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Abstract

In this paper we consider robust output regulation of distributed parameter systems with infinite-dimen-
sional exosystems capable of generating polynomially growing signals. We design an observer-based error
feedback controller solving the control problem. The controller is chosen in such a way that it incorporates
an internal model of the infinite-dimensional exosystem. The remaining parameters of the controller are
chosen to stabilize the closed-loop system strongly. We also analyze the classes of signals generated by the
exosystem. In particular we explore the connection between the smoothness properties of the reference and
disturbance signals and the strictness of the conditions required for the existence of a controller solving the
robust output regulation problem.
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1 Introduction
The topic of this paper is robust output regulation problem for linear distributed parameter systems. Math-
ematical systems of this class include models describing various natural phenomena including heat and dif-
fusion processes, vibrations and delay systems. The study of output regulation and robust output regulation
of infinite-dimensional systems has been active since the early 1980’s [24, 20, 23, 2, 14, 5, 10, 6]. Recently
in a series of papers [21, 18, 6, 16] one of the key results of linear multivariable control theory, the internal
model principle of Francis and Wonham [4], was generalized for distributed parameter systems. This result
can be used to characterize the error feedback controllers achieving robust output tracking and disturbance
rejection of a distributed parameter system provided that the controller stabilizes the closed-loop system.
More precisely, a stabilizing controller was shown to solve the robust output regulation problem if and only
if it incorporates an internal model of the exosystem [16].

In [16] it was shown that the robust output regulation problem can be divided into two equally interesting
and challenging parts. The first half of the problem consists of building an internal model of the exosystem
into the controller, and the second one of strongly stabilizing the closed-loop system consisting of the plant
and the controller. These two goals were formulated mathematically in [16], but the authors only solved
the first half of the robust output regulation problem. The purpose of the current paper is to complete this
study by solving the remaining half of the problem, i.e., the problem of stabilizing the closed-loop system
strongly in a situation where the reference and disturbance signals are generated using an infinite-dimensional
nondiagonal exosystem.

In addition to addressing the problem of stabilizing the closed-loop system we also present new results
concerning the infinite-dimensional block diagonal exosystem introduced in [16]. Signal generators of this
type provide a way to consider output tracking and disturbance rejection of very general polynomially grow-
ing signals. In applications the necessity of an infinite-dimensional signal generator arises from a need to
track or reject, for example, periodic signals that are not continuously differentiable. Such situations are
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often encountered in the control of robot arms and disk drive systems [29, 7, and references therein]. On
the other hand, in the same engineering applications it is also essential to be able to track and reject signals
that have polynomially increasing components. Generating such signals is not possible with the infinite-
dimensional signal generators studied earlier in the literature [11, 6, 7]. In this paper we complete the study
of the block diagonal exosystems by characterizing the classes of reference and disturbance signals they gen-
erate. The analysis also immediately yields a method for constructing an exosystem generating given signals
in the appropriate classes of functions. In particular we show that in the case of continuous periodic signals
the exosystem can be chosen in such a way that it is easy to generate signals with a predetermined level of
smoothness.

Compared to the current results in output regulation theory the main novelty in this paper is the use of state
space methods and infinite-dimensional exosystems in considering robust output tracking and disturbance
rejection of nonsmooth polynomially bounded signals. In particular, output regulation of nonsmooth periodic
signals has been studied in the frequency domain within an area called repetitive control [7, 27, 29]. The state
space approach reveals, in particular, the fact that the considered type of closed-loop stability is crucial to the
solvability of the control problem. We also see a very clear connection between the properties of the system
to be controlled and the minimal allowed level of smoothness of the exogeneous signals.

In order to solve the robust output regulation problem we generalize the observer-based controller used
in the connection of the problem for finite-dimensional and infinite-dimensional diagonal exosystems [9, 6].
We show that the parameters of the controller can be chosen in such a way that the general structures of the
operators guarantee the controller to incorporate an internal model of the infinite-dimensional exosystem. The
remaining parameters of the controller can subsequently be freely chosen in order to achieve strong stability
of the closed-loop system. In particular we show that the problem of stabilizing the closed-loop system can in
a fairly straightforward manner be reduced to stabilizing the internal model in the controller. More precisely,
this requires choosing a bounded linear operator K2 in such a way that the operator

S +B1K2 (1)

generates a strongly stable semigroup. Here S is the block diagonal system operator of the exosystem and
B1 is a rank one bounded linear operator with a specific structure. In the case where S is a diagonal operator
and the pair (S,B1) is approximately controllable, the strong stabilization of the operator (1) can be achieved
with a choice K2 = −B∗1 . However, this choice for the stabilizing feedback provides very little information
on the spectrum of the stabilized operator. In particular, the conditions for the solvability of the robust
output regulation problem require some knowledge on the behavior of the resolvent operator of the closed-
loop system. The behavior of this resolvent operator is, in turn, dependent on the behavior of the resolvent
operator of (1). To help us determine whether the controller satisfies these conditions imposed on the closed-
loop system, we use a new approach to stabilizing the internal model. In particular, we use the technique of
pole placement of an infinite spectrum [28, 8, 30, 22] to reassign the imaginary eigenvalues of the operator S.
This approach provides us very precise information on the spectrum of the stabilized operator and, even more
importantly, on the behavior of the resolvent operator R(λ, S +B1K2) on the imaginary axis.

In [16] the authors introduced a new type of exosystem by constructing a block diagonal operator consist-
ing of an infinite number of finite-dimensional Jordan blocks. In this paper we show that the signals generated
by such exosystems are in general of form

yref (t) = yn(t)tn + · · ·+ y1(t)t+ y0(t), (2)

where yj(·) are almost periodic functions for all j ∈ {1, . . . , n}. This result shows that the block diago-
nal signal generator extends both finite-dimensional exosystems and infinite-dimensional diagonal exosys-
tems [11, 6]. We also pay special attention to the case where the eigenvalues of the exosystem are of form

iωk = i
2πk

τ
, k ∈ Z (3)

for some τ > 0. We show that in this situation the functions yj(·) in (2) are continuous τ -periodic functions
for all j ∈ {1, . . . , n}. The smoothness properties of such functions are directly related to the asymptotic
behavior of their Fourier coefficients [13]. We use this theory to relate the smoothness properties of the gen-
erated reference and disturbance signals to the corresponding choices for the initial states of the exosystem.
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Our construction of the exosystem extends results in [11, 12] for polynomially increasing exogeneous signals
and corresponding block diagonal signal generators.

We show that the analysis of the classes of signals generated by the infinite-dimensional exosystem also
leads to a very concrete connection between the smoothness of the considered exogeneous signals and the
conditions for the solvability of the robust output regulation problem. Establishing this link is made possible
by the fact that the theory of robust output regulation in [16] allowed the solutions of the regulator equations
to be unbounded operators. More precisely, it was shown that there is a link between the strictness of the
conditions for the solvability of the robust output regulation problem and the choice of the initial states of
the exosystem in a scale space Wm = (D(Sm), ‖·‖m), where ‖·‖m denotes the graph norm of the operator
(I + S)m. In this paper we further show that these scale spaces are related to the smoothness properties of
the generated reference and disturbance signals. We also extend the corresponding results for scale spaces
Wα of arbitrary real orders α ≥ 0. The importance of this extension comes from the fact that it allows us to
establish sharper bounds and conditions for the solvablity of the robust output regulation problem.

The above relationship becomes even more concrete when considering controllers of a particular type. We
show that in the case of the observer-based error feedback controller studied in this paper the conditions for
the solvability of the robust regulation problem most notably involves the behavior of the transfer function
PK(λ) of the stabilized plant at the frequencies iωk of the signal generator. We show that the asymptotic
decay rate of the values PK(iωk) as |k| → ∞ is directly related to the minimal level of smoothness the
reference and disturbance signals must have in order for the conditions for the solvability of the robust output
regulation problem to be satisfied. In other words, the behavior of PK(iωk) can immediately be used to
characterize the classes of signals that can be tracked and rejected using a controller of this type.

To illustrate the applicability of our results we present a concrete example in which we design an observer-
based robust controller for a finite-dimensional system with an exosystem capable of generating a class of
infinite-dimensional linearly growing signals. We derive the expressions for all components of the controller
and determine the classes of reference and disturbance signals the controller is guaranteed to be able to
regulate. We also discuss the robustness properties of the resulting control law, as well as the effect of the
robustness of the controller to the classes of signals that can be tracked and rejected.

In the construction of the controller we restrict our attention to a situation which is a special case in
two regards. First of all, we assume our exosystem has at most a finite number of nontrivial Jordan blocks
and that all but a finite number of its eigenvalues are simple and uniformly separated. This type of signal
generator can be viewed as a composite exosystem consisting of a finite-dimensional part and an infinite-
dimensional diagonal part. Therefore, the signals we can under our assumptions consider are in general
of form (2), where y0(·) = yap(·) is in general an almost periodic function and the functions yj(·) for
j ∈ {1, . . . , n} are linear combinations of trigonometric functions. This assumption on the structure of the
signal generator is restrictive, but the generated signals still include the most important polynomially bounded
functions considered in applications. In particular, we can consider any signal of the form (2) where y0(·) is
a continuous periodic function. Indeed, in order to generate a continuous τ -periodic function it is sufficient
that the exosystem contains the simple and uniformly separated eigenvalues (iωk)k∈Z given by (3). The
assumption that the infinite part of the spectrum of S has a uniform gap is not crucial to our approach to
the stabilization of the closed-loop system. It can be replaced with the requirement that the spectrum of
S does not have any finite accumulation points, if we have an asymptotic lower bound for the distances
of the neighboring eigenvalues. However, the price of this added generality is that the conditions for the
stabilizability of the closed-loop system become more complicated.

In this paper we also only consider the single-input single-output case. This restriction is not essential to
the existence of a controller solving the robust output regulation problem. In fact, similar methods are also
applicable in the case of a finite-dimensional output space, and even for an inifinite-dimensional output space
provided that we replace the strong stability of the closed-loop system with weak stability [6, Sec. 7]. How-
ever, although the methods for these more general systems can be used to effectively stabilize the closed-loop
system, they provide little information regarding the behavior of the resulting closed-loop system relevant to
the additional conditions for the solvability of the robust output regulation problem. We restrict our attention
to the single-input single-output case, because in this situation it is possible to stabilize the closed-loop system
using a technique that subsequently allows us to derive easily verifiable sufficient conditions for solvability
of the robust output regulation problem.

The structure of the rest of the paper is as follows. In Section 2 we introduce notation and state the
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standing assumptions on the plant, the exosystem, the controller, and the closed-loop system. Section 3 is
devoted to the study of the classes of signals generated by the infinite-dimensional exosystem. In Section 4
we formulate the robust output regulation problem. The construction of an observer-based dynamic error
feedback controller solving this problem is presented in detail in Section 5. The choices for the parameters
of the controller are illustrated with an example in Section 6. Section 7 contains concluding remarks.

2 Mathematical Preliminaries
In this section we introduce the notation used in the paper and state the basic assumptions on the system,
the exosystem and the controller. The main problem of this paper, the robust output regulation problem, is
formulated in Section 4.

2.1 Notation
If X and Y are Banach spaces and A : X → Y is a linear operator, we denote byD(A),N (A) andR(A) the
domain, kernel and range of A, respectively. The space of bounded linear operators from X to Y is denoted
by L(X,Y ). If A : X → X , then σ(A), σp(A) and ρ(A) denote the spectrum, the point spectrum and the
resolvent set of A, respectively. For λ ∈ ρ(A) the resolvent operator is given by R(λ,A) = (λI −A)−1.
The dual pairing on a Banach space and the inner product on a Hilbert space are both denoted by 〈·, ·〉. If
(xk)k∈Z is a sequence of complex numbers and α > 0, we denote xk = O(|k|α) if there exist constants
M > 0 and N ∈ N such that

|xk| ≤M |k|α

for all k ∈ Z with |k| ≥ N .

