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INTERNAL MODEL THEORY FOR DISTRIBUTED PARAMETER
SYSTEMS∗
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Abstract. In this paper we consider robust output regulation of distributed parameter systems
and the internal model principle. The main purpose is to generalize the internal model principle by
Francis and Wonham for infinite-dimensional systems and clarify the relationships between different
generalizations of the internal model. We also construct a signal generator capable of generating
infinite-dimensional polynomially increasing signals.
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1. Introduction. Distributed parameter systems are used to model various
types of systems including heat and diffusion processes, vibrations, and delay sys-
tems. Robustness of a controller is an essential property because of the unavoidable
inaccuracy of the mathematical model compared to the real world system. Regulation
and robust regulation of distributed parameter systems have been studied extensively
during the last 30 years. In his Ph.D. thesis Bhat [2] extended structural stability re-
sults of Francis and Wonham [6] mainly to time-delay systems. This theory was later
partly generalized by Immonen [11] for distributed parameter systems with infinite-
dimensional signal generators. Also the robust regulation theory by Davison [4] was
extended to infinite-dimensional systems by Pohjolainen [16]. These results were later
extended to more general classes of reference and disturbance signals by Hämäläinen
and Pohjolainen [8] and for well-posed systems by Rebarber and Weiss [18]. Regula-
tion theory without the robustness aspect has been studied by Schumacher [19] and
Byrnes et al. [3].

The robust regulation problem consists of two problems, which can be studied
separately, one of robust stabilization and one of robust regulation, as defined in this
paper. This can be seen directly from the decomposition of the state of the closed-loop
system

(1.1) xe(t) = TAe(t)(xe0 − Σv0) + Σv(t),

where TAe(t) is the semigroup generated by the system operator of the closed-loop
system, Ae, v(t) is the state of the exosystem v̇ = Sv and Σ is the solution of the
associated Sylvester equation

(1.2) ΣS = AeΣ+ Be.

The robust stabilization part of the output regulation problem is related to the first
term of (1.1). This part consists of choosing controller parameters such that the
closed-loop system is stable and this stability is preserved under a suitable class of
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perturbations. Whenever this is achieved, the first term in (1.1) decays with time,
and the state asymptotically approaches the behavior of the second term Σv(t). This
can be seen as a dynamic steady state for the closed-loop system. The second part
of the robust output regulation problem, the robust regulation part, is related to this
second term Σv(t) of (1.1). It consists of choosing the controller parameters such that
the perturbed dynamic steady state still gives the desired output.

In finite-dimensional control theory the famous internal model principle of Francis
and Wonham [6] states that a stabilizing feedback controller solves the robust output
regulation problem if and only if it contains a p-copy internal model of the exosystem.
Here p refers to the dimension of the output space and the definition of this p-copy
internal model is that the minimal polynomial of S divides at least p invariant factors
of G1, where S and G1 are the system operators of the signal generator and the
controller, respectively.

The internal model principle has also been approached using properties of certain
Sylvester equations. This is easy to understand, because in the robust regulation part
of the robust output regulation problem we want to choose the controller parameters
in such a way that the solution of (1.2) has certain properties. Immonen [11] defined
internal model structure (IMS ) in such a way that if the controller has IMS, then
the Sylvester equation (1.2) with the perturbed system’s parameters still leads to the
correct output at the dynamic steady state of the closed-loop system.

The definition of the IMS was given in terms of certain Sylvester equations and
because of this it is often hard to check whether a controller has this property.
Hämäläinen and Pohjolainen [9] later found sufficient conditions for a controller to
have IMS. The origin of these sufficient conditions is in the proof of the internal
model principle in [7] and they are given in terms of the controller’s parameters on
the spectrum of the exosystem. Although these conditions were also called the in-
ternal model, they were used only as sufficient conditions for the IMS and it was
not discussed whether or not they are also necessary. We refer to these conditions
as G-conditions. In this paper we extend these conditions for more general signal
generators.

All of these concepts, the p-copy internal model of Francis and Wonham, the IMS
of Immonen, and the G-conditions of Hämäläinen and Pohjolainen, are related to the
robust output regulation problem. It is of course natural that in the transition from
finite-dimensional to infinite-dimensional systems, also the concept of internal model
has been redefined. The main reason for this is that the minimal polynomials and
invariant factors used in the original definition by Francis andWonham are unavailable
for infinite-dimensional operators. However, for example, in the case of the three
concepts discussed here, it is hard to see how the different definitions are related.

The purpose of this paper is to show that the internal model principle for the
p-copy internal model can be formulated and proved for distributed parameter sys-
tems with infinite-dimensional exosystems. We also give precise conditions for the
equivalence between the p-copy internal model, IMS, and the G-conditions.

We first generalize the p-copy internal model of Francis and Wonham for
distributed parameter systems and infinite-dimensional exosystems. This has not
been done previously even when the signal generators considered have been finite-
dimensional. The original definition based on minimal polynomials and invariant
factors cannot be generalized for infinite-dimensional operators, but there exists an
equivalent definition using Jordan canonical forms. More precisely, in the finite-
dimensional case, a controller contains a p-copy internal model of the signal generator
if whenever s ∈ σ(S) is an eigenvalue of S such that d(s) is the dimension of the
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largest Jordan block associated to s, then s ∈ σ(G1) and G1 has at least p Jordan
blocks of dimension greater than or equal to d(s) associated to s [6]. Even though
the Jordan canonical form is unavailable for infinite-dimensional operators, it is still
possible to generalize this definition.

We prove the internal model principle for the p-copy internal model by prov-
ing that under suitable assumptions the concepts mentioned earlier, the IMS, the
G-conditions, and the generalization of the p-copy internal model given in this paper
are all equivalent. Since the internal model structure of the controller is equivalent to
the robust regulation property, this proves that a controller is robustly regulating if
and only if it contains a p-copy internal model of the exosystem.

The extension of the internal model principle is by itself an important extension
of finite-dimensional control theory to distributed parameter systems. Furthermore,
the equivalence of the concepts of the IMS, the G-conditions, and the p-copy internal
model establishes several additional new results.

Perhaps the most important one of these new results is the extension of the
results of [17, 9] which state that a controller satisfying the G-conditions is robustly
regulating. Our results prove the converse argument, i.e., that a robustly regulating
controller necessarily satisfies the G-conditions. This is a new result which shows that
although the G-conditions were introduced as purely sufficient conditions for the IMS,
they can in fact be considered as an alternative definition of the internal model. The
importance of this result comes from the fact that of the three considered definitions
of the internal model, the G-conditions have the following advantages over the other
two: They are much more concrete than the IMS but require less assumptions than
the p-copy internal model.

Most of the theory developed for robust output regulation for distributed param-
eter systems considers only reference and disturbance signals which are generated by
finite-dimensional exosystems. More general classes of signals to be regulated can be
achieved if also the exosystem is allowed to be infinite-dimensional. This has been
studied recently in [11, 9]. In these references the signal generator is constructed in
such a way that it is only possible to generate bounded uniformly continuous signals.
These signals are indeed very general in the context of robust regulation, where the
properties of the system often dictate the minimum requirements of the signals one
can hope to track [12]. Still, this type of exosystem has the drawback that it can only
generate bounded signals. In many engineering applications it is necessary to gener-
ate signals which have a growth rate of t or tn for some n ∈ N. One commonly used
signal of this type is the ramp signal. In this paper we extend the signal generator
used in [9] so that it can generate polynomially increasing signals. This is done by
defining an operator consisting of an infinite number of Jordan blocks.

Since we are using a more general signal generator, the results of this paper
also extend the general robust regulation theory presented in [17] and [9], where the
signal generator was assumed to be finite-dimensional and infinite-dimensional with
a diagonal system operator, respectively.

It turns out that the internal model principle actually depends only on the robust
regulation part of the robust output regulation problem. This can also be seen from
the statement of the internal model principle, where the controller is assumed to be
stabilizing. Because of this, we do not consider the stabilization of the closed-loop
system. Of course the solution of the robust output regulation problem depends also
on the stabilization part, and in the case of an infinite-dimensional signal generator
the stabilization of the closed-loop system can be problematic. In [9] it is shown how
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the closed-loop system can be stabilized if the signal generator has a diagonal system
operator.

One important result shown in [9] was that the smoother the reference and dis-
turbance signals are, the weaker the assumptions needed for the solvability of the
output regulation problem. In [9] the conditions for the smoothness of the signals
were imposed on the operators of the exosystem. In this paper we show how these
conditions can be imposed on the initial value of the exosystem instead. This is done
by allowing the solution Σ of the regulator equations to be an unbounded operator.
This approach has the advantage that it gives more concrete correspondence between
the level of smoothness of the signals and the strictness of the conditions for the
solvability of the output regulation problem.

We use infinite-dimensional Sylvester equations with unbounded operators. A fair
amount of theory exists on the properties and the solvability of this type of equation
[20, 15, 1]. However, since one of our unbounded operators is of particular form,
conditions for the solvability of these equations are derived directly.

To illustrate the applicability of our results we present a concrete example, where
we design an observer-based robust controller for a finite-dimensional system with an
exosystem capable of generating infinite-dimensional linearly increasing signals.

