑
k∈Z

µk − iωk
〈φk, b1〉

hkφk =
1

〈φ0, g2〉|P (0)|
h0φ0 +

∑
k 6=0

− 1
k2

〈φk, g2〉|P (iωk)|
hkφk

=
1

|P (0)|
h0φ0 −

∑
k 6=0

1

|k|7/5|P (iωk)|
hkφk,

where

hk =
∏
l 6=k

iωk − µl
iωk − iωl

=
iωk − (−1)

iωk

∏
l 6=k,0

iωk + 1
l2 − iωl

iωk − iωl
=

(
1− i

ωk

) ∏
l 6=k,0

(
1 + i

1

l2(ωl − ωk)

)
.

In the case of the first exosystem, we have iωk = ik for k ∈ Z. Using some geometric analysis, we
can show that there exists c > 0 such that for ω ∈ R with large enough |ω| we have |iω − µk| ≥ c|ω|−2.
Therefore the resolvent of the stabilized internal model satisfies

‖R(iω,G1 + b1K2)‖ ≤ M

mink|iω − µk|
≤ M

c|ω|−2
=
M

c
|ω|2.

This concludes that for this exosystem the internal model is polynomially stable with α = 2.
On the other hand, in the case of the second exosystem we have iωk = ik2 for k ∈ Z. Similarly we

can show that there exists c > 0 such that for ω ∈ R with large enough |ω| we have |iω − µk| ≥ c|ω|−1.
In this case the resolvent of the stabilized internal model satisfies

‖R(iω,G1 + b1K2)‖ ≤ M

mink|iω − µk|
≤ M

c|ω|−1
=
M

c
|ω|,

and thus the internal model is polynomially stable with α = 1.
We have from Theorem 8 that the closed-loop system with the controller we have constructed is poly-

nomially stable with α, and Theorem 5 concludes that the controller solves the robust output regulation
problem, where α = 2 in the case of the first exosystem, and α = 1 for the second exosystem.

6.4 Perturbation of the Parameters of the Plant
We can now use Theorems 14 and 15 to study the preservation of the closed-loop stability and the output
regulation property with respect to perturbations in the parameters of the plant. In the case of the first
exosystem the closed-loop system is polynomially stable with α = 2, and we can therefore use Theorem 14.
In order to consider perturbation of operators B, C, or D, we would need to verify

R(K∗) ⊂ D(G∗1 ) and/or R(G2) ⊂ D(G1).

For the second condition to be true, we would in particular need R(G2) ⊂ D(G1), or equivalently g2 ∈
D(S). However, since ∑

k 6=0

|ωk|2|〈g2, φk〉|2 =
∑
k 6=0

k2

|k|6/5
=
∑
k 6=0

|k|4/5 =∞,

we have g2 /∈ D(S), and thus the conditionR(G2) ⊂ D(G1) in Theorem 14 is not satisfied.
On the other hand, for the first condition to be true, we would need R(K∗2 ) ⊂ D(G∗1), or equivalently

h ∈ D(S∗) = D(S). We can estimate

|hk|2 =

∣∣∣∣∣∣
(

1− i

ωk

) ∏
l 6=k,0

(
1 + i

1

l2(ωl − ωk)

)∣∣∣∣∣∣
2

=

∣∣∣∣1− i

ωk

∣∣∣∣2 ∏
l 6=k,0

∣∣∣∣1 + i
1

l2(ωl − ωk)

∣∣∣∣2
=

(
1 +

1

ω2
k

) ∏
l 6=k,0

(
1 +

1

l4(ωl − ωk)2

)
≥ 1

and since |P (iω)| ≤ 3
2 , we have∑

k 6=0

|ωk|2|〈h, φk〉|2 =
∑
k 6=0

k2 |hk|2

|k|14/5|P (iωk)|2
≥ 4

9

∑
k 6=0

1

|k|4/5
=∞.

This implies that h /∈ D(S), which concludes that the conditionR(K∗) ⊂ D(G∗1 ) is not satisfied.