2.2 The Plant and the Infinite-Dimensional Exosystem
In this paper we consider the control of a linear distributed parameter system of form

ẋ(t) = Ax(t) +Bu(t) + ws(t), x(0) = x0 ∈ X
y(t) = Cx(t) +Du(t) + wm(t)

on a Banach space X . Here x(t) ∈ X is the state of the system, u(t) ∈ U the input and y(t) ∈ Y the
output. The input space U and the output space Y are general Hilbert spaces. We assume that A generates
a strongly continuous semigroup on X and that the rest of the operators are bounded in such a way that
B ∈ L(U,X), C ∈ L(X,Y ) and D ∈ L(U, Y ). For λ ∈ ρ(A) the transfer function of the plant is given
by P (λ) = CR(λ,A)B + D ∈ L(U, Y ). When considering the stabilization of the closed-loop system in
Section 5, we only consider single-input single-output systems, i.e., we assume U = Y = C.

The considered reference signals as well as the disturbance signals to the state and the output, ws(t) and
wm(t), respectively, are assumed to be generated by an infinite-dimensional exosystem

v̇(t) = Sv(t), v(0) = v0 ∈W (4a)
ws(t) = Esv(t), (4b)
wm(t) = Emv(t), (4c)
yref (t) = Frv(t). (4d)

The operators S : D(S) ⊂ W → W , Es ∈ L(W,X), Em ∈ L(W,Y ), and Fr ∈ L(W,Y ) satisfy the
assumptions stated below. In particular, in the following we choose the system operator S to be an infinite-
dimensional block diagonal operator consisting of finite-dimensional Jordan blocks.

The state space W of the exosystem is chosen to be a separable Hilbert space with an orthonormal basis{
φlk ∈W

∣∣ k ∈ Z, l = 1, . . . , nk
}
.
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By this we mean that

W = span
{
φlk
}
kl

and 〈φlk, φmn 〉 =

{
1 k = n, l = m
0 otherwise.

The lengths nk ∈ N of the subsequences are assumed to be uniformly bounded. For a given ordered sequence
of frequencies (ωk)k∈Z ⊂ R the operators Sk ∈ L(W ) representing the finite-dimensional Jordan blocks are
defined as

Sk = iωk〈·, φ1k〉φ1k +

nk∑
l=2

〈·, φlk〉
(
iωkφ

l
k + φl−1k

)
.

The system operator S of the infinite-dimensional exosystem (4) on the space W is defined by

Sv =
∑
k∈Z

Skv, D(S) =

{
v ∈W

∣∣∣∣∣ ∑
k∈Z
‖Skv‖2 <∞

}

and the output operators Es, Em and Fr are assumed to be Hilbert–Schmidt operators, i.e. they satisfy

∑
k∈Z

nk∑
l=1

‖Esφlk‖2 <∞,
∑
k∈Z

nk∑
l=1

‖Emφlk‖2 <∞, and
∑
k∈Z

nk∑
l=1

‖Frφlk‖2 <∞.

Defining E = Es ∈ L(W,X) and F = Em−Fr ∈ L(W,Y ) we can write the system in a standard form

ẋ(t) = Ax(t) +Bu(t) + Ev(t), x(0) = x0 ∈ X
e(t) = Cx(t) +Du(t) + Fv(t)

where e(t) ∈ Y is the regulation error and v(t) ∈ W is the state of the exosystem (4). We further assume
that σ(A) ∩ σ(S) = ∅ and that the transfer function of the plant satisfies P (iωk) 6= 0 for all k ∈ Z.

The operators Sk in the definition of the infinite-dimensional exosystem satisfy

(iωkI − Sk)φ1k = 0, (Sk − iωkI)φlk = φl−1k ∀l ∈ {2, . . . , nk}

and thus they can indeed be viewed as single Jordan blocks of dimensions nk associated to eigenvalues iωk.
Since the operator S is an infinite block diagonal operator consisting of operators the Sk, it can be considered
to be a generalization of a matrix in a Jordan canonical form. It is straightforward to verify that the spectrum
of the operator S satisfies

σ(S) = σp(S) = {iωk}k∈Z,

where the line denotes the closure of the set in C. Moreover, the operator S generates a C0-group TS(t)
satisfying

TS(t)v =
∑
k∈Z

eiωkt
nk∑
l=1

〈v, φlk〉
l∑

j=1

tl−j

(l − j)!
φjk, v ∈W, t ∈ R.

This group is polynomially bounded forward and backwards in time. More precisely, for any n ∈ N such that
n ≥ nk for all k ∈ Z there exists MS ≥ 1 such that

‖TS(t)‖ ≤MS(|t|n + 1), ∀t ∈ R.

This implies that the growth bound of the C0-group is ω0(TS(t)) = 0. For k ∈ Z we define

dk = max{nl | l ∈ Z, ωl = ωk },
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which corresponds to the dimension of the largest Jordan block associated to an eigenvalue iωk ∈ σp(S). For
k ∈ Z we denote by Pk the orthogonal projection

Pk =

nk∑
l=1

〈·, φlk〉φlk

onto the finite-dimensional subspace span{φlk}
nk
l=1 of W . With this notation the domain of the operator S

satisfies

D(S) =
{
v ∈W

∣∣ ∑
k∈Z

ω2
k‖Pkv‖2 <∞

}
=
{
v ∈W

∣∣ ∑
k∈Z

(1 + ω2
k)‖Pkv‖2 <∞

}
.

To analyze the classes of signals generated by the exosystem we define a set of scale spaces Wα ⊂ W
related to the system operator S of the exosystem. They will be used in the classification of the generated
signals based on which spacesWα the corresponding initial states belong to. In the next section we will show
that this kind of classification has a close relationship to the smoothness properties of the generated signals.

Definition 1. For α ≥ 0 we denote by (Wα, ‖·‖α) the space

Wα =
{
v ∈W

∣∣ ∑
k∈Z

(1 + ω2
k)α‖Pkv‖2 <∞

}
with norm ‖·‖α defined by

‖v‖2α =
∑
k∈Z

(1 + ω2
k)α‖Pkv‖2, v ∈Wα.

�

For all α ≥ 0 the spaces (Wα, ‖·‖α) are Hilbert spaces, and for 0 ≤ β ≤ α we have Wα ⊂Wβ and

‖v‖β ≤ ‖v‖α ∀v ∈Wα

For nonnegative integer values m ∈ N0 the spaces Wm coincide with the domains D((S + I)m) and the
norms ‖·‖m are equivalent to the norms defined by the mappings v 7→ ‖(S + I)mv‖ on Wm. It can also
be verified that the spaces Wα are invariant under the group TS(t), the restrictions TS(t)|Wα

are strongly
continuous groups on Wα and the generators of these groups are S|Wα

: D(S|Wα
) ⊂ Wα → Wα with

domains D(S|Wα) = Wα+1.

2.3 The Controller and the Closed-Loop System
We consider the dynamic error feedback controller

ż(t) = G1z(t) + G2e(t), z(0) = z0 ∈ Z
u(t) = Kz(t)

on a Banach-space Z. Here z(t) ∈ Z is the state of the controller, G1 : D(G1) ⊂ Z → Z generates a
C0-semigroup on Z, G2 ∈ L(Y,Z) and K ∈ L(Z,U). The closed-loop system consisting of the plant and
the controller on Xe = X × Z with state xe(t) = (x(t), z(t))T is given by

ẋe(t) = Aexe(t) +Bev(t), xe(0) = xe0 = (x0, z0)T

e(t) = Cexe(t) +Dev(t),

where Ce = (C DK), De = F ,

Ae =

(
A BK
G2C G1 + G2DK

)
and Be =

(
E
G2F

)
.
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The operator Ae : D(A) × D(G1) ⊂ Xe → Xe generates a C0-semigroup TAe(t) on Xe. Furthermore, the
operator Be satisfies

∑
k∈Z

nk∑
l=1

‖Beφlk‖2 =
∑
k∈Z

nk∑
l=1

(
‖Esφlk‖+ ‖G2(Em − Fr)φlk‖

)2
=
∑
k∈Z

nk∑
l=1

2
(
‖Esφlk‖2 + 2‖G2‖2(‖Emφlk‖2 + ‖Frφlk‖2)

)
<∞. (6)

Before turning to consider the robust output regulation problem, we will analyze in detail the classes of
signals generated by our infinite-dimensional exosystem.

3 The Classes of Reference and Disturbance Signals
Using the formal definition and the properties of the infinite-dimensional exosystem presented in the previous
section we can study the generated reference and disturbance. To this end we consider the generation of
signals yref (·) : R→ Y , where Y is a Banach space. We will show that the produced signals are of form

yref (t) = yn(t)tn + · · ·+ y1(t)t+ y0(t), (7)

where the coefficient functions yj(·) are almost periodic functions [1, Def. 4.5.6]. Such bounded and uni-
formly continuous functions can be characterized by the fact that they can be uniformly approximated by
trigonometric polynomials, i.e., linear combinations of functions of form t 7→ eiωty, where ω ∈ R and
y ∈ Y .

In the next section we will further concentrate on the case where these coefficient functions are periodic
with the same period length. For such reference signals we will in particular study the relationship between
the smoothness of the coefficient functions yj(·) and the choice of the initial state v0 from the space Wα for
some α ≥ 0.

Theorem 2. The signals generated by the infinite-dimensional exosystem are of form (7) where yj(·) : R→
Y are almost periodic functions for all j ∈ {0, . . . , n}, and where n = maxk∈Z nk − 1.

Proof. For all initial states v0 ∈W the state of the exosystem is given by v(t) = TS(t)v0 and thus

yref (t) = Fv(t) =
∑
k∈Z

eiωkt
nk∑
l=1

〈v0, φlk〉
l∑

j=1

tl−j

(l − j)!
Fφjk =

∑
k∈Z

eiωkt
nk∑
l=1

〈v0, φlk〉
l−1∑
j=0

tj

j!
Fφl−jk

=
∑
k∈Z

eiωkt
nk−1∑
j=0

tj · 1

j!

nk∑
l=j+1

〈v0, φlk〉Fφ
l−j
k =

∑
k∈Z

eiωkt
nk−1∑
j=0

ajkt
j ,

where we have denoted

ajk =
1

j!

nk∑
l=j+1

〈v0, φlk〉Fφ
l−j
k ∈ Y. (8)

Let n = maxk∈Z nk − 1 and define ajk = 0 ∈ Y for all k ∈ Z and j ∈ {nk + 1, . . . , n}. Then for any
j ∈ {0, . . . , n} we have

j! ·
∑
k∈Z
‖ajk‖ =

∑
k∈Z
‖

nk∑
l=j+1

〈v0, φlk〉Fφ
l−j
k ‖ ≤

∑
k∈Z

nk∑
l=j+1

|〈v0, φlk〉| · ‖Fφ
l−j
k ‖

≤
∑
k∈Z

 nk∑
l=j+1

|〈v0, φlk〉|2
 1

2 (nk−j∑
l=1

‖Fφlk‖2
) 1

2

≤

(∑
k∈Z

nk∑
l=1

|〈v0, φlk〉|2
) 1

2
(∑
k∈Z

nk∑
l=1

‖Fφlk‖2
) 1

2

<∞
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and thus (ajk)k∈Z ∈ `1(Y ) for all j ∈ {0, . . . , n}. This implies that

yref (t) =
∑
k∈Z

eiωkt
nk−1∑
j=0

ajkt
j =

∑
k∈Z

eiωkt
n∑
j=0

ajkt
j =

n∑
j=0

tj
∑
k∈Z

ajke
iωkt =

n∑
j=0

tjyj(t),

where we have in turn denoted

yj(t) =
∑
k∈Z

ajke
iωkt (9)

for all j ∈ {0, . . . , n}. Changing the order or summation is allowed since the series in question are absolutely
convergent. To prove the theorem it is now sufficient to show that the functions yj(·) are almost periodic.
This follows directly from the fact that if j ∈ {0, . . . , n} and if N > 0, then the functions

t 7→
N∑

k=−N

ajke
iωkt

are trigonometric polynomials and (ajk)k∈Z ∈ `1(Y ) implies∥∥∥∥∥yj(t)−
N∑

k=−N

ajke
iωkt

∥∥∥∥∥ =

∥∥∥∥∥∥
∑
|k|>N

ajke
iωkt

∥∥∥∥∥∥ ≤
∑
|k|>N

‖ajk‖ −→ 0

uniformly in t ∈ R as N →∞.