In section 2 we introduce the notation, construct the exosystem capable of gener-
ating polynomially increasing infinite-dimensional signals, and state the basic assump-
tions on the system and the controller. In section 3 we present the output regulation
problem and show that the solvability of this problem can be characterized by the
solvability of certain constrained Sylvester equations. These results are used in sec-
tion 4, where we formulate the robust output regulation problem and divide it into
two parts, the robust stabilization part and the robust regulation part. In this section
we also show that the IMS of Immonen is equivalent to the robust regulation property
of the controller. In section 5 we show that the IMS is equivalent to the G-conditions.
The main result of the section is Theorem 5.2. In section 6 we generalize the p-copy
internal model, show that under suitable assumptions this property is equivalent to
the G-conditions, and combine the results in the previous sections to prove the exten-
sion of the internal model principle. The main results of the section are Theorems 6.2
and 6.9. An example of application of the theory is presented in section 7. Section 8
contains concluding remarks.

2. Notation and definitions. If X and Y are Banach spaces and A : X → Y is
a linear operator, we denote by D(A), N (A), and R(A) the domain, kernel, and range
of A, respectively. The space of bounded linear operators from X to Y is denoted
by L(X,Y ). If A : X → X , then σ(A), σp(A), and ρ(A) denote the spectrum, the
point spectrum, and the resolvent set of A, respectively. For λ ∈ ρ(A) the resolvent
operator is given by R(λ,A) = (λI − A)−1. The inner product on a Hilbert space is
denoted by 〈·, ·〉.

Let X,Y, U be Banach spaces and let W be a Hilbert space. Let (iωk)k∈Z ∈ iR
be a sequence with no finite accumulation points and assume that for all k ∈ Z the
set Ik =

{
j ∈ Z

∣∣ ωj = ωk

}
is finite. Let

{
φlk

∣∣ k ∈ Z, l = 1, . . . , nk

} ⊂ W , where

nk < ∞ for all k ∈ Z, be an orthonormal basis of W , i.e., W = span{φlk}kl and
〈φlk, φmn 〉 = δknδlm. Furthermore, assume that there exists Nd ∈ N such that nk ≤ Nd

for all k ∈ Z. For k ∈ Z define an operator Sk ∈ L(W ) such that

Sk = iωk〈·, φ1k〉φ1k +

nk∑
l=2

〈·, φlk〉
(
iωkφ

l
k + φl−1

k

)
.
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The operator Sk then satisfies (iωkI − Sk)φ
1
k = 0 and (Sk − iωkI)φ

l
k = φl−1

k for
all l ∈ {2, . . . , nk} and thus corresponds to a single Jordan block associated to an
eigenvalue iωk. We define the operator S : D(S) ⊂W →W as

Sv =
∑
k∈Z

Skv, D(S) =

{
v ∈W

∣∣∣∣∣ ∑
k∈Z

‖Skv‖2 <∞
}
.

For k ∈ Z define dk = max{nl | l ∈ Z, ωl = ωk }. Since the operators Sk can be
seen as Jordan blocks of S, this value corresponds to the dimension of the largest
Jordan block associated to an eigenvalue iωk ∈ σ(S). The spectrum of the operator S
satisfies σ(S) = σp(S) = {iωk}k and S generates a C0-group TS(t) on W given by

TS(t)v =
∑
k∈Z

eiωkt
nk∑
l=1

〈v, φlk〉
l∑

j=1

tl−j

(l − j)!
φjk, v ∈ W, t ∈ R.

For k ∈ Z denote by Pk the orthogonal projection Pk =
∑nk

l=1〈·, φlk〉φlk onto the
finite-dimensional subspace Wk = span{φlk}nk

l=1 of W .
We consider a linear system

ẋ = Ax+ Bu+ Ev, x(0) = x0 ∈ X,

e = Cx+Du+ Fv,

where x(t) ∈ X is the state of the system, e(t) ∈ Y is the regulation error, and
u(t) ∈ U is the input for t ≥ 0. We assume that A : D(A) ⊂ X → X generates a C0-
semigroup on X , and the other operators are bounded, B ∈ L(U,X), C ∈ L(X,Y ),
D ∈ L(U, Y ), E ∈ L(W,X), and F ∈ L(W,Y ). For λ ∈ ρ(A) the transfer function of
the plant is P (λ) = CR(λ,A)B+D ∈ L(U, Y ) and we assume that σ(A)∩σ(S) = ∅.
Here v(t) ∈W is the state of the exosystem

v̇ = Sv, v(0) = v0 ∈ W

on W . The dynamic feedback controller on a Banach space Z is of the form

ż = G1z + G2e, z(0) = z0 ∈ Z,

u = Kz,

where G1 : D(G1) ⊂ Z → Z generates a C0-semigroup on Z, G2 ∈ L(Y, Z), and
K ∈ L(Z,U). The closed-loop system on Xe = X×Z with state xe(t) = (x(t), z(t))T

is given by

ẋe = Aexe +Bev, xe(0) = xe0 = (x0, z0)
T ,

e = Cexe +Dev,

where Ce = [C DK], De = F ,

Ae =

[
A BK

G2C G1 + G2DK

]
, and Be =

[
E

G2F

]
.

The operator Ae : D(A)×D(G1) ⊂ Xe → Xe generates a C0-semigroup TAe(t) on Xe.
Since σ(S) = {iωk}k ⊂ iR, we have 1 ∈ ρ(S). For m ∈ N0 the Sobolev space

of order m associated to S is the Banach space Wm = (D(Sm), ‖·‖m), with norm
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‖v‖m = ‖(S − I)mv‖W for v ∈ D(Sm) [5, sect. II.5]. With this definition we have
W 0 =W and ‖·‖0 = ‖·‖W . We also have that

D(Sm) =

{
v ∈W

∣∣ ∑
k∈Z

ω2m
k ‖Pkv‖2 <∞

}

and the function hm : Wm → R defined such that hm(v)2 =
∑

k∈Z
(1 + ω2

k)
m‖Pkv‖2

for all v ∈ D(Sm) is a norm which is equivalent to ‖·‖m.

3. Output regulation. The output regulation problem on Wm (ORPm) is
stated as follows.

Problem 1 (Output regulation problem onWm
). Let m ∈ N0. Find (G1,G2,K)

such that the following are satisfied:
• The closed-loop system operator Ae generates a strongly stable C0-semigroup
on Xe.

• For all initial states v0 ∈Wm and xe0 ∈ Xe the regulation error goes to zero
asymptotically, i.e., limt→∞ e(t) = 0.

The problem statement contains two parts. The first requires the stabilization of
the closed-loop system and the second that the regulation error goes to zero asymptot-
ically. In this paper we are concerned only about the regulation part of the problem.
To this end, we do not consider if and how the closed-loop system can be stabilized
strongly but assume that it can be done. In [9] Hämäläinen and Pohjolainen show how
and under what assumptions the closed-loop system can be stabilized if the exosystem
has a diagonal system operator.

In this section we show that the solution of an associated Sylvester equation
describes the asymptotic behavior of the closed-loop system and that the solvability of
the output regulation problem can be characterized by the solvability of this equation
with an additional regulation constraint. Together this Sylvester equation and the
regulation constraint are called the regulator equations.

Let m ∈ N0 be fixed for the rest of the section. The next assumption gives
conditions for the solvability of the regulator equations.

Assumption 1. Assume that for every k ∈ Z and l ∈ {1, . . . , nk} we have
Beφ

l
k ∈ R(iωkI −Ae)

nk−l+1 and

sup
‖x′

e‖≤1

∑
k∈Z

1

(1 + ω2
k)

m

nk∑
l=1

∣∣∣∣∣∣
l∑

j=1

(−1)l−j〈R(iωk, Ae)
l+1−jBeφ

j
k, x

′
e〉
∣∣∣∣∣∣
2

<∞,

where x′e ∈ X ′
e, the dual space of Xe.

Theorem 3.1 gives a characterization for the solvability of the output regulation
problem.

Theorem 3.1. Assume (G1,G2,K) are such that Ae generates a strongly sta-
ble C0-semigroup on Xe and that Assumption 1 is satisfied. Then the following are
equivalent:

(a) The controller (G1,G2,K) solves the output regulation problem on Wm.
(b) There exists a unique operator Σ ∈ L(Wm, Xe) such that Σ(Wm+1) ⊂ D(Ae)

and

ΣS = AeΣ+Be,(3.1a)

0 = CeΣ+De,(3.1b)

where the equations are considered on Wm+1.



INTERNAL MODEL THEORY 4759

Theorem 3.1 shows the important result that the smoothness of the reference
and disturbance signals has a direct effect on the conditions for the solvability of the
output regulation problem. More precisely, if we want to regulate and reject signals
which correspond to the initial states v ∈ Wm of the exosystem for some m, it is
sufficient for the solvability of the output regulation problem that Assumption 1 is
satisfied for this m and that the regulator equations (3.1) have a solution which is in
L(Wm, Xe).

The proof of Theorem 3.1 is based on the following two lemmas.