6. Robust Output Tracking for a Stable Heat Equation 22

6.4.1 The Case α = 2

The above properties conclude that in the case of the first exosystem we can only apply the first part of
Theorem 14. We will use it to study the preservation of the closed-loop stability with respect to rank one
perturbations of the operator A. Such perturbations are of the form

(A′x)(z) = x′′(z) + f1(z)

∫ 1

0

x(ξ)f2(ξ)dz =
[
(A+ 〈·, f2〉L2f1)x

]
(z), x ∈ D(A)

where f1, f2 ∈ L2(0, 1). Since ∆A = f1 and ∆̃∗A = f2, and since the operator A is selfadjoint, the
conditions (13) are equivalent to f1, f2 ∈ D(A), i.e., f1, f2, f

′
1, f
′
2 are required to be absolutely continuous

and f1(0) = f1(1) = 0, and f2(0) = f2(1) = 0. The appropriate graph norms in Theorem 14 are given by

‖A∆A‖+ ‖∆A‖ = ‖Af1‖L2 + ‖f1‖L2 = ‖f ′′1 ‖L2 + ‖f1‖L2 (18a)

‖A∗∆̃∗A‖+ ‖∆̃A‖ = ‖Af2‖L2 + ‖f2‖L2 = ‖f ′′2 ‖L2 + ‖f2‖L2 (18b)

Therefore, Theorem 14 concludes that the polynomial closed-loop stability as well as the decay of the
regulation error are preserved for all perturbations of the form A+ 〈·, f2〉f1, where f1, f2 ∈ D(A) and for
which the norms

‖f1‖L2 , ‖f2‖L2 , ‖f ′′1 ‖L2 , ‖f ′′2 ‖L2

are small enough.

6.4.2 The Case α = 1

In the case of the second exosystem we have α = 1, and we can apply Theorem 15 to study the preservation
of the closed-loop stability. If we now perturb the operator A as A+ 〈·, f2〉L2f1 where f1, f2,∈ L2(0, 1),
then the conditions of Theorem 15 require that either

f1 ∈ D(A), or f2 ∈ D(A).

This means that fi, f ′i must be absolutely continuous and fi(0) = fi(1) = 0 for i = 1 or i = 2. We thus
have directly from (18) that closed-loop stability is preserved in the following situations:

• f1 ∈ D(A), and the norms ‖f1‖L2 , ‖f ′′1 ‖L2 , and ‖f2‖L2 are small enough.

• f2 ∈ D(A), and the norms ‖f1‖L2 , ‖f2‖L2 , and ‖f ′′2 ‖L2 are small enough.

On the other hand, if we perturb B in such a way that

B′u =
(
χ[1/2,1](·) + f3(·)

)
u = Bu+ f3(·)u,

where f3 ∈ L2(0, 1), then ∆B = f3. The conditions in Theorem 15 require that f3 ∈ D(A) and the
corresponding graph norms is given by

‖A∆B‖+ ‖∆B‖ = ‖f ′′3 ‖L2 + ‖f3‖L2 .

We therefore have that the closed-loop stability is preserved if f3, f ′3 are absolutely continuous, if f3(0) =
f3(1) = 0, and if the norms ‖f3‖L2 and ‖f ′′3 ‖L2 are small enough.

Finally, if we perturb C in such a way that

C ′x =

∫ 1

0

(
χ[0,1/2](z) + f4(z)

)
x(z)dz = Cx+ 〈x, f4〉L2 ,

where f4 ∈ L2(0, 1), then ∆̃∗C = f4. The conditions in Theorem 15 require that f4 ∈ D(A) and the
corresponding graph norms is given by

‖A∗∆̃∗C‖+ ‖∆̃∗C‖ = ‖f ′′4 ‖L2 + ‖f4‖L2 .

We therefore have that the closed-loop stability is preserved if f4, f ′4 are absolutely continuous, if f4(0) =
f4(1) = 0, and if the norms ‖f4‖L2 and ‖f ′′4 ‖L2 are small enough.

Similarly as in the beginning of Section 6.4 we can verify that neither R(K∗) ⊂ D(G∗1 ) nor R(G2) ⊂
D(G1). Because of this, Theorem 15 can not be applied in studying preservation of the closed-loop stability
under perturbations in the operator D.
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7 Conclusions
In this paper we have studied the robust output regulation problem for infinite-dimensional linear systems
with reference and disturbance signals generated by an infinite-dimensional block-diagonal signal gener-
ator. In such a situation the internal model principle in particular implies that any robust controller must
necessarily have an infinite number of eigenvalues on the imaginary axis, and therefore the closed-loop can
not be stabilized exponentially. In the previous papers concerning this topic, the closed-loop system has
been stabilized either strongly or weakly. However, if the closed-loop system is not exponentially stable,
we need extraneous assumptions to ensure the solvability of the Sylvester equation in the regulator equa-
tions. Moreover, in the case of strong and weak closed-loop stabilities it is not in general possible to derive
any concrete robustness properties for the control law.