The proof of Theorem 2 also presents a method for constructing an exosystem to generate a given signal
of form (7), where the coefficient functions can be written as (9). This can be done in a very straightforward
manner by choosing the output operator F and the initial state v0 of the exosystem in such a way that the
equations (8) are satisfied for all k ∈ Z. The next lemma presents suitable choices for the parameters.

Lemma 3. Let (ωk)k∈Z ⊂ R and assume that for j ∈ {0, . . . , n} the coefficient functions yj(·) can be
written in the form (9) with (ajk)k∈Z ∈ `1(Y ). For k ∈ Z define

ck =

 max

{√
‖ajk‖

}n
j=0

ajk 6= 0 for some j = 0, . . . , n

1 otherwise.

The signal (7) can be generated by an infinite-dimensional exosystem with nk = n + 1 for all k ∈ Z and
F ∈ L(W,Y ) defined by

Fφ1k =
1

ck
(nk − 1)! ank−1,k,

Fφlk =
1

ck
((nk − l)! ank−l,k − (nk − l + 1)! ank−l+1,k) , l ∈ {2, . . . , nk}.

The signal (7) is generated with an initial state v0 ∈W of the exosystem satisfying

〈v0, φlk〉 = max

{√
‖ajk‖

}n
j=0

for all k ∈ Z and l ∈ {1, . . . , nk}.

Proof. A straightforward computation shows that these choices of F and v0 satisfy equations (8) for all
k ∈ Z. It is thus sufficient to show that v0 ∈W and∑

k∈Z

nk∑
l=1

‖Fφlk‖2 <∞.
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For the initial state we have ∑
k∈Z
‖Pkv0‖2 = (n+ 1)

∑
k∈Z

max {‖ajk‖}nj=0 <∞

since (ajk)k∈Z ∈ `1(Y ) for all j ∈ {0, . . . , n}, and thus v0 ∈ W . On the other hand, the output operator F
satisfies

‖Fφ1k‖ =
n!

ck
‖ank‖ ≤ n! max

{√
‖ajk‖

}n
j=0

‖Fφlk‖ ≤
n!

ck
(‖an+1−l,k‖+ ‖an+2−l,k‖) ≤ 2n! max

{√
‖ajk‖

}n
j=0

and thus ∑
k∈Z

nk∑
l=1

‖Fφlk‖2 ≤ 4(n+ 1)(n!)2
∑
k∈Z

max {‖ajk‖}nj=0 <∞

again since (ajk)k∈Z ∈ `1(Y ) for all j ∈ {0, . . . , n}. This concludes the proof.

The formula in (8) shows us that the coefficients ajk of the functions yj(·) are determined equally by
both the output operator F of the exosystem and the choice v0 of the initial state. Because of this it is evident
that different initial states of the same exosystem can generate very different types of signals. We will see an
illustrative example of this property of the infinite-dimensional exosystem in the next section.

3.1 Signals in the Sobolev Spaces of Periodic Functions
We conclude the analysis of the infinite-dimensional signal generator by considering signals of form (7)
where the coefficient functions yj(·) are periodic functions with the same period τ > 0. To this end we
assume that the frequencies of the exosystem are given by

(ωk)k∈Z =

(
2πk

τ

)
k∈Z

.

It is well-known that for periodic functions the smoothness properties can be characterized via the asymptotic
behavior of their Fourier coefficients. We will now show that taking an advantage of this property we can
easily relate the smoothness properties of the generated signals to the choices of the initial states of the
exosystem in the spaces Wα. The importance of this result will become clear later in the paper when we
further relate the choices of the initial states in the spaces Wα to the strictness of the conditions for the
solvability of the robust output regulation problem for the generated signals.

To classify the generated signals we use the Sobolev spaces of periodic functions [13, Sec. 3.6] defined
below. In the definition the values f̂(k) ∈ Y denote the Fourier coefficients of a continuous τ -periodic
function f(·), i.e.,

f(t) =
∑
k∈Z

f̂(k)eiωkt, ∀t ∈ R.

Definition 4 (Sobolev spaces of periodic functions). For α > 1
2 the Hilbert spaces

Hα
per(0, τ) =

{
f ∈ Cτ (R, Y )

∣∣ ∑
k∈Z

(1 + ω2
k)α‖f̂(k)‖2 <∞

}
with norms defined by

‖f‖2per,α =
1

τ

∑
k∈Z

(1 + ω2
k)α‖f̂(k)‖2, f ∈ Hα

per(0, τ)

are called the Sobolev spaces of periodic functions. �
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The order α > 1
2 of the space Hα

per(0, τ) is closely related to the smoothness properties of its functions.
For example, if Y = C, then for all m ∈ N the space Hm

per(0, τ) contains precisely the τ -periodic functions
whose distributional derivatives of orders up to m are in L2(0, τ). In particular this implies that if f ∈
Cτ (R, Y ) is such that the derivatives f (j) exist and are absolutely continuous on [0, τ ] for all j ∈ {0, . . . ,m−
1}, then f ∈ Hm

per(0, τ).
The following theorem shows that for any infinite-dimensional signal generator the choice of the initial

state of the exosystem in a space Wα directly translates to the smoothness of the generated signal.

Theorem 5. If v0 ∈ Wα for some α > 1
2 , then the coefficient functions of the signal generated by the

infinite-dimensional exosystem satisfy yj(·) ∈ Hα
per(0, τ).

Proof. Let n = maxk∈Z nk − 1 and let j ∈ {0, . . . , n} be arbitrary. From the proof of Theorem 2 we have
that (ajk)k∈Z ∈ `1(Y ). Together with the formula in (9) this implies that (ajk)k∈Z are the Fourier coefficients
of the function yj(·). Using (8) we can also see that

‖ajk‖ ≤
1

j!

nk∑
l=j+1

|〈v0, φlk〉| · ‖Fφ
l−j
k ‖ ≤ ‖F‖

nk∑
l=1

|〈v0, φlk〉| ≤
√
n‖F‖

(
nk∑
l=1

|〈v0, φlk〉|2
) 1

2

=
√
n‖F‖ · ‖Pkv0‖

for all k ∈ Z. The fact that v0 ∈Wα now implies∑
k∈Z

(1 + ω2
k)α‖ajk‖2 ≤ n‖F‖2 ·

∑
k∈Z

(1 + ω2
k)α‖Pkv0‖2 <∞,

and thus yj(·) ∈ Hα
per(0, τ). Since j ∈ {0, . . . , n} was arbitrary, this concludes the proof.

The next theorem states a converse result which shows that the signal generator can be chosen in such a
way that the smoothness of the reference signal is also translated to the property v0 ∈Wα of the correspond-
ing initial state.

Theorem 6. Let β > 1
2 and assume yj(·) ∈ Hβ

per(0, τ) for all j ∈ {0, . . . , n}. For any 0 ≤ α < β − 1
2 the

infinite-dimensional exosystem can be chosen in such a way that the reference signal (7) is generated with a
choice v0 ∈Wα of the initial state.

Proof. The functions yj(·) are of form

yj(t) =
∑
k∈Z

ajke
iωkt, t ∈ R.

Let 0 ≤ α < β − 1
2 , define

ck =

{
(1 + ω2

k)
β−α

2 max {‖ajk‖}nj=0 ajk 6= 0 for some j ∈ {0, . . . , n}
1 otherwise

and choose W and Fφlk as in Lemma 3. A direct computation shows that the equations (8) are satisfied if we
choose the initial state v0 of the exosystem in such a way that

〈v0, φlk〉 = (1 + ω2
k)

β−α
2 max {‖ajk‖}nj=0.

It remains to show that v0 ∈Wα and that

∑
k∈Z

nk∑
l=1

‖Fφlk‖2 <∞.
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As in the proof of Lemma 3 it is easy to see that we have

‖Fφlk‖ ≤
2n!

ck
max {‖ajk‖}nj=0 ≤ 2n!(1 + ω2

k)
α−β

2 <∞

and thus ∑
k∈Z

nk∑
l=1

‖Fφlk‖2 ≤ 4(n+ 1)(n!)2
∑
k∈Z

(1 + ω2
k)α−β <∞

since ωk = 2πk
τ and α− β < − 1

2 . Furthermore, for v0 we have that∑
k∈Z

(1 + ω2
k)α‖Pkv0‖2 = (n+ 1)

∑
k∈Z

(1 + ω2
k)β max {‖ajk‖2}nj=0 <∞,

since yj(·) ∈ Hβ
per(0, τ). This concludes the proof.

As we mentioned in the end of the previous section, the choice of the initial state of the infinite-dimensional
signal generator can have a radical effect on the generated signal. The following example illustrates this prop-
erty of the infinite-dimensional signal generators.

Example 7. Let Y = C and ωk = 2πk
τ and choose the parameters of the infinite-dimensional exosystem in

such a way that nk = 1 and

Fφk =
1

|k|

for all k ∈ Z. Since the signals generated by the exosystem satisfy ŷref (k) = 〈v0, φk〉Fφk, we can see that
any given signal yref (·) ∈ H1

per(0, τ) can be generated with this particular exosystem by choosing v0 ∈ W
in such a way that

〈v0, φk〉 = |k|ak.

We indeed have v0 ∈W , since∑
k∈Z
|〈v0, φk〉|2 =

∑
k∈Z

1 + ω2
k

1 + ω2
k

· k2|ak|2 ≤ sup
k∈Z

k2

1 + ω2
k

∑
k∈Z

(1 + ω2
k)|ak|2 <∞.

Thus this exosystem is capable of generating any reference signal from H1
per(0, τ).

This reasoning can be further generalized to show that if yref (·) ∈ Hγ
per(0, τ) for γ ≥ 1, then it can be

generated using this exosystem with a choice v0 ∈ Wγ−1 of the initial state. Indeed, if we choose v0 as
above, then v0 ∈Wγ−1 follows directly from

∑
k∈Z

(1 + ω2
k)γ−1|〈v0, φk〉|2 =

∑
k∈Z

(
1 + ω2

k

)γ
1 + ω2

k

· k2|ak|2 ≤ sup
k∈Z

k2

1 + (2πk/τ)2

∑
k∈Z

(1 + ω2
k)γ |ak|2 <∞.

�

4 The Robust Output Regulation Problem
In this section we outline the main control problem studied in the paper and briefly recall some results con-
cerning the solvability of this problem. On a general level we are interested in choosing the parameters of the
error feedback controller in such a way that the following are satisfied.

• The closed-loop system is strongly stable.
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• The regulation error decays to zero asymptotically.

• If the parameters of the plant are perturbed in such a way that the closed-loop stability is preserved,
then the regulation error goes to zero asymptotically.

It is well-known that the solvability of the first two parts of this problem is connected to the solvability of
the so-called regulator equations [4, 2, 6]

ΣS = AeΣ +Be (10a)
0 = CeΣ +De. (10b)

In particular, if the closed-loop system is stable and the Sylvester equation (10a) has a bounded solution,
then the regulation error decays asymptotically if and only if the regulation constraint (10b) is satisfied. The
reason behind this connection is that if (10a) has a solution Σ, then for any initial states xe0 and v0 of the
closed-loop system and the exosystem, respectively, the regulation error can be written in the form

e(t) = CeTAe(t)(xe0 − Σv0) + (CeΣ +De)v(t). (11)

If the semigroup TAe(t) related to the closed-loop system is strongly stable (i.e. if TAe(t)xe → 0 as t→∞
for all xe ∈ Xe), then the first part of the above expression decays to zero. Furthermore, the second part of
the regulation error will be zero whenever the regulation constraint (10b) is satisfied.