Lemma 3.2. If Assumption 1 is satisfied, the Sylvester equation ΣS = AeΣ+Be

on Wm+1 has a unique solution Σ ∈ L(Wm, Xe) such that for all v ∈Wm

Σv =
∑
k∈Z

nk∑
l=1

〈v, φlk〉
l∑

j=1

(−1)l−jR(iωk, Ae)
l+1−jBeφ

j
k.

Proof. For brevity we denote Rk = R(iωk, Ae). Since the function hm in section 2
defines a norm equivalent to ‖·‖m, there exists C > 0 such that hm(v) ≤ C‖v‖m.
Using the Cauchy–Schwarz inequality twice we see that for all v ∈Wm

‖Σv‖ = sup
‖x′

e‖≤1

|〈Σv, x′e〉| ≤ sup
‖x′

e‖≤1

∑
k∈Z

nk∑
l=1

|〈v, φlk〉|
∣∣∣∣∣∣

l∑
j=1

(−1)l−j〈Rl+1−j
k Beφ

j
k, x

′
e〉
∣∣∣∣∣∣

≤ sup
‖x′

e‖≤1

∑
k∈Z

‖Pkv‖ (1 + ω2
k)

m
2

(1 + ω2
k)

m
2
·

⎛
⎜⎝ nk∑

l=1

∣∣∣∣∣∣
l∑

j=1

(−1)l−j〈Rl+1−j
k Beφ

j
k, x

′
e〉
∣∣∣∣∣∣
2
⎞
⎟⎠

1
2

≤ C‖v‖m ·

⎛
⎜⎝ sup

‖x′
e‖≤1

∑
k∈Z

1

(1 + ω2
k)

m

nk∑
l=1

∣∣∣∣∣∣
l∑

j=1

(−1)l−j〈Rl+1−j
k Beφ

j
k, x

′
e〉
∣∣∣∣∣∣
2
⎞
⎟⎠

1
2

and thus Σ ∈ L(Wm, Xe). Let s ∈ ρ(Ae) and v ∈ Wm+1. Denote Rs = R(s, Ae).
Now

R(s, A)Σ(S − sI)v =
∑
k∈Z

nk∑
l=1

〈(S − sI)v, φlk〉
l∑

j=1

(−1)l−jRsR
l+1−j
k Bφjk.

Using the definition of S we see that the terms in the sum over k ∈ Z are equal to

nk−1∑
l=1

l∑
j=1

(
〈v, φlk〉(−1)l−j(iωk − s)RsR

l+1−j
k Beφ

j
k + 〈v, φl+1

k 〉(−1)l−jRsR
l+1−j
k Beφ

j
k

)

+ 〈v, φnk
nk
〉

nk∑
j=1

(−1)nk−j(iωk − s)RsR
nk+1−j
k Beφ

j
k.



4760 L. PAUNONEN AND S. POHJOLAINEN

Using the resolvent equation we see that this in turn is equal to

nk−1∑
j=1

⎛
⎝nk−1∑

l=j

〈v, φlk〉(−1)l−jRsR
l−j
k Beφ

j
k +

nk∑
l=j+1

〈v, φlk〉(−1)l−j+1RsR
l−j
k Beφ

j
k

⎞
⎠

−
nk−1∑
j=1

nk−1∑
l=j

〈v, φlk〉(−1)l−jRl+1−j
k Beφ

j
k − 〈v, φnk

k 〉
nk∑
j=1

(−1)nk−jRnk+1−j
k Beφ

j
k

+ 〈v, φnk

k 〉
nk∑
j=1

(−1)nk−jRsR
nk−j
k Beφ

j
k

= −
nk∑
l=1

l∑
j=1

〈v, φlk〉(−1)l−jRl+1−j
k Beφ

j
k +

nk∑
j=1

〈v, φjk〉RsBeφ
j
k.

This implies

R(s, Ae)Σ(S − sI)v =
∑
k∈Z

⎛
⎝−

nk∑
l=1

l∑
j=1

〈v, φlk〉(−1)l−jRl+1−j
k Beφ

j
k +

nk∑
j=1

〈v, φjk〉RsBeφ
j
k

⎞
⎠

= −Σv +R(s, Ae)Bev

or Σv = R(s, Ae)Bev−R(s, Ae)Σ(S − sI)v. This shows that Σ(Wm+1) ⊂ D(Ae) and

(sI −Ae)Σv = Bev − Σ(S − sI)v.

This concludes that ΣS = AeΣ+Be on Wm+1.
Finally, we will show that Σ is unique. Assume Σ1 ∈ L(Wm, Xe) such that

Σ1(W
m+1) ⊂ D(Ae) and Σ1S = AeΣ1 +Be on Wm+1. Then for all k ∈ Z we have

Beφ
1
k = (iωkI −Ae)Σ1φ

1
k, Beφ

2
k = (iωkI −Ae)Σ1φ

2
k +Σ1φ

1
k, . . . ,

Beφ
nk

k = (iωkI −Ae)Σ1φ
nk

k +Σ1φ
nk−1
k

since Sφ1k = iωkφ
1
k and Sφlk = iωkφ

l
k +φ

l−1
k for l ∈ {2, . . . , nk}. A direct computation

shows that for all l ∈ {1, . . . , nk} we have Σ1φ
l
k =

∑l
j=1(−1)l−jR(iωk, Ae)

l+1−jBeφ
j
k

and thus for all v ∈Wm

Σ1v =
∑
k∈Z

nk∑
l=1

〈v, φlk〉Σ1φ
l
k =

∑
k∈Z

nk∑
l=1

〈v, φlk〉
l∑

j=1

(−1)l−jR(iωk, Ae)
l+1−jBeφ

j
k = Σv.

This concludes that Σ1 = Σ.
The next lemma shows that the solution of the Sylvester equation (3.1a) describes

the asymptotic behavior of the closed-loop system. This was proved in [9] for a
diagonal operator S and a bounded operator Σ. We extend the proof to our case.

Lemma 3.3. Assume Σ ∈ L(Wm, Xe) is such that Σ(Wm+1) ⊂ D(Ae) and

(3.2) ΣS = AeΣ+Be

on Wm+1. Then for all t ≥ 0 and for all initial values xe0 ∈ Xe and v0 ∈ Wm the
regulation error e(t) is given by

e(t) = CeTAe(t)(xe0 − Σv0) + (CeΣ +De)v(t),
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where TAe(t) is the C0-semigroup generated by Ae on Xe, and v(t) is the state of the
exosystem, v(t) = TS(t)v0. Furthermore, if TAe(t) is strongly stable, we have for the
state of the closed-loop system xe(t) and the regulation error e(t) that

(3.3) lim
t→∞‖xe(t)− Σv(t)‖ = 0 and lim

t→∞‖e(t)− (CeΣ+De)v(t)‖ = 0.

Proof. We will first show that for xe0 ∈ Xe and v0 ∈ Wm the state of the
closed-loop system is given by

(3.4) xe(t) = TAe(t)(xe0 − Σv0) + Σv(t) ∀t ≥ 0,

where v(t) = TS(t)v0 is the state of the exosystem. Let xe0 ∈ Xe, v0 ∈ Wm, and
t > 0. The state of the closed-loop system is given by

xe(t) = TAe(t)xe0 +

∫ t

0

TAe(t− s)Bev(s)ds ∀t ≥ 0.

Using (3.2) we see that for any w ∈Wm+1

TAe(t− s)BeTS(s)w = TAe(t− s)(ΣS −AeΣ)TS(s)w

= −TAe(t− s)AeΣTS(s)w + TAe(t− s)ΣSTS(s)w =
d

ds
(TAe(t− s)ΣTS(s)w)

and thus

(3.5)

∫ t

0

TAe(t− s)BeTS(s)wds = ΣTS(t)w − TAe(t)Σw.

Since the operators on both sides of this equation are in L(Wm, Xe) and since Wm+1

is dense in Wm, (3.5) also holds for any w ∈ Wm. This implies that

xe(t) = TAe(t)xe0 +ΣTS(t)v0 − TAe(t)Σv0 = TAe(t)(xe0 − Σv0) + Σv(t).

The regulation error is given by e(t) = Cexe(t) +Dev(t), and using (3.4) we get

e(t) = Cexe(t) +Dev(t) = CeTAe(t)(xe0 − Σv0) + (CeΣ+De)v(t).

If the semigroup TAe(t) is strongly stable, we also see that the limits in (3.3) are
satisfied.