In this paper we have demonstrated that the above difficulties can, for the most part, be overcome by
instead aiming at polynomial stability of the closed-loop system. In particular, if the closed-loop system
is polynomially stable we immediately have the appropriate solvability of the Sylvester equation in the
regulator equations, and we can therefore remove some of the technical assumptions. Moreover, the re-
cent results concerning the robustness properties of polynomially stable semigroups enabled us to derive
concrete conditions under which the closed-loop stability and the output regulation property are preserved
when the parameters of the plant are perturbed.

In this paper we have also constructed an observer based feedback controller that stabilizes the closed-
loop system polynomially. We first showed that the closed-loop stability is achieved if the internal model
in the controller can be stabilized polynomially. Moreover, in the case of a square plant and a diagonal
exosystem we presented a method for stabilizing the internal model. Extending the polynomial stabilization
of the internal model for plants with more inputs than outputs and for nondiagonal exosystems are topics
for further research.

Further research topics also include extending the theory to allow unbounded control and observation
operators in the plant.

A Required Lemmata
The following three lemmas are used in proving the main results of the paper.

Lemma 18. If ak ≥ 0 for k ∈ {1, . . . , n}, then

n∑
k=1

a2
k ≤

(
n∑
k=1

ak

)2

≤ n ·
n∑
k=1

a2
k

and if a, b ≥ 0, and α > 0, then

(a+ b)α ≤ 2α(aα + bα)

Lemma 19. Let X1 and X2 be Hilbert spaces. Let A1 : D(A1) ⊂ X1 → X1 and A2 : D(A2) ⊂ X2 →
X2 generate strongly continuous semigroups T1(t) and T2(t), respectively, andB ∈ L(X2, X1). Consider
the semigroup T (t) generated by

A =

(
A1 B
0 A2

)
: D(A1)×D(A2) ⊂ X → X

on the Hilbert space X = X1 ×X2. If one of the semigroups T1(t) and T2(t) is exponentially stable, and
the other polynomially stable with α > 0, then the semigroup T (t) is polynomially stable with α.

Proof. Since Definition 1 implies that a polynomially stable semigroup is strongly stable, we have from [8,
Lem. 20] that the semigroup T (t) is strongly stable. In particular this implies that T (t) is uniformly
bounded. By Lemma 2 it remains to show that iR ⊂ ρ(A) and ‖R(iω,A)‖ = O(|ω|α).

Let iω ∈ iR. Since iω ∈ ρ(A1) and iω ∈ ρ(A2), a direct computation shows that

(iω −A)−1 =

(
R(iω,A1) R(iω,A1)BR(iω,A2)

0 R(iω,A2)

)
∈ L(X).

We therefore have iω ∈ ρ(A). Since iω ∈ iR was arbitrary, this implies iR ⊂ ρ(A).
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Let x = (x1, x2)T ∈ X be such that ‖x‖2 = ‖x1‖2 + ‖x2‖2 = 1. For brevity denote R1 = R(iω,A1)
and R2 = R(iω,A2). Now

‖R(iω,A)x‖2 =

∥∥∥∥(R1 R1BR2

0 R2

)(
x1

x2

)∥∥∥∥2

= ‖R1x1 +R1BR2x2‖2 + ‖R2x2‖2

≤ 2
(
‖R1‖2‖x1‖2 + ‖R1‖2‖B‖2‖R2‖2‖x2‖2

)
+ ‖R2‖2‖x2‖2

≤ 2
(
‖x1‖2 + ‖x2‖2

) (
‖R1‖2 + ‖R1‖2‖B‖2‖R2‖2 + ‖R2‖2

)
≤ 2 max

{
‖B‖2, 1

} (
‖R1‖2(1 + ‖R2‖2) + ‖R2‖2

)
≤ 2(‖B‖2 + 1)(‖R(iω,A1)‖2 + 1)(‖R(iω,A2)‖2 + 1)

Due to the assumptions and Lemma 2 one of the norms ‖R(iω,A1)‖ and ‖R(iω,A2)‖ is of orderO(|ω|α),
and the other is uniformly bounded. This together with the above estimate concludes that ‖R(iω,A)‖ =
O(|ω|α).