In [16] it was shown that the conditions for the solvability of the output regulation problem can be made
less strict if we allow the solution of the Sylvester equation (10a) to be an operator belonging to L(Wα, Xe)
for some α > 0. It was further shown that if the Sylvester equation has a solution Σ ∈ L(Wα, Xe), we can
consider tracking and rejection of exogeneous signals corresponding to the initial states in the scale spaceWα

of the infinite-dimensional exosystem. In the light of Theorems 5 and 6 we can immediately see that in the
case of periodic signals this establishes a link between the strictness of the requirement for the solvability
of the Sylvester equation (10a) and the level of smoothness of the reference and disturbance signals. In this
paper we simplify the associated conditions by considering a slightly relaxed sufficient condition (12) for the
solvability of the Sylvester equation equation (10a).

Theorem 8. Let α ≥ 0. Assume (G1,G2,K) are such that Ae generates a strongly stable C0-semigroup on
Xe, σ(Ae) ∩ σp(S) = ∅, and

sup
k∈Z

(1 + ω2
k)−α‖R(iωk, Ae)‖ <∞. (12)

Then the Sylvester equation (10a) considered on Wα+1 has a unique solution Σ ∈ L(Wα, Xe) and the
following are equivalent.

1. The regulation error decays to zero asymptotically for all initial states xe0 ∈ Xe and v0 ∈ Wα of the
closed-loop system and the exosystem, respectively.

2. The operator Σ satisfies the regulation constraint (10b).

Proof. The conclusions of the theorem follow from [16, Thm. 3.1] once we verify that [16, Ass. 1] is satisfied
for m = α. In [16] the scale spaces Wα were only defined for α = m ∈ N0. However, the choice of the
space only affects the conditions for the operator Σ solving the Sylvester equation (10a) to be in L(Wα, Xe),
and the proofs in [16] can be used as they are once we replace m ∈ N0 with α ≥ 0.

Since σ(Ae) ∩ σp(S) = ∅, we have R(iωkI − Ae)l = Xe for all l ∈ {1, . . . , nk}. Choose n ∈ N such
that nk ≤ n for all k ∈ Z. Then for any x∗e ∈ X∗e with ‖x∗e‖ ≤ 1 we have∣∣∣∣∣∣

l∑
j=1

(−1)l−j〈R(iωk, Ae)
l+1−jBeφ

j
k, x
∗
e〉

∣∣∣∣∣∣ ≤
l∑

j=1

‖R(iωk, Ae)‖l+1−j‖Beφjk‖ · ‖x
∗
e‖

≤ max{‖R(iωk, Ae)‖, ‖R(iωk, Ae)‖nk} ·
nk∑
j=1

‖Beφjk‖

≤ max{1, ‖R(iωk, Ae)‖nk} ·
√
nk ·

 nk∑
j=1

‖Beφjk‖
2

 1
2
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for all k ∈ Z. Condition (12) implies that there exists M ≥ 0 such that

max{1, ‖R(iωk, Ae)‖2nk}
(1 + ω2

k)α
≤M

for all k ∈ Z. Since by (6) the operator Be satisfies (Beφ
l
k)kl ∈ `2(Xe), we have

sup
‖x∗
e‖≤1

∑
k∈Z

1

(1 + ω2
k)α

nk∑
l=1

∣∣∣∣∣∣
l∑

j=1

(−1)l−j〈R(iωk, Ae)
l+1−jBeφ

j
k, x
∗
e〉

∣∣∣∣∣∣
2

≤
∑
k∈Z

max{1, ‖R(iωk, Ae)‖2nk}
(1 + ω2

k)α

nk∑
l=1

nk

nk∑
j=1

‖Beφjk‖
2 ≤ n2M

∑
k∈Z

nk∑
j=1

‖Beφjk‖
2 <∞.

This concludes the proof.

If we use the relaxed conditions for the solvability of the Sylvester equation (10a) presented in the above
theorem, we can state the robust output regulation problem mathematically in the following way.

The Robust Output Regulation Problem on Wα. Let α ≥ 0. Find (G1,G2,K) such that the following are
satisfied:

• The closed-loop system operatorAe generates a strongly stableC0-semigroup onXe, we have σ(Ae)∩
σp(S) = ∅, and

sup
k∈Z

(1 + ω2
k)−α‖R(iωk, Ae)‖ <∞. (13)

• For all initial states v0 ∈ Wα and xe0 ∈ Xe the regulation error goes to zero asymptotically, i.e.,
limt→∞ e(t) = 0.

• If the parameters (A,B,C,D,E, F ) are perturbed to (A′, B′, C ′, D′, E′, F ′) in such a way that the
new closed-loop system (A′e, B

′
e, C

′
e, D

′
e) is strongly stable and it satisfies σ(A′e) ∩ σp(S) = ∅,

and (13), then limt→∞ e(t) = 0 for all initial states v0 ∈Wα and xe0 ∈ Xe.

�

The robust output regulation problem is formulated in such a way that we only consider perturbations
under which the stability of the closed-loop system is preserved. The main reason for studying this type of
’conditional’ robustness is that the problem of determining perturbations preserving the strong stability of
a semigroup is a difficult and largely open problem. In the special case where the semigroup is generated
by a Riesz-spectral operator some classes of finite-rank perturbations preserving the strong and polynomial
stability types of the semigroup have been presented in [17].

Presenting a solution to the above control problem is the main topic of the rest of this paper. The results
presented in Sections 4 and 5 of [16] imply that in order to solve the robust output regulation problem the
dynamic error feedback controller must incorporate an internal model of the infinite-dimensional exosys-
tem (4). In particular, for this it is sufficient to choose the parameters (G1,G2,K) in such a way that the
following G-conditions [16, Def. 5.1] are satisfied.

Definition 9 (The G-conditions). A controller (G1,G2,K) is said to satisfy the G-conditions related to the
infinite-dimensional exosystem in Section 2.2 if

R(iωkI − G1) ∩R(G2) = {0} ∀k ∈ Z, (14a)
N (G2) = {0}, (14b)

and
N (iωkI − G1)dk−1 ⊂ R(iωkI − G1) ∀k ∈ Z. (14c)

�

Roughly stated, a controller incorporating an internal model of the exosystem solves the robust output
regulation problem if it also stabilizes the closed-loop system. In the following section we outline a procedure
for choosing the controller parameters in such a way that these goals are achieved.
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5 Controller Design for Robust Output Regulation
In this section we consider designing an error feedback controller to solve the robust output regulation prob-
lem formulated in the previous section. The results presented in [16] show us that it suffices to choose a
controller which

1. satisfies the G-conditions,

2. strongly stabilizes the closed-loop system,

3. satisfies conditions of Theorem 8 for α.

We consider single-input single-output systems, i.e. U = Y = C, and construct a controller in the case
where the system operator S of the exosystem has at most a finite number of nontrivial Jordan blocks and
the asymptotic part of its spectrum consists of simple and uniformly separated eigenvalues. In particular the
assumptions on the exosystem allow tracking and rejection of continuous τ -periodic functions.

Assumption 10. Assume the following are satisfied.

1. All but a finite number of the eigenvalues σ(S) = {iωk}k∈Z of S are simple and have a uniform gap,
i.e., there exists N ∈ N such that

inf
k 6=l
|ωk − ωl| > 0,

where |k|, |l| ≥ N .

2. The pair (A,B) is exponentially stabilizable and the pair (C,A) exponentially detectable.

Unfortunately, these standing assumptions do not yet guarantee the solvability of the robust output reg-
ulation problem. In particular, in order to stabilize the internal model of the exosystem in the controller, we
need conditions not only on the structure of the controller, but also on the choices of its individual parameters.
These additional assumptions are stated in Theorems 13 and 15.

In the course of this section we will also very clearly see that in general the best we can hope for is the
strong stability of the closed-loop system. The reason for this is that internal model containing the copy of
exosystem in the controller must be stabilized with a bounded feedback. If the exosystem has an infinite
number of eigenvalues on the imaginary axis, then the exponential stabilization of the closed-loop system is
in general impossible even if these eigenvalues are all simple [15, Cor. 3.58].

5.1 An Observer Based Controller Satisfying the G-Conditions
In this section we introduce the general structure of the feedback controller we use to solve the robust output
regulation problem. We show that the forms of the parameters guarantee that the controller satisfies the G-
conditions in Definition 9. The remaining parameters of the controller are fixed in Sections 5.2 and 5.3 to
stabilize the closed-loop system and ensure that the conditions of Theorem 8 are satisfied.

The structure of our observer-based feedback controller is specified below.

Definition 11. The parameters of the error feedback controller (G1,G2,K) on the space Z = X ×W are
chosen to be of form

G1 =

(
A+BK1 + L(C +DK1) (B + LD)K2

0 S

)
, G2 =

(
−L
G2

)
, K =

(
K1 K2

)
,

where G2 = g2 ∈ W is such that 〈g2, φnkk 〉 6= 0 for all k ∈ Z, and where K1 ∈ L(X,C), K2 ∈ L(W,C),
and L ∈ L(C, X). �
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The copy of the operator S in G1 is loosely called the internal model of the exosystem in the controller.
As stated by the internal model principle studied in [16], the dimension of the output space determines the
number of copies of the dynamics of the signal generator the controller must contain in order for it to satisfy
the G-conditions. We are only considering systems with a single output, and because of this one copy of the
operator S is sufficient. In the case of a p-dimensional output space we would have to replace the operator S
in G1 with an operator G1 copying the dynamics of the exosystem p times [6].

We will now show that if the operators K1, K2 and L are chosen in such a way that the spectra of the
closed-loop system and the exosystem are disjoint, then the controller satisfies the G-conditions in Defini-
tion 9. Using the results presented in [16] we can then immediately conclude that with these choices of
parameters the controller solves the robust output regulation problem if the closed-loop system is stabilized
in such a way that σ(Ae) ∩ σ(S) = ∅ and the condition (13) is satisfied. The problem of choosing the
remaining operators to strongly stabilize the closed-loop system is the topic of the next two sections.

Theorem 12. If σ(Ae) ∩ σ(S) = ∅, the controller (G1,G2,K) satisfies the G-conditions.

Proof. Since g2 6= 0 we have that G2y 6= 0 for all y ∈ C and thus N (G2) = {0}.
Let k ∈ Z and assume (x, v)T ∈ R(iωkI − G1) ∩ R(G2). Definition 11 then implies that there exist

x1 ∈ D(A), v1 ∈ D(S) and y ∈ C such that(
x
v

)
=

(
iωkI −A−BK1 − L(C +DK1) −(B + LD)K2

0 iωkI − S

)(
x1
v1

)
=

(
−L
G2

)
y.

The second line of this equation shows that (iωkI − S)v1 = G2y, and using the structure of the operator S
further implies

〈g2, φnkk 〉y = 〈G2y, φ
nk
k 〉 = 〈(iωkI − S)v1, φ

nk
k 〉 = (iωk − iωk)〈v1, φnkk 〉 = 0.

Since 〈g2, φnkk 〉 6= 0 by definition, we must have y = 0. This also concludes (x, v)T = G2y = 0, and thus
R(iωkI − G1) ∩R(G2) = {0}.

Let k ∈ Z be such that nk = dk. Let (x, v)T ∈ N (iωkI − G1)dk−1. The triangular structure of the
operator G1 clearly also implies v ∈ N (iωkI − S)dk−1. Since σ(Ae) ∩ σ(S) = ∅, we have from [16, Lem.
5.7] thatR(iωkI − G1) +R(G2) = Z and thus there exist x1 ∈ D(A), v1 ∈ D(S), and y ∈ C such that(

x
v

)
=

(
iωkI −A−BK1 − L(C +DK1) −(B + LD)K2

0 iωkI − S

)(
x1
v1

)
+

(
−L
G2

)
y.