Finally, we will present the proof of Theorem 3.1.
Proof of Theorem 3.1. We will first prove that (b) implies (a). Assume (b) holds

and that there exists an operator Σ ∈ L(Wm, Xe) with Σ(Wm+1) ⊂ D(Ae) satisfying
the regulator equations (3.1). Since TAe(t) is strongly stable we have from Lemma 3.3
that for all initial values xe0 ∈ Xe and v0 ∈Wm

lim
t→∞‖e(t)‖ = lim

t→∞‖e(t)− (CeΣ +De)v(t)‖ = 0

since CeΣ +De = 0. Thus the controller solves the ORPm.
It remains to prove that (a) implies (b). Assume the controller (G1,G2,K) solves

the ORPm. From Lemma 3.2 we see that there exists a unique Σ ∈ L(Wm, Xe) with
Σ(Wm+1) ⊂ D(Ae) satisfying (3.1a). Since the controller solves the ORPm, using
Lemma 3.3 we have that for all xe0 ∈ Xe and v0 ∈Wm

‖(CeΣ +De)TS(t)v0‖ ≤ ‖(CeΣ+De)TS(t)v0 − e(t)‖+ ‖e(t)‖ t→∞−→ 0
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and thus limt→∞‖(CeΣ + De)TS(t)v0‖ = 0 for every v0 ∈ Wm. Let k ∈ Z and

l ∈ {1, . . . , nk}. We have TS(t)φ
l
k = eiωkt

∑l
j=1

tl−j

(l−j)!φ
j
k for all t ≥ 0. Because of this,

0 = lim
t→∞‖(CeΣ +De)TS(t)φ

1
k‖ = lim

t→∞‖eiωkt(CeΣ+De)φ
1
k‖ = ‖(CeΣ +De)φ

1
k‖

and thus (CeΣ +De)φ
1
k = 0. Using this we get

0 = lim
t→∞‖(CeΣ+De)TS(t)φ

2
k‖ = lim

t→∞
∥∥eiωkt

(
t(CeΣ+De)φ

1
k + (CeΣ+De)φ

2
k

)∥∥
= ‖(CeΣ +De)φ

2
k‖,

which implies (CeΣ+De)φ
2
k = 0. Continuing this we eventually get

0 = lim
t→∞‖(CeΣ+De)TS(t)φ

nk

k ‖

= lim
t→∞

∥∥∥∥∥∥
nk−1∑
j=1

tnk−j

(nk − j)!
(CeΣ +De)φ

j
k + (CeΣ +De)φ

nk

k

∥∥∥∥∥∥ = ‖(CeΣ+De)φ
nk

k ‖

and thus (CeΣ + De)φ
nk

k = 0. This concludes that (CeΣ + De)φ
l
k = 0 for every

l ∈ {1, . . . , nk}, and since k ∈ Z was arbitrary and {φlk} are a basis of W , we have
that CeΣ+De = 0. Thus also (3.1b) is satisfied.

We conclude this section by showing that the convergence of the series in As-
sumption 1 is in fact necessary for the operator Σ in Lemma 3.2 to be in L(Wm, Xe).

Lemma 3.4. If the operator Σ defined in Lemma 3.2 is in L(Wm, Xe), then
Assumption 1 is satisfied.

Proof. Assume Σ ∈ L(Wm, Xe) and denote Rk = R(iωk, Ae) for brevity. There
exists M ≥ 0 such that for all v ∈Wm we have

(3.6) sup
‖x′

e‖≤1

∣∣∣∣∣∣
∑
k∈Z

nk∑
l=1

〈v, φlk〉
l∑

j=1

(−1)l−j〈Rl+1−j
k Beφ

j
k, x

′
e〉
∣∣∣∣∣∣ = ‖Σv‖ ≤M‖v‖m.

Let x′e ∈ X ′
e be such that ‖x′e‖ ≤ 1 and let N1, N2 ∈ N. Choose v ∈ Wm such that if

−N1 ≤ k ≤ N2, then

〈v, φlk〉 =
1

(1 + ω2
k)

m

l∑
j=1

(−1)l−j〈Rl+1−j
k Beφ

j
k, x

′
e〉

and 〈v, φlk〉 = 0 otherwise. Since the function hm in section 2 defines a norm equivalent
to ‖·‖m, there exists C > 0 such that ‖v‖m ≤ Chm(v). We have from (3.6) that

N2∑
k=−N1

1

(1 + ω2
k)

m

nk∑
l=1

∣∣∣∣∣∣
l∑

j=1

(−1)l−j〈Rl+1−j
k Beφ

j
k, x

′
e〉
∣∣∣∣∣∣
2

≤ ‖Σv‖ ≤M‖v‖m

≤ CMhm(v) = CM

⎛
⎜⎝ N2∑

k=−N1

(1 + ω2
k)

m

(1 + ω2
k)

2m

nk∑
l=1

∣∣∣∣∣∣
l∑

j=1

(−1)l−j〈Rl+1−j
k Beφ

j
k, x

′
e〉
∣∣∣∣∣∣
2
⎞
⎟⎠

1
2
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and thus

N2∑
k=−N1

1

(1 + ω2
k)

m

nk∑
l=1

∣∣∣∣∣∣
l∑

j=1

(−1)l−j〈Rl+1−j
k Beφ

j
k, x

′
e〉
∣∣∣∣∣∣
2

≤ C2M2.

Since this holds for all N1, N2, we see by letting N1, N2 → ∞ that

∑
k∈Z

1

(1 + ω2
k)

m

nk∑
l=1

∣∣∣∣∣∣
l∑

j=1

(−1)l−j〈Rl+1−j
k Beφ

j
k, x

′
e〉
∣∣∣∣∣∣
2

≤ C2M2,

and since x′e ∈ X ′
e with ‖x′e‖ ≤ 1 was arbitrary, we see that the supremum of the

left-hand side of the previous inequality over all x′e ∈ X ′
e with ‖x′e‖ ≤ 1 must be less

than or equal to C2M2. This concludes the proof.

4. Robust output regulation and internal model structure. In this sec-
tion we consider robust output regulation. The robust output regulation problem on
Wm (RORPm) is stated as follows.

Problem 2 (Robust output regulation problem on Wm
). Let m ∈ N0. Find

(G1,G2,K) such that the following are satisfied:
• The closed-loop system operator Ae generates a strongly stable C0-semigroup
on Xe.

• For all initial states v0 ∈Wm and xe0 ∈ Xe the regulation error goes to zero
asymptotically, i.e., limt→∞ e(t) = 0.

• If the parameters (A,B,C,D,E, F ) are perturbed to (A′, B′, C′, D′, E′, F ′) in
such a way that the new closed-loop system operator A′

e generates a strongly
stable C0-semigroup and Assumption 1 is satisfied, then limt→∞ e(t) = 0 for
all initial states v0 ∈Wm and xe0 ∈ Xe.

The formula

(4.1) e(t) = CeTAe(t)(xe0 − Σv0) + (CeΣ+De)v(t)

in Lemma 3.3 gives us valuable insight into the behavior of the regulation error. It
shows that the regulation error e(t) consists of two somewhat independent parts. The
first term depends only on the behavior of the closed-loop system and not of the
exosystem. This part goes to zero for all initial values xe0 and v0 if the closed-loop
system is strongly stable. On the other hand, the second term depends only on the
behavior of the exosystem and not of the closed-loop system. This part goes to zero
for all initial states v0 of the exosystem if the regulation constraint CeΣ +De = 0 is
satisfied. The formula (4.1) is also independent of the operators Ae, Be, Ce, and De in
the sense that it holds for all such operators whenever Σ is a solution of the Sylvester
equation ΣS = AeΣ + Be. This observation allows us to consider the robust output
regulation as a problem consisting of two parts. For this we denote by A′

e, B
′
e, C

′
e,

and D′
e the operators of the perturbed closed-loop system, i.e., the closed-loop system

consisting of the perturbed system and the controller.
If the operators of the system are perturbed, we first encounter the problem

of robust stabilization related to the first term in (4.1). If the strong stability of
the closed-loop system is preserved and Assumption 1 is satisfied for the perturbed
operators, we know that the Sylvester equation

(4.2) Σ′S = A′
eΣ

′ +B′
e
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has a unique bounded solution, and the formula (4.1) describes the behavior of the
regulation error of the perturbed system. Since the perturbed closed-loop system is
strongly stable, the first term in (4.1) still approaches zero asymptotically.

The second part of the robust output regulation problem is the problem of robust
regulation related to the second term in (4.1). This problem consists of choosing the
controller parameters in such a way that the regulation error at the dynamic steady
state of the closed-loop system is zero. This steady state error is precisely the second
term in (4.1). This term must approach zero for all initial values v0, which is achieved
if and only if C′

eΣ
′ + D′

e = 0, where Σ′ is the solution of the perturbed Sylvester
equation (4.2). We can express this requirement more mathematically by stating that
the perturbations preserving the closed-loop stability need to satisfy

(4.3) Σ′S = A′
eΣ

′ +B′
e ⇒ C′

eΣ
′ +D′

e = 0.

In the above terminology a controller solves the robust output regulation problem if
it solves both robust stabilization and robust regulation parts. In this paper we are
interested only in the robust regulation part and do not consider the problem of stabi-
lizing the closed-loop system. To this end, motivated by the previous observations, we
define a robustly regulating controller, i.e., a controller solving the robust regulation
part of the robust output regulation problem, in the following way.

Definition 4.1. A controller (G1,G2,K) is called robustly regulating if the
condition (4.3) is satisfied for all operators A′

e, B
′
e, C

′
e, D

′
e of the closed-loop system

and Σ′ ∈ L(Wm, Xe) with Σ′(Wm+1) ⊂ D(A′
e).