Lemma 20. Let Z1, Z2, and Z = Z1 × Z2 be Hilbert spaces and assume the operators G1 and G2 of the
controller are of the form

G1 =

(
R1 R2

0 G1

)
, G2 =

(
R3

G2

)
,

where R1 : D(R1) ⊂ Z1 → Z1, R2 ∈ L(Z2, Z1), R3 ∈ L(Y,Z1), G1 : D(G1) ⊂ Z2 → Z2, and
G2 ∈ L(Y, Z2). If iR ⊂ ρ(Ae) and the operators (G1, G2) satisfy the G-conditions in Definition 4, then
(G1,G2) satisfy the G-conditions.

Proof. Let y ∈ N (G2). Then we clearly also have G2y = 0. Since the operator G2 satisfies the G-
conditions, this implies y = 0. This concludes N (G2) = {0}.

Let k ∈ Z and z = (z1, z2)T ∈ R(iωk − G1) ∩ R(G2). There exist (z1
1 , z

1
2)T ∈ D(R1)×D(G1) and

y ∈ Y such that (
z1

z2

)
=

(
iωk −R1 −R2

0 iωk −G1

)(
z1

1

z1
2

)
=

(
R3

G2

)
y.

The second line of the above equation implies that z2 = (iωk − G1)z1
2 = G2y. Since (G1, G2) satisfy

the G-conditions, we must have G2y = 0, and further that y = 0 due to N (G2) = {0}. This also implies
z = G2y = 0. Since k ∈ Z was arbitrary, we haveR(iωk − G1) ∩R(G2) = {0} for all k ∈ Z.

Let k ∈ Z. Since iωk ∈ ρ(Ae), we have from [14, Lem. 5.7] that Z = R(iωk − G1) + R(G2).
This together with the triangular form of the operator iωk − G1 further imply that we similarly have Z2 =
R(iωk − G1) +R(G2). Since (G1, G2) satisfy the G-conditions, the intersection of the ranges is trivial,
and Z2 = R(iωk − G1) ⊕ R(G2). In particular this means that for every z2 ∈ Z2 there exist unique
elements z1

2 ∈ D(G1) and y ∈ Y such that z2 = (iωk −G1)z1
2 +G2y.

Now let z = (z1, z2)T ∈ N (iωk − G1)nk . Since Z = R(iωk − G1) +R(G2), there exist (z1
1 , z

1
2)T ∈

D(R1)×D(G1) and y ∈ Y such that(
z1

z2

)
=

(
iωk −R1 −R2

0 iωk −G1

)(
z1

1

z1
2

)
+

(
R3

G2

)
y.

In order to show z ∈ R(iωk − G1), it is clearly sufficient to prove that y = 0. The second line implies that
z2 = (iωk − G1)z1

2 + G2y. However, due to the triangular structure of G1 and z ∈ N (iωk − G1)nk , we
have z2 ∈ N (iωk − G1)nk ⊂ R(iωk − G1). Since Z2 = R(iωk − G1) ⊕ R(G2), we must necessarily
have y = 0. This concludes that z ∈ R(iωk − G1). Since k ∈ Z and z ∈ N (iωk − G1)nk were arbitrary,
we have N (iωk − G1)nk ⊂ R(iωk − G1).
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[17] Vũ Quòc Phông. The operator equation AX −XB = C with unbounded operators A and B and
related abstract Cauchy problems. Math. Z., 208:567–588, 1991.

[18] Seppo A. Pohjolainen. Robust multivariable PI-controller for infinite-dimensional systems. IEEE
Trans. Automat. Control, AC-27(1):17–31, 1982.

[19] Richard Rebarber and George Weiss. Internal model based tracking and disturbance rejection for
stable well-posed systems. Automatica J. IFAC, 39(9):1555–1569, 2003.

[20] J. M. Schumacher. Finite-dimensional regulators for a class of infinite-dimensional systems. Systems
Control Lett., 3:7–12, 1983.

[21] Cheng-Zhong Xu and Gauthier Sallet. On spectrum and Riesz basis assignment of infinite-
dimensional linear systems by bounded linear feedbacks. SIAM J. Control Optim., 34(2):521–541,
1996.