The second line of this equation further implies v = (iωkI − S)v1 + G2y. The structure of the operator Sk
implies

(iωkI − Sk) = −
dk∑
l=2

〈·, φlk〉φl−1k ,

(iωkI − Sk)2 =

dk∑
j=2

〈
dk∑
l=2

〈·, φlk〉φl−1k , φjk〉φ
j−1
k =

dk∑
l=3

〈·, φlk〉φl−2k

...

(iωkI − Sk)dk−1 = (−1)dk−1〈·, φdkk 〉φ
1
k,

and finally (iωkI − Sk)dk = 0. Since we have by assumption that v ∈ N (iωkI − S)dk−1, the properties of
the projection Pk can be used to further show that

0 = Pk(iωkI − S)dk−1v = (iωkI − Sk)dk−1v

= (iωkI − Sk)dk−1 ((iωkI − S)v1 +G2y)

= (iωkI − Sk)dkv1 + (iωkI − Sk)dk−1G2y = (−1)dk−1y〈g2, φdkk 〉φ
1
k.
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Since 〈g2, φdkk 〉 6= 0, we must have y = 0. This immediately implies(
x
v

)
= (iωkI − G1)

(
x1
v1

)
∈ R(iωkI − G1),

and thus N (iωkI − G1)dk−1 ⊂ R(iωkI − G1). This concludes that the controller satisfies the G-condi-
tions.

5.2 Stabilization of the Closed-Loop System
We now turn to the problem of choosing the parameters K1,K2 and L of the observer-based controller in
Definition 11 in such a way that the closed-loop is strongly stable and σ(Ae)∩σ(S) = ∅. We will first show
that the problem can be reduced to the feedback stabilization of the internal model, which is then considered
separately in Section 5.3. The main result of this section is presented in the next theorem, which also lists the
appropriate choices for the parameters of the controller.

Theorem 13. ChooseK11 ∈ L(X,C) and L ∈ L(C, X) such thatA+BK11 andA+LC are exponentially
stable. Then the Sylvester equation

SHe1 = He1(A+BK11) +G2(C +DK11) (15)

on D(A) has a unique solution He1 ∈ L(X,W ) satisfying He1(D(A)) ⊂ D(S).
Denote B1 = He1B +G2D and assume K2 ∈ L(W,C) can be chosen in such a way that the semigroup

generated by the operator S +B1K2 is strongly stable and σ(S +B1K2) ∩ σ(S) = ∅. Then for the choice
K1 = K11 +K2He1 the closed-loop system is strongly stable and σ(Ae) ∩ σ(S) = ∅.

We will first consider the solvability of the Sylvester equation in the theorem. We will also need a similar
result later in Section 5.3. For this reason, the following lemma is presented for more general operators Ã
and G̃ in place of A+BK11 and G2(C +DK11), respectively.

Lemma 14. Assume that Ã : D(Ã) ⊂ X̃ → X̃ generates an exponentially stable semigroup on a Banach
space X̃ and that G̃ ∈ L(X̃,W ). Then the Sylvester equation SH = HÃ + G̃ has a unique solution
H ∈ L(X̃,W ) satisfying H(D(Ã)) ⊂ D(S). The operator H is given by

H =
(
. . . , HT

−1, H
T
0 , H

T
1 , . . .

)T
, Hk =

nk∑
l=1

(−1)l−1J l−1nk
PkG̃R(iωk, Ã)l,

where Jnk ∈ L(span{φlk}
nk
l=1) is an operator corresponding to a single nk × nk Jordan block with eigen-

value 0.

Proof. Since Ã generates an exponentially stable semigroup and since the growth bound of the semigroup
generated by −S polynomially bounded, we have from [19] that the Sylvester equation has a unique solution
H ∈ L(X̃,W ) andH(D(Ã)) ⊂ D(S). It remains to show that the given operatorH is such thatH(D(Ã)) ⊂
D(S) and that it satisfies the Sylvester equation.

It is easy to see that H ∈ L(X̃,W ). We will now show that if we denote Hk = PkH , then for all k ∈ Z
the operator H satisfies

SkHk = HkÃ+ G̃k (16)

To this end, let k ∈ Z and x ∈ D(Ã). Since Sk = iωkPk + Jnk , R(iωk, Ã)Ãx = −x+ iωkR(iωk, Ã)x, and
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since Jnknk = 0, a straightforward computation shows

SkHkx−HkÃx =

nk∑
l=1

(−1)l−1SkJ
l−1
nk

PkG̃R(iωk, Ã)lx−
nk∑
l=1

(−1)l−1J l−1nk
PkG̃R(iωk, Ã)lÃx

=

nk∑
l=1

(−1)l−1(iωkJ
l−1
nk

+ J lnk)PkG̃R(iωk, Ã)lx

−
nk∑
l=1

(−1)l−1J l−1nk
PkG̃

(
−R(iωk, Ã)l−1 + iωkR(iωk, Ã)l

)
x

=

nk−1∑
l=1

(−1)l−1J lnkPkG̃R(iωk, Ã)lx+

nk∑
l=1

(−1)l−1J l−1nk
PkG̃R(iωk, Ã)l−1x = PkG̃x.

This concludes that the given operator H satisfies (16) for all k ∈ Z.
If x ∈ D(Ã), then we can use (16) to show that∑
k∈Z
‖SkHx‖2 =

∑
k∈Z
‖SkHkx‖2 =

∑
k∈Z
‖HkÃx+ PkG̃x‖2 ≤ 2

∑
k∈Z
‖PkHÃx‖2 + 2

∑
k∈Z
‖PkG̃x‖2 <∞

since HÃx ∈ W and G̃x ∈ W . By definition this means that Hx ∈ D(S). Since x ∈ D(Ã) was arbitrary,
this concludes H(D(Ã)) ⊂ D(S).

Finally, the equations (16) and H(D(Ã)) ⊂ D(S) together with the properties of the operator S imply
that for all x ∈ D(Ã) we have

SHx =
∑
k∈Z

SkPkHx =
∑
k∈Z

(
PkHÃx+ PkG̃x

)
= HÃx+ G̃x.

This concludes the proof.

We can now complete the proof of Theorem 13 by showing that if the parameters of the controller are
chosen as suggested, then the closed-loop system is strongly stable and σ(Ae) ∩ σ(S) = ∅.

Proof of Theorem 13. The solvability of the Sylvester equation in the theorem follows directly from Lemma 14.
If the feedback controller has the structure described in Definition 11, the system operator of the closed-

loop system is given by

Ae =

(
A BK
G2C G1 + G2DK

)
=

 A BK1 BK2

−LC A+BK1 + LC BK2

G2C G2DK1 S +G2DK2

 .

If we choose a similarity transform Qe ∈ L(X ×X ×W,X ×W ×X) in such a way that

Qe =

 I 0 0
0 0 I
−I I 0

 and Q−1e =

I 0 0
I 0 I
0 I 0

 ,

we can then define an operator Ãe on the space X ×W ×X by

Ãe = QeAeQ
−1
e =

 A+BK1 BK2 BK1

G2(C +DK1) S +G2DK2 G2DK1

0 0 A+ LC

 .

It is well-known that Ãe generates a semigroup, and that this semigroup is strongly stable if and only if the
semigroup Te(t) generated by Ae is. The triangular structure of Ãe further implies that since A + LC is
exponentially stable, this operator generates a strongly stable semigroup if the operator

Ãe1 =

(
A+BK1 BK2

G2(C +DK1) S +G2DK2

)
=

(
A 0
G2C S

)
+

(
B
G2D

)(
K1 K2

)
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is strongly stable [6, Lem. 20]. Using K1 = K11 +K2He1 shows that

Ãe1 =

(
A+BK11 0

G2(C +DK11) S

)
+

(
B
G2D

)(
K2He1 K2

)
.

We can now use the solution He1 of the Sylvester equation in the theorem to choose a similarity transform
Qe1 ∈ L(X ×W ) satisfying

Qe1 =

(
I 0
He1 I

)
, Q−1e1 =

(
I 0
−He1 I

)
.

A direct computation shows that since He1 is the solution of the Sylvester equation, we have

Qe1

(
A+BK11 0

G2(C +DK11) S

)
Q−1e1 =

(
A+BK11 0

He1(A+BK11) +G2(C +DK11)− SHe1 S

)
=

(
A+BK11 0

0 S

)
.

Therefore, if we denote B1 = He1B +G2D and define Ae1 = Qe1Ãe1Q
−1
e1 , we then have

Ae1 = Qe1Ãe1Q
−1
e1 =

(
A+BK11 0

0 S

)
+

(
B

He1B +G2D

)(
K2He1 −K2He1 K2

)
=

(
A+BK11 BK2

0 S +B1K2

)
Since the operators A + BK11 and S + B1K2 generate exponentially and strongly stable semigroups, re-
spectively, the operator Ae1 generates a strongly stable semigroup [6, Lem. 20]. Using this and the earlier
arguments we can conclude that the closed-loop system is strongly stable.

The operator K2 was chosen in such a way that σ(S + B1K2) ∩ σ(S) = ∅, and since A + BK11 and
A+ LC are generators of exponentially stable semigroups, we also have

σ(A+BK11) ∩ σ(S) = ∅ and σ(A+ LC) ∩ σ(S) = ∅.

We can now use properties of triangular block operators and the similarities between the operators to deduce
that

σ(Ae1) ∩ σ(S) = ∅ ⇒ σ(Ãe1) ∩ σ(S) = ∅ ⇒ σ(Ãe) ∩ σ(S) = ∅ ⇒ σ(Ae) ∩ σ(S) = ∅.

This concludes the proof.

5.3 Stabilization of the Internal Model
In this section we complete the construction of the controller by stabilizing the internal model in the opera-
tor G1. Our main goal is to choose a feedback K2 ∈ L(W,C) in such a way that the operator

S +B1K2

generates a strongly stable semigroup on W . Here B1 = He1B + G2D, as was defined in the proof of
Theorem 13, and He1 is the solution of the Sylvester equation (15). For choosing a suitable operator K2

we use pole placement of an infinite spectrum [28, 8, 30, 22]. This approach allows us to directly verify
that the condition σ(S + B1K2) ∩ σ(S) = ∅ is satisfied, and subsequently to derive asymptotic estimates
for the behavior of the resolvent of the closed-loop system. We will see in Section 5.4 that such asymptotic
estimates concerning the closed-loop system are essential to determining on which of the scale spaces Wα

the controller solves the robust output regulation problem.
The first one of the conditions in Assumption 10 means that there exists a finite set IS ⊂ Z of indices and

a constant d > 0 such that nk = 1 for all k ∈ Z \ IS and

|ωk − ωl| ≥ d > 0
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for k, l ∈ Z \ IS such that k 6= l. The operators S, B1 and K2 can therefore be decomposed into

S =

(
Sf 0
0 Si

)
, B1 =

(
Bf
Bi

)
, K2 =

(
Kf Ki

)
(17)

according to the decomposition W = W f ×W i of the state space of the exosystem, where

W f = span
{
φlk
∣∣ k ∈ IS , l = 1, . . . , nk

}
, W i = span{φ1k}k∈Z\IS .

The labels ’f ’ and ’i’ stand for ’finite’ and ’infinite’ parts of the spaces and operators. The parts Sf , Bf and
Kf are operators on finite-dimensional spaces and Si is an infinite-dimensional diagonal operator

Siv =
∑

k∈Z\IS

iωk〈v, φ1k〉φ1k, D(Si) =
{
v ∈W i

∣∣ ∑
k∈Z\IS

ω2
k|〈v, φ1k〉|2 <∞

}
.