We will now give the definition of the IMS of Immonen [11]. We extend the
original definition in which the operator Γ was assumed to be bounded.

Definition 4.2 (Internal model structure (IMS)). A controller (G1,G2,K) is
said to have IMS if

(4.4) ∀ Γ,Δ : ΓS = G1Γ + G2Δ ⇒ Δ = 0,

where Γ ∈ L(Wm, Z) with Γ(Wm+1) ⊂ D(G1) and Δ ∈ L(W,Y ).

Theorem 4.3 shows that the robust regulation property of a controller is equivalent
to the IMS.

Theorem 4.3. A controller (G1,G2,K) is robustly regulating on Wm if and only
if it has IMS on Wm.

Proof. Assume the controller (G1,G2,K) is robustly regulating. Let Γ ∈ L(Wm, Z)
and Δ ∈ L(W,Y ) be such that Γ(Wm+1) ⊂ D(G1) and ΓS = G1Γ + G2Δ. We need
to show that Δ = 0. Let A, B, C, and D be any operators and choose E = −BKΓ

and F = Δ − DKΓ. Then Σ =
[
0, Γ

]T ∈ L(Wm, Xe) is an operator such that
Σ(Wm+1) ⊂ D(A) ×D(G1) = D(Ae) and for all v ∈Wm+1 we have

ΣSv =

[
0Sv
ΓSv

]
=

[
A0v +BKΓv

G2C0v + G1Γv + G2DKΓv

]
+

[ −BKΓv
G2(Δv −DKΓv)

]
= AeΣv +Bev

and thus ΣS = AeΣ+Be on Wm+1. Condition (4.3) now implies that for all v ∈Wm

0 = CeΣv +Dev = C0v +DKΓv + (Δ−DKΓ)v = Δv.

SinceWm is dense inW , this concludes that Δ = 0 and thus the controller (G1,G2,K)
has IMS.
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Assume now that the controller (G1,G2,K) has IMS and Ae, Be, and Σ ∈
L(Wm, Xe) are operators such that Σ(Wm+1) ⊂ D(Ae) and ΣS = AeΣ+Be. We will
now show that CeΣ+De = 0.

Since Xe = X × Z and D(Ae) = D(A) × D(G1), the operator Σ is of form

Σ =
[
Π, Γ

]T
, where Π ∈ L(Wm, X) and Γ ∈ L(Wm, Z) are operators such that

Π(Wm+1) ⊂ D(A) and Γ(Wm+1) ⊂ D(G1). Now ΣS = AeΣ+Be implies that for all
v ∈ Wm+1 we have[
ΠSv
ΓSv

]
=

[
A BK

G2C G1 + G2DK

] [
Πv
Γv

]
+

[
Ev

G2Fv

]
=

[
AΠv +BKΓv + Ev

G1Γv + G2(CΠ+DKΓ + F )v

]
.

The second line implies that we have ΓS = G1Γ+G2(CΠ+DKΓ+F ) on Wm+1, and
thus we have from (4.4) that 0 = CΠ +DKΓ + F = CeΣ +De. This concludes the
proof.

The IMS is independent of the operator K. This operator is needed only in the
robust stabilization part of the robust output regulation problem.

We saw in the beginning of this section that in order to solve the regulation part
of the problem, we must choose the controller parameter such that (4.3) holds for all
perturbations preserving the closed-loop stability. This way it would seem that the
solution to the regulation part of the problem depends on the stabilization part, since
the stabilization part determines the perturbations for which we need to consider the
condition (4.3). On the other hand, in Definition 4.1 we required that (4.3) is satisfied
for all possible perturbations of the operators. This choice was made because it turns
out that a controller actually satisfies (4.3) for all perturbations preserving the closed-
loop stability if and only if it satisfies it for arbitrary perturbations. This is shown by
the next lemma.

Proposition 4.4. Let (G1,G2,K) be the controller. If there exist operators
(A,B,C,D,E, F ) such that the closed-loop system is strongly stable, then the following
are equivalent:

(a) Condition (4.3) is satisfied for all Ae, Be, Ce, De, and Σ ∈ L(Wm, Xe) with
Σ(Wm+1) ⊂ D(Ae) such that the closed-loop system is stable.

(b) Condition (4.3) is satisfied for all Ae, Be, Ce, De, and Σ ∈ L(Wm, Xe) with
Σ(Wm+1) ⊂ D(Ae).

Proof. It is sufficient to show that if (a) is satisfied, then the controller has IMS.
This can be seen directly from the first part of the proof of Lemma 4.3 if we choose
operators A, B, C, and D such that the closed-loop system is stable. Because the
operatorsE and F do not appear in the operator Ae, they do not affect the closed-loop
stability, and the rest of the proof can be used as it is.

5. The G-conditions. In this section we compare the IMS defined in the previ-
ous section to the G-conditions by Hämäläinen and Pohjolainen [9, 17]. In the previous
references the signal generator was assumed to be diagonal or finite-dimensional, re-
spectively. We first extend the definition of the G-conditions for an infinite-dimensional
signal generator with nontrivial Jordan block structure.

Definition 5.1 (G-conditions). A controller (G1,G2,K) is said to satisfy the
G-conditions related to the exosystem S if

R(iωkI − G1) ∩R(G2) = {0} ∀k ∈ Z,(5.1a)

N (G2) = {0},(5.1b)

and

(5.1c) N (iωkI − G1)
dk−1 ⊂ R(iωkI − G1) ∀k ∈ Z.
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The G-conditions depend on the exosystem S. Its contribution to the conditions
are the eigenvalues iωk ∈ σ(S) and the dimensions dk of the largest Jordan blocks
associated to them.

Let m ∈ N0 be arbitrary and fixed. The following theorem is the main result of
this section. It states that under suitable assumptions the controller (G1,G2,K) has
IMS if and only if it satisfies the G-conditions.

Theorem 5.2. Let (G1,G2,K) be a controller such that Z = R(iωkI−G1)+R(G2)
for all k ∈ Z. Then it has IMS if and only if it satisfies the G-conditions.

It is worthwhile to note that the definition of the IMS depends on the value m and
the space Wm on which the robust output regulation problem is considered, but the
G-conditions are independent of this. Thus Theorem 5.2 implies that if the controller
(G1,G2,K) has IMS for some value of m, then it has it for all m ∈ N0.

Theorem 5.2 extends the results of [17, 9, 14]. In the first two references it was
shown that a controller satisfying the G-conditions has IMS, but the signal generator
was assumed to be finite-dimensional and infinite-dimensional with a diagonal system
operator, respectively. For an exosystem with a diagonal system operator the con-
dition (5.1c) becomes redundant. In [14] it was shown that if the exosystem has a
diagonal system operator, then the controller has IMS if and only if it satisfies the
G-conditions.

We prove the theorem in parts. Lemmas 5.3, 5.4, and 5.5 prove that the IMS of
the controller implies that it satisfies the G-conditions. Lemma 5.6 shows that also
the converse holds.

Lemma 5.3. If the controller (G1,G2,K) has IMS, then (5.1a) is satisfied.
Proof. Let k ∈ Z and let w ∈ R(iωkI − G1) ∩R(G2). Then there exist z ∈ D(G1)

and y ∈ Y such that w = (iωkI −G1)z = G2y. Choose Γ = 〈·, φnk

k 〉z ∈ L(Wm, Z) and
Δ = 〈·, φnk

k 〉y ∈ L(W,Y ). Now R(Γ) ⊂ D(G1). For any v ∈ Wm+1

(ΓS − G1Γ)v = 〈Sv, φnk

k 〉z − 〈v, φnk

k 〉G1z = 〈Skv, φ
nk

k 〉z − 〈v, φnk

k 〉G1z

=

〈
iωk〈v, φ1k〉φ1k +

nk∑
l=2

〈v, φlk〉(iωkφ
l
k + φl−1

k ), φnk

k

〉
z − 〈v, φnk

k 〉G1z

= 〈v, φnk

k 〉(iωkI − G1)z = 〈v, φnk

k 〉G2y = G2(〈v, φnk

k 〉y) = G2Δv.

Thus we have ΓS = G1Γ + G2Δ and our assumption implies that Δ = 0. Now
0 = Δφnk

k = 〈φnk

k , φnk

k 〉y = y and thus also w = G2y = 0.
Lemma 5.4. If the controller (G1,G2,K) has IMS, then (5.1b) is satisfied.
Proof. Let y ∈ N (G2) and let φ ∈ D(S) be such that ‖φ‖ = 1. Choose the

operators Γ = 0 ∈ L(Wm, Z) and Δ = 〈·, φ〉y. Then R(Γ) = {0} ⊂ D(G1) and for all
v ∈ Wm+1 we have ΓSv = 0 and G1Γv + G2Δv = 0 + 〈v, φ〉G2y = 0. Thus we have
ΓS = G1Γ+ G2Δ and our assumption implies Δ = 0. Now 0 = Δφ = 〈φ, φ〉y = y and
thus N (G2) = {0}.

To prove the condition (5.1c) we need to assume that Z = R(iωkI −G1) +R(G2)
for all k ∈ Z.

Lemma 5.5. If Z = R(iωkI − G1) + R(G2) for all k ∈ Z, and if the controller
(G1,G2,K) has IMS, then (5.1c) is satisfied.

Proof. Since dk = max
{
nl

∣∣ l ∈ Z, ωl = ωk

}
, it is sufficient to prove that for all

k ∈ Z we haveN (iωkI−G1)
nk−1 ⊂ R(iωkI−G1). Let k ∈ Z and z ∈ N (iωkI−G1)

nk−1.
Since Z = R(iωkI − G1) +R(G2), there exist z1 ∈ D(G1) and y ∈ Y such that

(5.2) z = (iωkI − G1)z1 + G2y.
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Choose Γ ∈ L(Wm, Z) and Δ ∈ L(W,Y ) such that Δ = (−1)nk〈·, φnk

k 〉y and

Γ =

(
nk−1∑
l=1

(−1)l−1〈·, φlk〉(iωkI − G1)
nk−1−lz

)
+ (−1)nk−1〈·, φnk

k 〉z1.

Since z1 ∈ D(G1) and (iωkI − G1)
lz ∈ D(G1) for all l ∈ {0, . . . , nk − 2}, we have

R(Γ) ⊂ D(G1). Now for l ∈ {2, . . . , nk − 1} we have

(ΓS − G1Γ)φ
1
k = (iωkI − G1)Γφ

1
k = (iωkI − G1)

nk−1z = 0 = G2Δφ
1
k,

(ΓS − G1Γ)φ
l
k = (iωkI − G1)Γφ

l
k + Γφl−1

k = (−1)l−1(iωkI − G1)(iωkI − G1)
nk−1−lz

+ (−1)l−2(iωkI − G1)
nk−1−(l−1)z = 0 = G2Δφ

l
k,

and finally using (5.2)

(ΓS − G1Γ)φ
nk

k = (iωkI − G1)Γφ
nk

k + Γφnk−1
k = (−1)nk−1(iωkI − G1)z1 + (−1)nk−2z

= (−1)nk−1 ((iωkI − G1)z1 − z) = (−1)nk−1(−G2y)

= G2 ((−1)nk〈φnk

k , φnk

k 〉y) = G2Δφ
nk

k .

This concludes that ΓSv = G1Γv + G2Δv for all v ∈ span{φlk}nk

l=1. Since clearly
Γφlj = 0 and Δφlj = 0 for all j �= k and l ∈ {1, . . . , nj}, we have that for all v ∈Wm+1

ΓSv = ΓPkSv = ΓSPkv = G1ΓPkv + G2ΔPkv = G1Γv + G2Δv

and thus ΓS = G1Γ + G2Δ on Wm+1. Now our assumption implies that Δ = 0
and thus 0 = (−1)nk−1Δφnk

k = ‖φnk

k ‖2y = y. Substituting this into (5.2) we get
z = (iωkI − G1)z1, which concludes that z ∈ R(iωkI − G1).

Finally, Lemma 5.6 proves that if the controller satisfies the G-conditions, then it
has IMS.

Lemma 5.6. If a controller (G1,G2,K) satisfies the G-conditions, then it has
IMS.

Proof. Let Γ ∈ L(Wm, Z) and Δ ∈ L(W,Y ) be such that Γ(Wm+1) ⊂ D(G1) and

(5.3) ΓS = G1Γ + G2Δ.

Let k ∈ Z. Applying both sides of (5.3) to φ1k we obtain (iωkI − G1)Γφ
1
k = G2Δφ

1
k.

Now (5.1a) and (5.1b) imply that Δφ1k = 0 and (iωkI − G1)Γφ
1
k = 0, and if nk ≥ 2,

we see using the condition (5.1c) that

Γφ1k ∈ N (iωkI − G1) ⊂ N (iωkI − G1)
dk−1 ⊂ R(iωkI − G1).

Applying both sides of (5.3) to φ2k we obtain (iωkI − G1)Γφ
2
k + Γφ1k = G2Δφ

2
k. Since

Γφ1k ∈ R(iωkI−G1), the conditions (5.1a) and (5.1b) imply that we have Δφ2k = 0 and
(iωkI−G1)Γφ

2
k+Γφ1k = 0. Since Γφ1k ∈ D(G1), we have Γφ

2
k ∈ D(iωkI−G1)

2. Applying
(iωkI − G1) to both sides of the latter equation and using Γφ1k ∈ N (iωkI − G1), we
obtain (iωkI − G1)

2Γφ2k = 0. If nk ≥ 3, the condition (5.1c) implies

Γφ2k ∈ N (iωkI − G1)
2 ⊂ N (iωkI − G1)

dk−1 ⊂ R(iωkI − G1).

Continuing the same procedure we see that Δφlk = 0 and

Γφlk ∈ N (iωkI − G1)
l ⊂ N (iωkI − G1)

dk−1 ⊂ R(iωkI − G1)
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for all l ∈ {1, . . . , nk − 1}. Applying both sides of (5.3) to φnk

k we obtain

(iωkI − G1)Γφ
nk

k + Γφnk−1
k = G2Δφ

nk

k ,

and the conditions (5.1a) and (5.1b) imply that Δφnk

k = 0. Since k ∈ Z was arbitrary,
we have shown that Δφlk = 0 for all k ∈ Z and l ∈ {1, . . . , nk}. Since {φlk} is a basis
of W we have Δ = 0.

This concludes the proof of Theorem 5.2. We conclude this section by looking
more closely at the assumption R(iωkI − G1) + R(G2) = Z for all k ∈ Z. In finite-
dimensional control theory this is precisely the condition that all the modes of the
exosystem S in the controller G1 are controllable by G2. Since iωk ∈ iR for all
k ∈ Z, this assumption is always satisfied in the finite-dimensional case if the controller
stabilizes the closed-loop system. In the infinite-dimensional case the situation is more
complicated. Lemma 5.7 gives a sufficient condition for the assumption to hold.

Lemma 5.7. If σ(Ae)∩σ(S) = ∅, then R(iωkI −G1)+R(G2) = Z for all k ∈ Z.
Proof. Let k ∈ Z and z ∈ Z. We need to show that there exist z0 ∈ D(G1)

and y ∈ Y such that z = (iωkI − G1)z0 + G2y. Since σ(Ae) ∩ σ(S) = ∅, we have
iωk ∈ ρ(Ae) and iωkI −Ae is surjective. Thus there exist x1 ∈ D(A) and z1 ∈ D(G1)
such that[

0
z

]
= (iωkI −Ae)

[
x1
z1

]
=

[
(iωkI −A)x1 −BKz1

−G2Cx1 + (iωkI − G1)z1 − G2DKz1

]
.

The second equation shows that z = (iωkI −G1)z1 + G2(−Cx1 −DKz1) and thus we
can choose z0 = z1 ∈ D(G1) and y = −Cx1 −DKz1 ∈ Y .

6. The p-copy internal model. In this section we generalize the definition of
the p-copy internal model of Francis and Wonham [6] for distributed parameter sys-
tems. We also show that under certain assumptions this property is equivalent to the
G-conditions presented in section 5. In the view of the results presented in the pre-
vious sections this extends the internal model principle of classical finite-dimensional
control theory for distributed parameter systems by concluding that under suitable
assumptions a controller is robustly regulating if and only if it contains a p-copy in-
ternal model of the exosystem. This is the main result of the paper and is presented
in Theorem 6.9.

The classical definition states that if dimY = p, a controller incorporates a p-copy
internal model of the signal generator if the minimal polynomial of S divides at least p
invariant factors of G1. This definition cannot be generalized for infinite-dimensional
operators G1 and S, but the p-copy internal model has the following equivalent defi-
nition [6]: A controller contains a p-copy internal model of the exosystem if whenever
s ∈ σ(S) is an eigenvalue of S such that d(s) is the dimension of the largest Jordan
block associated to s, then s ∈ σ(G1) and G1 has at least p Jordan blocks of dimension
greater than or equal to d(s) associated to s. Since the operators Sk can be seen
as Jordan blocks of operator S, this definition can be directly generalized for our
exosystem and an infinite-dimensional controller (G1,G2,K) in the following way.

Definition 6.1 (p-Copy internal model). A controller (G1,G2,K) is said to
incorporate a p-copy internal model of the exosystem S if for all k ∈ Z we have

dimN (iωkI − G1) ≥ dimY

and G1 has at least dimY independent Jordan chains of length greater than or equal
to dk associated to the eigenvalue iωk.
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We will now show that under certain assumptions the controller incorporates a
p-copy internal model if and only if it satisfies the G-conditions. Theorem 6.2 is the
first main result of this section.

Theorem 6.2. Let σ(Ae) ∩ σ(S) = ∅ and dimY <∞. A controller (G1,G2,K)
contains a p-copy internal model of the exosystem if and only if it satisfies the G-
conditions.

To prove the theorem we need a series of lemmas. The proof of Theorem 6.2 is
presented at the end of the section. Since the required lemmas are also useful re-
sults considered separately, we will prove them using weaker assumptions whenever
possible. In particular, it is interesting to see that the G-conditions imply that the con-
troller incorporates a p-copy internal model even if the space Y is infinite-dimensional.
Because of this, the G-conditions are a more suitable choice for the definition of an
internal model when generalizing the theory to allow infinite-dimensional input and
output spaces.