Our standing assumptions concerning the spectrum of the exosystem also imply that we can assume the
frequencies to be ordered in such a way that ωk ≤ ωl for all k, l ∈ Z \ IS such that k ≤ l. For notational
convinience we also assume 0 ∈ IS .

Theorem 15 below shows us the final conditions required to strongly stabilize the closed-loop system in
such a way that σ(Ae) ∩ σ(S) = ∅. To express these assumptions we need the complex-valued function
PK(·) defined by

PK(λ) = (C +DK11)R(λ,A+BK11)B +D (18)

for all λ ∈ ρ(A + BK11). This function is the transfer function of the original plant after being stabilized
with an input u = K11x + ũ. It is well-known that the invertibility of a transfer function is preserved under
this type of feedback. Because of this, our assumption on the invertibility of the operators P (iωk) made in
Section 2 also implies that we have PK(iωk) 6= 0 for all k ∈ Z.

Theorem 15. Assume there exist β, c > 0 such that

|PK(iωk)| · |〈g2, φ1k〉| ≥
c

|k|β
(19)

for large enough |k|. Then the operator K2 ∈ L(W,C) can be chosen in such a way that the semigroup
generated by the operator S + B1K2 is strongly stable and σ(S + B1K2) ∩ σ(S) = ∅. Furthermore, for
any γ > β + 1

2 the operator K2 can be chosen in such a way that the asymptotic behavior of the resolvent of
the closed-loop system satisfies

‖R(iωk, Ae)‖ = O (|k|γ) .

Proof. We begin by showing that the pair (Sf , Bf ) of finite-dimensional operators is controllable. Since the
matrix Sf consists of Jordan blocks, it is sufficient to show that 〈Bf , φnkk 〉 6= 0 for all k ∈ IS . Using the
formula B1 = He1B +G2D, Lemma 14 and (18) we have

〈B1, φ
nk
k 〉 = 〈HkB +G2D,φ

nk
k 〉

=

〈
nk∑
l=1

(−1)l−jJ l−1nk
PkG2(C +DK11)R(iωk, A+BK11)lB,φnkk

〉
+ 〈g2, φnkk 〉D

=

nk∑
l=1

[
(−1)l−j〈J l−1nk

g2, φ
nk
k 〉(C +DK11)R(iωk, A+BK11)lB

]
+ 〈g2, φnkk 〉D

= 〈g2, φnkk 〉(C +DK11)R(iωk, A+BK11)B + 〈g2, φnkk 〉D

= 〈g2, φnkk 〉PK(iωk) 6= 0
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for all k ∈ Z. This concludes that the pair (Sf , Bf ) is controllable. Since these are finite-dimensional
operators, we can now choose an operatorKf1 ∈ L(W f ,C) in such a way that Sf +BfKf1 is exponentially
stable.

Since Si is a diagonal operator, we can clearly use Lemma 14 to show that the Sylvester equation

SiH = H(Sf +BfKf1) +BiKf1

has a unique solution H ∈ L(W f ,W i) satisfying

Hv =
∑

k∈Z\IS

〈BiKf1R(iωk, Sf +BfKf1)v, φ1k〉φ1k

for all v ∈W f . We now choose Kf = Kf1 +KiH . In this notation we have

S +B1K2 =

(
Sf +BfKf1 0
BiKf1 Sf

)
+

(
Bf
Bi

)(
KiH Ki

)
,

and as in the proof of Theorem 13 we can use the fact that the operator H is the solution of the Sylvester
equation to show(

I 0
H I

)
(S +B1K2)

(
I 0
−H I

)
=

(
Sf +BfKf1 0

0 Si

)
+

(
Bf

HBf +Bi

)(
KiH −KiH Ki

)
=

(
Sf +BfKf1 BfKi

0 Si +B2Ki

)
. (20)

Here we have denoted B2 = HBf +Bi ∈ L(C,W i). For any u ∈ C we have

B2u = (HBf +Bi)u =
∑

k∈Z\IS

〈
Bi(Kf1R(iωk, Sf +BfKf1)Bfu+ u), φ1k

〉
φ1k

=
∑

k∈Z\If

(Kf1R(iωk, Sf +BfKf1)Bfu+ u)〈Bi, φ1k〉φ1k. (21)

The above formulas imply that since Sf + BfKf1 is exponentially stable, the operator S + B1K2 can be
stabilized by choosing Ki ∈ L(W i,C) in such a way that Si + B2Ki generates a strongly stable semigroup
on W i [6, Lem. 20].

We will choose operator Ki using pole placement of an infinite spectrum [28, 25]. Let γ > β + 1
2 and

choose

µk = − 1

|k|γ
+ iωk

for k ∈ Z\IS (recall that we assumed 0 ∈ IS). In particular we will show that we can chooseKi ∈ L(W i,C)
in such a way that σ(Si + B2Ki) = {µk}k and the operator Si + B2Ki is a strongly stable Riesz-spectral
operator with at most finite number of nonsimple eigenvalues. Denote

d = inf
k 6=l
|ωk − ωl| > 0,

where k, l ∈ Z \ IS . For all λ ∈ C such that dist(λ, iωk) > 1
3d we have

∑
k∈Z\IS

∣∣∣∣ 〈B2, φ
1
k〉

λ− iωk

∣∣∣∣2 ≤ 3

d

∑
k∈Z\IS

|〈B2, φ
1
k〉|2 ≤

3

d
‖B2‖2 <∞, (22a)

∑
k∈Z\IS
k 6=l

∣∣∣∣ 〈B2, φ
1
k〉

iωl − iωk

∣∣∣∣2 ≤ 1

d

∑
k∈Z\IS
k 6=l

|〈B2, φ
1
k〉|2 ≤

1

d
‖B2‖2 <∞. (22b)
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Our next step is to derive an asymptotic lower bound for the behavior of the terms |〈B2, φ
1
k〉|. We can

first observe that we must have Kf1R(iωk, Sf )Bf 6= 1 for all k ∈ Z \ IS , since otherwise we would have

(iωkI − Sf −BfKf1)R(iωk, Sf )Bf = (iωkI − Sf )R(iωk, Sf )Bf −BfKf1R(iωk, Sf )Bf = 0,

i.e., iωk ∈ σ(Sf + BfKf1). This, however, is impossible since Sf + BfKf1 is exponentially stable. The
application of the well-known Sherman-Morrison formula therefore implies

KfR(iωk, Sf +BfKf1)Bf + 1 =
1

1−Kf1R(iωk, Sf )Bf
6= 0

for all k ∈ Z \ IS . On the other hand, using the form of the operator B1 = He1B +G2D and Lemma 14 we
can see that for k ∈ Z \ IS

〈Bi, φ1k〉 = 〈B1, φ
1
k〉 = 〈G2(C +DK11)R(iωk, A+BK11)B +G2D,φ

1
k〉 = 〈g2, φ1k〉PK(iωk).

By Definition 11 and the property PK(iωk) 6= 0 we also see that these terms must be nonzero for all k ∈
Z \ IS . These together with the formula (21) for the operator B2 imply that for all k ∈ Z \ IS

〈B2, φ
1
k〉 = (Kf1R(iωk, Sf +BfKf1)Bf + 1)〈Bi, φ1k〉 6= 0. (23)

Furthermore, since the norms ‖R(iωk, Sf )‖ decay to zero as |k| → ∞, have an estimate

|〈B2, φ
1
k〉| = |(Kf1R(iωk, Sf +BfKf1)Bf + 1)| · |〈g2, φ1k〉PK(iωk)|

≥ |〈g2, φ1k〉| · |PK(iωk)|
1 + |Kf1R(iωk, Sf )Bf |

≥ |〈g2, φ1k〉| · |PK(iωk)|
1 + ‖Kf1‖ · ‖R(iωk, Sf )‖ · ‖Bf‖

≥ 1

2
|〈g2, φ1k〉| · |PK(iωk)|

for all k ∈ Z \ IS with a large enough |k|. Our assumption (19) finally implies that there exist a constant
c > 0 such that for all k ∈ Z \ IS with a large enough |k|

|〈B2, φ
1
k〉| ≥

1

2
|〈g2, φ1k〉| · |PK(iωk)| ≥ c|k|−β

and thus for a large enough N ∈ N we also have

∑
|k|≥N

∣∣∣∣µk − iωk〈B2, φ1k〉

∣∣∣∣2 ≤ 1

c2

∑
|k|≥N

|k|2β

|k|2γ
≤ 1

c2

∑
|k|≥N

1

|k|2(γ−β)
<∞, (24)

since 2(γ − β) > 1.
Since the conditions (22), (23), and (24) are satisfied, we have from [28, Thm. 1] that there exists an

operator Ki ∈ L(W i,C) such that Si + B2Ki is a strongly stable Riesz-spectral operator with eigenvalues
{µk}k∈Z\IS and at most finite number of these eigenvalues are nonsimple. Since

σ(S +B1K2) ⊂ σ(Sf +BfKf1) ∪ σ(Si +B2Ki) = σ(Sf +BfKf1) ∪ {µk}k∈Z\IS

where Sf +BfKf1 is exponentially stable, we have that σ(S+B1K2)∩σ(S) = ∅. This concludes that the
internal model can be stabilized using a bounded feedback K2. The infinite part of this operator is obtained
by choosing Ki = 〈·, h〉, where h ∈W i is given by

h =
∑

k∈Z\IS

hkφ
1
k,

hk =
µk − iωk
〈B2, φ1k〉

∏
l∈Z\IS
l 6=k

iωk − µl
iωk − iωl

=
1

|k|γ〈B2, φ1k〉
∏

l∈Z\IS
l 6=k

(
1 + i

1

|l|γ(ωl − ωk)

)
.

In the remaining part of the proof we derive the estimate for the asymptotic behavior of the resolvent of
the closed-loop system. To estimate the resolvent operators of the various composite operators we will use
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the fact that if X1 and X2 are Banach spaces, and if A11 ∈ L(X1), A12 ∈ L(X2, X1) and A22 ∈ L(X2), we
then have ∥∥∥∥(A11 A11A12A22

0 A22

)∥∥∥∥ ≤ (‖A11‖+ 1)(‖A12‖+ 1)(‖A22‖+ 1). (25)

This follows directly from the estimate∥∥∥∥(A11 A11A12A22

0 A22

)(
x1
x2

)∥∥∥∥ ≤ ‖A11x1 +A11A12A22x2‖+ ‖A22x2‖

≤ (‖x1‖+ ‖x2‖) (‖A11‖+ ‖A11‖‖A12‖‖A22‖+ ‖A22‖)

≤ ‖
(
x1
x2

)
‖max{‖A12‖, 1}(‖A11‖(1 + ‖A22‖) + ‖A22‖)

≤ ‖
(
x1
x2

)
‖(‖A11‖+ 1)(‖A12‖+ 1)(‖A22‖+ 1).

Here we used the norm ‖(x1, x2)T ‖ = ‖x1‖+ ‖x2‖ on the composite space X1×X2. A different choice for
the norm would have only resulted in a constant M > 0 on the right-hand side of the estimate in (25).

We will start with the asymptotic behavior of R(iωk, Si + B2Ki). The fact that Si + B2Ki is a Riesz-
spectral operator and all but a finite number of its eigenvalues are simple implies that there exists an isomor-
phism Qi ∈ L(W i) such that

Si +B2Ki = Qi

(
Sfini 0

0 Sinfi

)
Q−1i ,

where Sfini is a finite-dimensional exponentially stable operator and Sinfi = diag(µk)|k|≥N for someN ∈ N.
This means that the resolvent operator of Si +B2Ki satisfies

‖R(iωk, Si +B2Ki)‖ =

∥∥∥∥Qi(R(iωk, S
fin
i ) 0

0 R(iωk, S
inf
i )

)
Q−1i

∥∥∥∥
≤ ‖Qi‖‖Q−1i ‖ ·max

{
‖R(iωk, S

fin
i )‖, ‖R(iωk, S

inf
i )‖

}
for all k ∈ Z \ IS . For k ∈ Z with |k| ≥ N the norm of R(iωk, S

fin
i ) is uniformly bounded and

‖R(iωk, S
inf
i )‖ =

1

|iωk − µk|
= |k|γ .