The proofs make use of the interesting result that under our assumptions for
any k ∈ Z the operator P (iωk)K restricted to the eigenspace N (iωkI − G1) is an
isomorphism between the eigenspace and the output space. This relation establishes
the fact that every eigenvalue iωk of the exosystem is an eigenvalue of the controller G1

with a geometric multiplicity equal to the dimension of the output space.
We will start by presenting the following lemma used in the proofs of Lemmas

6.4–6.7.
Lemma 6.3. If σp(Ae)∩σ(S) = ∅, the operator (P (iωk)K)|N (iωkI−G1) is injective

for every k ∈ Z.
Proof. Let k ∈ Z and denote s = iωk. Let z ∈ N (sI − G1) be such that

P (s)Kz = 0. Choose x = R(s, A)BKz ∈ D(A). Now

(sI −Ae)

[
x
z

]
=

[
(sI −A)x −BKz

−G2Cx+ (sI − G1)z − G2DKz

]

=

[
BKz −BKz

−G2(CR(s, A)B +D)Kz + (sI − G1)z

]
=

[
0
0

]
.

Since s ∈ σ(S), we know that s /∈ σp(Ae) and thus sI − Ae is injective. This im-
plies that z = 0, which concludes that the restriction of P (s)K to N (sI − G1) is an
injection.

The following lemma states that if the G-conditions are satisfied, then for all k ∈ Z

the space N (iωkI − G1) is isomorphic to Y , and G1 has dimY independent Jordan
chains of length greater than or equal to dk associated to the eigenvalue iωk. This
proves a part of Theorem 6.2, but the result is more general in the sense that it does
not require Y to be finite-dimensional.

Lemma 6.4. If σ(Ae)∩ σ(S) = ∅ and the G-conditions are satisfied, then for all
k ∈ Z the operator (P (iωk)K)|N (iωkI−G1) is an isomorphism between N (iωkI − G1)
and Y , and G1 has dimY independent Jordan chains of length greater than or equal
to dk associated to the eigenvalue iωk.

Proof. Let k ∈ Z and denote s = iωk. From Lemma 6.3 we see that the operator
(P (s)K)|N (sI−G1) is injective and thus it is sufficient to prove that it is also surjective.

Since σ(Ae)∩σ(S) = ∅, we have s ∈ ρ(Ae) and the operator sI−Ae is surjective.
This implies that for all z ∈ Z there exist x1 ∈ D(A) and z1 ∈ D(G1) such that[

0
z

]
= (sI −Ae)

[
x1
z1

]
=

[
(sI −A)x1 −BKz1

−G2Cx1 + (sI − G1)z1 − G2DKz1

]
.
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Since σ(A) ∩ σ(S) = ∅, we have s ∈ ρ(A) and we get from the first equation that
x1 = R(s, A)BKz1. Using this we have from the second equation that

(6.1) z = −G2CR(s, A)BKz1 + (sI − G1)z1 − G2DKz1 = (sI − G1)z1 − G2P (s)Kz1.

Let y ∈ Y . Then z = −G2y ∈ R(G2) ⊂ Z and we can choose z1 ∈ D(G1) such that
(6.1) holds. Now

−G2y = (sI − G1)z1 − G2P (s)Kz1 ⇔ −G2y + G2P (s)Kz1︸ ︷︷ ︸
∈R(G2)

= (sI − G1)z1︸ ︷︷ ︸
∈R(sI−G1)

⇔
{ G2y = G2P (s)Kz1

0 = (sI − G1)z1
⇔

{
y = P (s)Kz1
0 = (sI − G1)z1

because R(sI − G1) ∩ R(G2) = {0} and N (G2) = {0}. This means that for every
y ∈ Y there exists z1 ∈ N (sI − G1) such that y = P (s)Kz1 and thus the operator
(P (s)K)|N (sI−G1) is surjective.

This also concludes that dimN (sI − G1) = dimY . Since Jordan chains related
to linearly independent eigenvectors are independent, it remains to show that there
exists a Jordan chain of length greater than or equal to dk related to every vector in
N (sI − G1).

We can assume dk ≥ 2, because otherwise the proof is complete. Since for all
l ∈ N we have N (sI − G1)

l ⊂ N (sI − G1)
l+1, the condition (5.1c) implies

(6.2) N (sI − G1) ⊂ N (sI − G1)
2 ⊂ · · · ⊂ N (sI − G1)

dk−1 ⊂ R(sI − G1).

Choose ψ1 ∈ N (sI−G1) and define {ψl}dk

l=2 recursively as follows: Let l ∈ {2, . . . , dk}.
Assume ψl−1 ∈ N (sI −G1)

l−1. We have from (6.2) that there exists ψl ∈ D(G1) such
that

(G1 − sI)ψl = ψl−1 ∈ N (sI − G1)
l−1 ⊂ D(sI − G1)

l−1.

Thus we have ψl ∈ D(sI−G1)
l and (G1− sI)lψl = (G1− sI)l−1ψl−1 = 0. This implies

that ψl ∈ N (sI − G1)
l.

The set {ψl}dk

l=1 satisfies (sI − G1)ψ1 = 0 and (G1 − sI)ψl = ψl−1 for every
l ∈ {2, . . . , dk} and thus by possibly adding elements to this set we obtain a Jordan
chain {ψl}ml=1 with length m ≥ dk.

In the previous lemma we saw that the G-conditions imply that G1 has exactly
dimY independent Jordan chains. This actually follows from our assumption that
σp(Ae) ∩ σ(S) = ∅ as is shown in the next lemma. This is a controllability type
result whose basic idea is that if G1 has an eigenvalue with multiplicity larger than
p = dim Y on the imaginary axis, then this eigenvalue of the pair (G1,G2) cannot be
moved by feedback since G2 is a rank p operator.

Lemma 6.5. If σp(Ae) ∩ σ(S) = ∅, then N (iωkI − G1) ≤ dim Y for all k ∈ Z.
Proof. Let k ∈ Z and denote s = iωk. We have from Lemma 6.3 that the operator

(P (s)K)|N (sI−G1) ∈ L(N (sI−G1), Y ) is injective. Using the rank-nullity theorem [13,
Thm. 4.7.7] we can conclude that

dimN (sI − G1) = dimR (
(P (s)K)|N (sI−G1)

)
+ dimN (

(P (s)K)|N (sI−G1)

)
= dimR (

(P (s)K)|N (sI−G1)

) ≤ dim Y.

The following three lemmas are used to show that if dimY < ∞, and if the
controller (G1,G2,K) incorporates a p-copy internal model of the exosystem, then
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this controller satisfies the G-conditions. For this it is sufficient to assume that
σp(Ae) ∩ σ(S) = ∅. This is satisfied whenever the operator Ae generates a strongly
stable C0-semigroup, because then σp(Ae) ⊂ C− [10].

Lemma 6.6. If σp(Ae)∩σ(S) = ∅, dimY <∞, and the controller (G1,G2,K) in-
corporates a p-copy internal model of the exosystem, then R(iωkI−G1)∩R(G2) = {0}
for all k ∈ Z.

Proof. Let k ∈ Z and denote s = iωk. Lemma 6.5 shows that we must have
dimN (sI − G1) = dim Y . Let v ∈ R(sI − G1) ∩ R(G2). Then there exist y ∈ Y
and z ∈ D(G1) such that v = G2y = (sI − G1)z. We will first show that there exists
z1 ∈ D(G1) such that v = G2P (s)Kz1 = (sI − G1)z1. From Lemma 6.3 we get that
(P (s)K)|N (sI−G1) is injective, and since dimN (sI − G1) = dimY we have that it is
invertible. Because of this we can choose z0 ∈ N (sI − G1) such that

P (s)Kz0 = y − P (s)Kz ∈ Y ⇔ y = P (s)K(z + z0).

We then have

G2P (s)K(z + z0) = G2y = v = (sI − G1)z = (sI − G1)(z + z0)

and thus we can choose z1 = z + z0.

Choose x1 = R(s, A)BKz1 ∈ D(A). As in the proof of Lemma 6.3, we see that

(sI −Ae)

[
x1
z1

]
=

[
0

−G2P (s)Kz1 + (sI − G1)z1

]
=

[
0
0

]
.

Since s ∈ σ(S) and σp(Ae) ∩ σ(S) = ∅, we have that sI − Ae is injective and thus
z1 = 0. This concludes that v = (sI − G1)z1 = 0.

Lemma 6.7. If σp(Ae) ∩ σ(S) = ∅, dim Y < ∞, and the controller (G1,G2,K)
incorporates a p-copy internal model of the exosystem, then N (G2) = {0}.