This immediately implies

‖R(iωk, Si +B2Ki)‖ = O(|k|γ).

We can now turn to considering the asymptotic behavior of the resolvent operator of S+B1K2. Similarly
as in the derivation of the estimate (25) we can easily see that∥∥∥∥( I 0

H I

)∥∥∥∥ ≤ ‖H‖+ ‖I‖+ ‖I‖ = ‖H‖+ 2.

Using this and (20) we see that the resolvent of the stabilized internal model S +B1K2 satisfies

‖R(iωk, S +B1K2)‖

≤ (‖H‖+ 2)2
∥∥∥∥(R(iωk, Sf +BfKf1) R(iωk, Sf +Bf )BfKiR(iωk, Si +B2Ki)

R(iωk, Si +B2Ki)

)∥∥∥∥
≤ (‖H‖+ 2)2(‖BfKi‖+ 1)(‖R(iωk, Sf +BfKf1)‖+ 1)(‖R(iωk, Si +B2Ki)‖+ 1)
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Since ‖R(iωk, Sf +BfKf1)‖ is uniformly bounded with respect to k ∈ Z \ IS , this estimate implies

‖R(iωk, S +B1K2)‖ = O(|k|γ).

This, in turn, can be used to estimate the behavior of the resolvent R(iωk, Ãe1). Using the definition of the
operator Ae1 in the proof of Theorem 13 and the estimate (25), we obtain

‖R(iωk, Ãe1)‖ = ‖Q−1e1 R(iωk, Ae1)Qe1‖

≤ ‖Q−1e1 ‖‖Qe1‖
∥∥∥∥(R(iωk, A+BK11) R(iωk, A+BK11)BK2R(iωk, S +B1K2)

0 R(iωk, S +B1K2)

)∥∥∥∥
≤ ‖Q−1e1 ‖‖Qe1‖(‖R(iωk, A+BK11)‖+ 1)(‖BK2‖+ 1)(‖R(iωk, S +B1K2)‖+ 1).

Since A+BK11 generates an exponentially stable semigroup, the terms ‖R(iωk, A+BK11)‖ are uniformly
bounded with respect to k and thus

‖R(iωk, Ãe1)‖ = O(|k|γ).

Finally, we can estimate the behavior of the resolvent operators R(iωk, Ae) of the closed-loop system. Simi-
larly as above, we can use the definition of the operator Ãe in the proof of Theorem 13 and the estimate (25)
to show

‖R(iωk, Ae)‖ = ‖Q−1e R(iωk, Ãe)Qe‖

≤ ‖Q−1e ‖‖Qe‖

∥∥∥∥∥∥
R(iωk, Ãe1) R(iωk, Ãe1)

(
B
G2D

)
K1R(iωk, A+ LC)

0 R(iωk, A+ LC)

∥∥∥∥∥∥
≤ ‖Q−1e ‖‖Qe‖(‖R(iωk, Ãe1)‖+ 1)

(∥∥∥∥( B
G2D

)
K1

∥∥∥∥+ 1

)
(‖R(iωk, A+ LC)‖+ 1).

Since A + LC generates an exponentially stable semigroup, the norms ‖R(iωk, A + LC)‖ are uniformly
bounded with respect to k ∈ Z. Because of this, the previous estimate implies

‖R(iωk, Ae)‖ = O(|k|γ).

This concludes the proof.

Remark 16. Since there is some freedom in choosing the parameter G2 ∈ L(C,W ) of the controller, Theo-
rem 15 concludes that the stabilization of the internal model can be achieved using bounded feedback when-
ever the values PK(iωk) of the transfer function of the stabilized plant decay to zero at a rate that is at
most polynomial. Moreover, it also shows that this rate is reflected in the behavior of the resolvent of the
stabilized closed-loop system at the eigenvalues iωk of the exosystem. For finite-dimensional systems the
assumption on the polynomial decay of the transfer function is always satisfied. However, in the case of
infinite-dimensional systems the situation is more complicated, and in particular the values of the transfer
function can approach zero at a faster rate even in the case of well-behaved systems.

5.4 The Solvability of the Robust Output Regulation Problem
We conclude the study of our observer-based controller by determining on which of the scale spaces Wα

it solves the robust output regulation problem. Theorem 17 in particular shows that, provided the values
PK(iωk) considered in the previous section approach zero at a rate that is at most polynomial, such a scale
space always exitsts. We also show a concrete connection between the rate of this decay and the smoothness
of the exogeneous signals the controller is capable of tracking and rejecting. We conclude the section by
discussing possibilities of relaxing our standing assumptions on the spectrum of our exosystem.
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Theorem 17. Assume there exist constants β, c > 0 such that

|PK(iωk)| · |〈g2, φ1k〉| ≥
c

|k|β

for large enough |k|. If the parameters of the controller are chosen as described earlier in this section for
some γ > β + 1

2 in Theorem 15, then the controller solves the robust output regulation problem on Wγ .

Proof. We will first verify that condition (13) is satisfied for α = γ. Theorem 15 and our assumption that all
but a finite number of the eigenvalues of S have a uniform gap imply that there exist constants N ∈ N and
c,M > 0 such that

‖R(iωk, Ae)‖ ≤M |k|α and |ωk| ≥ c|k|

for all k ∈ Z with |k| ≥ N . For all such k ∈ Z we thus have

‖R(iωk, Ae)‖2

(1 + ω2
k)α

≤ M2|k|2α

(1 + c2k2)α
≤ M2

c2α
|k|2α

|k|2α
=
M2

c2α
<∞,

which concludes that condition (13) is satisfied.
Since σ(Ae) ∩ σ(S) = ∅ and since by Theorem 12 the controller satisfies the G-conditions, Theorem 8

and the results in [16] conclude that the controller solves the robust output regulation problem on Wγ .

The above theorem also illustrates a close connection between the asymptotic behavior of the values
PK(iωk) of the transfer function of the stabilized plant and the minimal smoothness of the signals our con-
troller is capable of tracking and rejecting. In particular this is visible in the case of τ -periodic reference and
disturbance signals generated by a diagonal exosystem with frequencies

(ωk)k∈Z =

(
2πk

τ

)
k∈Z

.

Combining Theorems 17 and 5 shows us that for such exosystems and the above choices of parameters our
controller is guaranteed to track and reject τ -periodic signals belonging to the space Hγ

per(0, τ).
The applicability of Theorem 17 has an evident limitation arising from the fact that since the parameter

G2 of the controller is a bounded operator, we necessarily have∑
k∈Z
|〈g2, φ1k〉|2 <∞. (26)

This immediately implies that regardless of the behaviour of the transfer function PK(·) of the stabilized
plant, the constant β in the theorem is always larger than 1

2 . Therefore it is impossible to use our results to
guarantee the existence of a controller solving the robust output regulation problem on the space Wα for any
α ≤ 1. In principle this restriction could be overcome by allowing the input operator G2 of the controller to
be unbounded, e.g. G2 = g2 ∈ W−1, where the Hilbert space W−1 is defined analogously to Wα for α ≥ 0
(see [3, Sec. II.5] for details). For such operators it is possible that |〈g2, φ1k〉| ≥ c > 0 for some c > 0 and for
large |k|. Then, if in addition |PK(iωk)| were bounded away from zero at infinity, we could choose β = 0 in
Theorem 17, and the robust output regulation problem on Wγ would be solvable for any γ > 1

2 .
However, unbounded input operators G2 of the error feedback controller are not covered by the present

theory. Such classes of controllers would in particular require additional standing assumptions to ensure that
the controller and the closed-loop systems have well-defined states [26].

We have assumed that all but a finite number of the eigenvalues of S have a uniform gap. However, this
particular assumption is not crucial to the construction of the observer-based controller, and can be relaxed
at the cost of added complexity in the results. In particular the same methods can be applied if the infinite
part of the spectrum of S consists of simple eigenvalues having no finite accumulation points, and if we have
a polynomial bound for the rate at which the neighboring eigenvalues approach each other as they approach
infinity. In the stabilization of the internal model S + B1K2 we would only need to modify the conditions
affecting the convergence of the series in (22). If the eigenvalues of S do not have a uniform gap, it is clear
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that we need to add a requirement that the terms |〈B2, φ
1
k〉| approach zero fast enough as |k| → ∞. Since

we have seen in the proof of Theorem 15 that for large |k| these terms behave like |〈g2, φ1k〉| · |PK(iωk)|, the
condition could be expressed as a requirement that the asymptotic decay of these terms is sufficiently fast.

On the other hand, if we have knowledge that the eigenvalues of S approach infinity faster than at a
constant rate as |k| → ∞, we can use any known bound for this rate to improve the results in Theorem 17.
More precisely, if there exist constants η > 1 and c > 0 such that for large |k| we have

|ωk| ≥ c|k|η, (27)

it is then easy to show that our controller in fact solves the robust output regulation problem on Wα for
α = γ/η. In this situation the infinite part of the spectrum of S still has a uniform gap, and the controller can
constructed exactly as described in the earlier sections. Therefore we only need to verify that condition (13)
is satisfied. This, however, is easily done using (27), since for all k ∈ Z with large enough |k| we now have

‖R(iωk, Ae)‖2

(1 + ω2
k)α

≤ M2|k|2γ

(1 + c2|k|2η)α
≤ M2

c2α
|k|2γ

|k|2αη
=
M2

c2α
<∞.

In the next section we will study a concrete example on choosing the parameters of the controller to
achieve robust output regulation and disturbance rejection of signals generated by an infinite-dimensional
exosystem.

6 Robust Controller for a Scalar System
We conclude the paper with a detailed example concerning the construction of robust controllers. To illustrate
the use of the theoretic results we consider the problem of steering the output of a scalar system to the
reference signals generated by an infinite-dimensional exosystem. We use the methods presented in the
earlier sections to strongly stabilize the closed-loop system. We will then see that the use of these particular
methods allows us to easily determine the values of α ≥ 0 for which the controller solves the robust output
regulation problem on Wα.

We consider the robust control of a scalar system of form

ẋ(t) = ax(t) + bu(t), x(0) = x0 ∈ C
y(t) = cx(t) + du(t)

on the space X = C. We consider the single-input single-output case and assume b 6= 0 and c 6= 0. Since the
infinite-dimensional exosystem want to consider has 0 ∈ σp(S), we must also require a 6= 0.

As the signal generator we choose an infinite-dimensional exosystem

v̇(t) = Sv(t), v(0) = v0 ∈W
yref (t) = Frv(t)

capable of generating the step signal depicted in Figure 1. This signal is of form

yref (t) = t+ y0(t),

where y0(·) is the triangle signal from Figure 2.
On the interval [0, 2π] the function y0(·) can be defined as

y0(t) =

{
t 0 ≤ t < π

−t+ π π ≤ t < 2π

and its Fourier series representation is given by

y0(t) =
∑
k∈Z

ake
ikt, ak =

1

2π

∫ 2π

0

y0(t)eiktdt =

{
π
2 k = 0

− (eiπk−1)2
2πk2 k 6= 0.
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2π

4π

6π

0 2π 4π 6π

Figure 1: The signal y0(t) + t.

π

0 2π 4π 6π

Figure 2: The triangle signal.

This shows that y0(·) can be generated by a diagonal exosystem with frequencies iωk = ik for k ∈ Z. Also,
since ak = 0 for all even k 6= 0, we could have also decided to leave out the corresponding frequencies. We
have ∑

k∈Z
(1 + k2)β |ak|2 =

∑
k∈Z

(1 + k2)β
|eiπk − 1|4

4π2k4
<∞

if and only if β < 3
2 , and thus y0(·) ∈ Hβ

per(0, 2π) precisely if 1
2 < β < 3

2 .
The signal t can be generated using a single Jordan block associated to an eigenvalue iω0 = 0. We

therefore choose the state space of our exosystem as

W = span{φ10, φ20, {φk}k∈Z\{0}}

and the system operator S as

S = 〈·, φ20〉φ10 +
∑

k∈Z\{0}

ik〈·, φk〉φk, D(S) =
{
v ∈W

∣∣ ∑
k∈Z\{0}

k2|〈v, φk〉|2 <∞
}
.

A direct computation shows that the reference signals generated by the exosystem are of the form

Frv(t) = 〈v0, φ10〉Frφ10 + 〈v0, φ20〉(tFrφ10 + Frφ
2
0) +

∑
k∈Z\{0}

eikt〈v0, φk〉Frφk,

and that the reference signal in Figure 1 can be generated by choosing Fr ∈ L(W,C) and v0 ∈W as

Frφ
1
0 = 1, Frφ

2
0 = 0, Frφk =

1

k
, ∀k 6= 0

〈v0, φ10〉 =
π

2
, 〈v0, φ20〉 = 1, 〈v0, φk〉 = − (eikπ − 1)2

2πk
∀k 6= 0.

For this choice of the initial state we clearly have v0 ∈Wα for all α < 1
2 . Using Theorem 6 we see that since

y0(·) ∈ Hβ
per(0, 2π) for β < 3

2 , it would have been possible to choose the parameters of the exosystem in
such a way that v0 ∈ Wα for α < 1. In this example it would not have been possible to achieve higher α
without losing the property

∑
k∈Z

nk∑
l=1

|Frφlk|2 <∞.

Similarly as in Example 7 it is easy to see that if γ ≥ 1 then this exosystem is capable of generating all
reference and disturbance signals of the form

yref (t) = y1t+ y0(t),

where y1 ∈ C and y0(·) ∈ Hγ
per(0, 2π) with appropriate choices of the initial states v0 ∈Wγ−1.
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The operator S has eigenvalues iωk = ik for k ∈ Z and the only nontrivial Jordan block in the exosystem
is the 2× 2-block associated to iω0 = 0. The transfer function of our plant is given by

P (λ) =
cb

λ− a
+ d

for all λ 6= a. We assume the parameters of the plant are such that P (iωk) 6= 0 for all k ∈ Z. In particular
this requires that ad 6= bc.

For these choices of parameters the system and the signal generator satisfy the conditions stated in As-
sumption 10. We can therefore use the method presented in Section 5 to construct a controller solving the
robust output regulation problem.

6.1 Choosing the Parameters of the Controller
We can now choose the first parameters in the operators (G1,G2,K) of the controller. As the stabilizing
feedback and output injection of the pairs (A,B) and (C,A), respectively, we choose

K11 = −a+ 1

b
, ⇔ A+BK11 = −1

L = −a+ 1

c
, ⇔ A+ LC = −1.

The values of the transfer function PK(·) of the stabilized plant at the eigenvalues iωk = ik of the exosystem
are then given by

PK(iωk) =
bc− (a+ 1)d

ik + 1
+ d =

bc+ (ik − a)d

ik + 1
.

We choose the parameter G2 = g2 ∈W of the controller as

g2 = φ20 +
∑
k 6=0

1

|k|2/3
φk.

This operator clearly satisfies the requirement that 〈g2, φnkk 〉 6= 0 for all k ∈ Z.
By Lemma 14 the Sylvester equation SH = H(A + BK11) + G2(C + DK11) has a unique solution

He1 ∈ L(C,W ) given by

He1 = H1
0φ

1
0 +H2

0φ
2
0 +

∑
k 6=0

Hkφk,

where

H0 =

(
H1

0

H2
0

)
=

2∑
l=1

(−1)l−1
(

0 1
0 0

)l−1(
0
1

)
(C +DK11)R(0, A+BK11)l

= (C +DK11)

[(
0
1

)
· 1

0− (−1)
+ (−1)

(
0 1
0 0

)(
0
1

)(
1

0− (−1)

)2
]

=

(
c− (a+ 1)d

b

)(
−1
1

)
and

Hk = 〈g2, φk〉(C +DK11)R(iωk, A+BK11) =

(
c− (a+ 1)d

b

)
1

|k|2/3
· 1

ik + 1

for all k 6= 0. As was also implied by Lemma 14, we clearly have He1 ∈ D(S).
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6.2 Solvability of the Robust Output Regulation Problem
We will first estimate the asymptotic behavior of 〈g2, φk〉 and PK(ik) to be able to determine the scale spaces
Wα on which it is possible to solve the robust output regulation problem. Using the formulas for these terms
we see that for all k 6= 0 with a large enough |k| we have

|〈g2, φk〉| · |PK(ik)| = 1

|k|2/3

∣∣∣∣bc− (a+ 1)d

ik + 1
+ d

∣∣∣∣ ≥ 1

|k|2/3

(
|d| − |bc− (a+ 1)d|

|k|

)
.

This immediately implies that if d 6= 0, then the conditions of Theorem 17 can be satisfied for β = 2/3 and
if d = 0, we can choose β = 5/3. The results presented in Section 5 thus show for any α > β + 1

2 the
parameters of the controller can be chosen in such a way that the robust output regulation problem is solved
on Wα. In particular this suggests that, even if d 6= 0 (in which case α > 2

3 + 1
2 = 7

6 ) Theorem 17 does
not guarantee that we can choose the parameters of the controller to asymptotically track the step signal in
Figure 1, since this reference signal is generated with an initial state v0 /∈W1/2 of the exosystem.

In the following we will assume d 6= 0 and stabilize the closed-loop system in such a way that the robust
output regulation problem is solved onWα for α = 4/3. Due to the properties of the exosystem the controller
will then be able to steer the output of the scalar system to any reference signal

yref (t) = y1t+ y0(t),

where y1 ∈ C and y0(·) ∈ H7/3
per (0, 2π).

6.3 Stabilization of the Internal Model
The decomposition of the internal model in the controller into exponentially stabilizable and diagonal parts
can be done by choosing IS = {0}. We then have

Sf =

(
0 1
0 0

)
, Bf =

(
c− (a+ 1)d

b

)(
−1
1

)
b+

(
0
1

)
d =

(
ad− bc+ d
−(ad− bc)

)
,

and pair (Sf , Bf ) is stabilizable, since we have previously assumed ad 6= bc. The infinite-dimensional
diagonal part of the internal model is given by

Si =
∑
k 6=0

ik〈·, φk〉φk, D(Si) =
{
v ∈W

∣∣ ∑
k 6=0

k2|〈v, φk〉|2 <∞
}

Bi =
∑
k 6=0

〈g2, φk〉PK(iωk)φk =
∑
k 6=0

bc+ (ik − a)d

ik + 1
· 1

|k|2/3
· φk.

We will first stabilize the pair (Sf , Bf ) with a feedback Kf1. For this purpose we will choose

Kf1 =
1

(ad− bc)2
(
2(ad− bc), 5(ad− bc) + 2d

)
.

It is well-known that since σ(Sf ) = {0}, a value λ 6= 0 is an eigenvalue of Sf + BfKf1 if and only if
Kf1R(λ, Sf )Bf = 1. A direct computation shows that

1−Kf1R(λ, Sf )Bf = 1− 1

λ2
Kf1

(
λ 1
0 λ

)
Bf = 1 +

3λ+ 2

λ2
=
λ2 + 3λ+ 2

λ2
=

(λ+ 2)(λ+ 1)

λ2
,

and therefore σ(Sf +BfKf1) = {−1,−2}. This concludes that Sf +BfKf1 is exponentially stable.
From the proof of Theorem 15 we have that for k 6= 0

〈B2, φk〉 = (Kf1R(ik, Sf +BfKf1)Bf + 1)〈Bi, φk〉 =
〈g2, φk〉PK(ik)

1−Kf1R(ik, Sf )Bf

= − 1

|k|2/3
· bc+ (ik − a)d

ik + 1
· k2

(ik + 2)(ik + 1)
= −|k|

4/3(bc+ (ik − a)d)

(ik + 1)2(ik + 2)
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As in the proof of Theorem 15, we choose the feedback operator Ki = 〈·, h〉 as

h =
∑
k 6=0

hkφk,

where we choose the parameter γ = 4/3 and

hk =
1

|k|4/3〈B2, φk〉
∏
l 6=0,k

(
1 + i

1

|l|4/3(ωl − ωk)

)
= − (ik + 1)2(ik + 2)

|k|8/3(bc+ (ik − a)d)

∏
l 6=0,k

(
1 + i

1

|l|4/3(l − k)

)
.

For these choices of the parameters Theorem 15 shows us that the resolvent operator of the closed-loop
system has asymptotic behavior

‖R(ik, Ae)‖ = O(|k|4/3), (28)

and by Theorem 17 the dynamic error feedback controller solves the robust output regulation problem onWα

with α = 4/3.

6.4 Robustness Properties of the Controller
The results presented in Section 5 now imply that the feedback control law we have constructed is capable of
tracking reference signals and rejecting disturbance signals despite perturbations to the parameters A, B, C,
D, E, and F of the system as long as the strong stability of the closed-loop system as well as the solvability
of the associated Sylvester equation are preserved. In particular this allows such changes and uncertainties in
the parameters a, b, c, and d of the plant for which the stability of the closed-loop system is preserved, the
condition σ(Ae) ∩ σ(S) = ∅ remains valid, and for which the resolvent operator of the closed-loop system
still has the asymptotic behavior (28).

As we already mentioned, the chosen controller is capable of steering the output of the scalar system to
any reference signal of the form

yref (t) = y1t+ y0(t),

where y1 ∈ C and y0(·) ∈ H7/3
per (0, 2π). The robustness of the controller with respect to perturbations to the

operator Fr further enlarges this class of signals. Since this operator (and the operator E) do not appear in
the system operator Ae of the closed-loop system, they do not affect the stability of the closed-loop system
or the condition (13) guaranteeing the solvability of the Sylvester equation. This means that the operator Fr
can be replaced with an arbitrary operator F ′r as long as it satisfies the condition (F ′rφk) ∈ `2(C) imposed
on the parameters of the infinite-dimensional exosystem. Therefore a similar reasoning as in Example 7
shows us that our control law is actually capable of tracking any reference signal of the above form with
y0(·) ∈ Hγ

per(0, 2π) for γ > 7
3 −

1
2 = 11

6 .
The same conclusion also applies to the perturbations to the operatorE = 0. This means that even though

we were initially not interested in rejecting disturbance signals affecting the state of the plant, our controller
is still capable of handling any such signals generated by the infinite-dimensional exosystem with an output
operator E ∈ L(W,C) satisfying (Eφk)k ∈ `2(C).

7 Conclusions
In this paper we have studied the robust output regulation problem for distributed parameter systems and
infinite-dimensional exosystems capable of generating polynomially increasing signals. In particular we
solved the problem of strongly stabilizing the closed-loop consisting of the plant and the robust observer-
based error feedback controller. This problem had been left open in a recent paper [16], where the internal
model principle characterizing the controllers solving the robust output regulation problem was extended to
distributed parameter systems.

We also analyzed in detail the classes of signals generated by an infinite-dimensional nondiagonal ex-
osystem. In particular we showed that for periodic signals there is a direct connection between the choice
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of the initial state of the exosystem in a scale space Wα and the level of smoothness of the generated sig-
nals. This connection could be further extended to show that knowledge on the smoothness properties of
the exogeneous signals can be used to weaken the conditions required for the solvability of the robust output
regulation problem.

Further research topics include allowing the input and output operators of the systems to be unbounded
and considering signal generators that do not necessarily have pure point spectrum. In particular, unbounded
input operator G2 in the dynamic error feedback controller could potentially allow tracking and rejection of
signals with lower levels of smoothness, as was discussed in Section 5.4.
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