Proof. Let y ∈ N (G2) and k ∈ Z and denote s = iωk. Lemma 6.5 shows that we
must have dimN (sI −G1) = dimY . From Lemma 6.3 we get that (P (s)K)|N (sI−G1)

is injective, and since dimN (sI−G1) = dimY , it is invertible. This implies that there
exists z1 ∈ N (sI − G1) such that y = P (s)Kz1 and thus G2P (s)Kz1 = 0. Choose
x1 = R(s, A)BKz1 ∈ D(A). As in the proof of Lemma 6.3, we see that

(sI −Ae)

[
x1
z1

]
=

[
0

−G2P (s)Kz1 + (sI − G1)z1

]
=

[
0
0

]
.

Since s ∈ σ(S) and σp(Ae) ∩ σ(S) = ∅, we have that sI − Ae is injective and thus
z1 = 0. This also implies y = P (s)Kz1 = 0 and thus N (G2) = {0}.

Lemma 6.8. If σp(Ae) ∩ σ(S) = ∅, dim Y < ∞, and the controller (G1,G2,K)
incorporates a p-copy internal model of the exosystem, then for all k ∈ Z we have
N (iωkI − G1)

dk−1 ⊂ R(iωkI − G1).

Proof. Let k ∈ Z and denote s = iωk and N = dimY . Lemma 6.5 shows that we
must have dimN (sI − G1) = N .

By our assumption G1 has N independent Jordan chains {ψl
n}mn

l=1 with mn ≥ dk
associated to s. Because by the definition of the Jordan chain we have ψk

n ∈ R(sI−G1)
for all n ∈ {1, . . . , N} and k ∈ {1, . . . , dk − 1}, it is sufficient to show that

(6.3) N (sI − G1)
m ⊂ span

{
ψl
n

∣∣ n = 1, . . . , N, l = 1, . . . ,m
}
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for m ∈ {1, . . . , dk − 1}. We will do this using induction. Since {ψ1
n}Nn=1 is linearly

independent and ψ1
n ∈ N (sI − G1) for all n ∈ {1, . . . , N}, we have

(6.4) N (sI − G1) = span{ψ1
n}Nn=1

and thus (6.3) holds for m = 1.
Assume (6.3) holds for m = j ∈ {1, . . . , dk − 2} and let z ∈ N (sI −G1)

j+1. Then
z ∈ D(G1) and (sI − G1)z ∈ N (sI − G1)

j . Since we assumed (6.3) holds for m = j,
there exist constants

{
αl
n

∣∣ n = 1, . . . , N, l = 1, . . . , j
}
such that

(sI − G1)z =

N∑
n=1

j∑
l=1

αl
nψ

l
n =

N∑
n=1

j∑
l=1

αl
n(G1 − sI)ψl+1

n ,

where the second equality follows from the fact that {ψl
n}l are Jordan chains associated

to G1. This implies

(sI − G1)

(
z +

N∑
n=1

j∑
l=1

αl
nψ

l+1
n

)
= 0 ⇒ z +

N∑
n=1

j∑
l=1

αl
nψ

l+1
n ∈ N (sI − G1).

We now have from (6.4) that there exist constants {α0
n}Nn=1 such that

z +

N∑
n=1

j∑
l=1

αl
nψ

l+1
n =

N∑
n=1

α0
nψ

1
n.

This concludes that (6.3) holds for m = j + 1 and thus completes the proof.
We can finally present the proof of the first main result of this section.
Proof of Theorem 5.2. Lemmas 6.4 and 6.5 show that if the controller (G1,G2,K)

satisfies the G-conditions, then it incorporates a p-copy internal model of the exosys-
tem. Lemmas 6.6, 6.7, and 6.8 conclude that also the converse holds.

We will conclude the section by presenting the main result of the paper. This is
the extension of the internal model principle for distributed parameter systems with
infinite-dimensional exosystems.

Theorem 6.9. Assume Y is finite-dimensional and σ(Ae) ∩ σ(S) = ∅. The
controller (G1,G2,K) is robustly regulating if and only if it incorporates a p-copy
internal model of the exosystem.

Proof. Theorem 4.3 states that a controller is robustly regulating if and only if
it has IMS. Theorem 5.2 and Lemma 5.7 together imply that under our assumptions
the controller has IMS if and only if it satisfies the G-conditions. Finally, Theorem 6.2
states that under our assumptions the controller satisfies the G-conditions if and only
if it incorporates a p-copy internal model of the exosystem.

7. Example. In this section we design an observer-based robust controller for
a finite-dimensional stable system with an exosystem capable of generating infinite-
dimensional linearly increasing signals. The purpose of this example is to illustrate
the use of the internal model principle and how to verify the convergence of the series
in Assumption 1. Consider a system with operators A = diag(−2,−4), B = (1, 1)T ,
C = (1, 1), and D = 1 on X = C2. For the exosystem choose

S = 〈·, φ20〉φ10 +
∑
k 
=0

ik〈·, φk〉φk, D(S) =

⎧⎨
⎩v ∈W

∣∣∣∣∣ ∑
k 
=0

k2|〈v, φk〉|2 <∞
⎫⎬
⎭
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on a Hilbert space W = span
{
φ00, φ

1
0, {φk}k∈Z\{0}

}
consisting of a 2 × 2 Jordan

block related to eigenvalue iω0 = 0 and an infinite-dimensional diagonal part with
eigenvalues iωk = ik. The signals generated by this kind of exosystem are in general
of the form y(t) = αt + yb(t), where α ∈ C and yb is a bounded and uniformly
continuous function.

In order to consider robust regulation of a single signal without disturbances,
choose E = 0 and F = −Fr, where Fr ∈ L(W,C). In this example we consider output
operators Fr for which there exists a constantMr ≥ 0 such that ‖Frφk‖ ≤Mrk

−1 for
k �= 0.

Choose an observer-based controller (G1,G2,K) such that Z = X ×W and

G1 =

[
A+BK1 + L(C +DK1) (B + LD)K2

0 S

]
, G2 =

[−L
G2

]
, K =

[
K1 K2

]
,

where G2 = g2 ∈ W is such that 〈g2, φ10〉 = 〈g2, φ20〉 = 1 and 〈g2, φk〉 = 1
k for k �= 0.

Since dimY = 1 and since A + BK1 + L(C +DK1) is a linear operator on C2, it is
straightforward to verify that the controller (G1,G2,K) incorporates a p-copy internal
model of the exosystem. Theorem 6.9 thus states that if we can choose the controller
parameters K and L in such a way that σ(Ae) ∩ σ(S) = ∅, then the controller
(G1,G2,K) is robustly regulating. If in addition the closed-loop system is stable and
the series in Assumption 1 converges for some m, then the controller solves the robust
output regulation problem on Wm. The output regulation property is then robust
with respect to perturbations preserving the strong stability of the closed-loop system
and Assumption 1.

We will stabilize the closed-loop system using a procedure similar to the one
presented in [9]. Since the exosystem we are considering has a nontrivial Jordan
block structure, parts of the method must be generalized to our case. We omit the
lengthy but straightforward computations and instead present a list of required steps
along with the appropriate modifications. The procedure is as follows.

Step 1. Show that the closed-loop system operator Ae is similar to a block trian-
gular operator with diagonal blocks Ae1 : X ×W → X ×W and A+LC. Choose the
operator L in such a way that A+LC is exponentially stable. The closed-loop system
is then strongly stable if the operator Ae1 generates a strongly stable C0-semigroup.

Step 2. Show that the operator K1 can be chosen such that Ae1 is strongly stable
if the operator S +B1K2 is strongly stable, where B1 ∈ L(C,W ).

Step 3. Denote W0 = span{φ10, φ20}, W1 = span{φk}k 
=0, and write K2 =[
K0

2 ,K
1
2

]
according to the decomposition W =W0 ×W1. Show that using a method

similar to the one used in Step 2 the part K0
2 can be chosen such that S + B1K2 is

strongly stable if S1 +B1
1K

1
2 is strongly stable, where B1

1 ∈ L(C,W1) and S1 :W1 →
W1 is the diagonal part of S,

S1 =
∑
k 
=0

ik〈·, φk〉φk, D(S1) =

⎧⎨
⎩v ∈ W

∣∣∣∣∣∣
∑
k 
=0

k2|〈v, φk〉|2 <∞
⎫⎬
⎭ .

Step 4. Using pole placement [21], show that K1
2 can be chosen such that S1 +

B1
1K

1
2 is strongly stable, has compact resolvent, σ(S1 +B1

1K
1
2) = {− 1

k2 + ik}k 
=0, all
but a finite number of these eigenvalues are simple, and the generalized eigenvectors
of S1 +B1

1K
1
2 form a Riesz basis of W1.

Step 5. Using the previous steps conclude that the closed-loop system is strongly
stable and show that σ(Ae) ∩ σ(S) = ∅.
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Step 6. Recall the known result that if A, B, and C are linear operators such that
one of the operators A and B is bounded and the other one generates a C0-group, C is
bounded, and σ(A) ∩ σ(B) = ∅, then there exists a bounded linear operator T with
a bounded inverse such that (AC

0
B ) = T (A0

0
B )T−1 [1, 15]. Use this result repeatedly

to show that there exists a bounded linear operator Te with a bounded inverse such
that

Ae = Te

[
Ab

Au

]
T−1
e ,

where Ab is a finite-dimensional operator with spectrum σ(Ab) ⊂ C− and Au is a
diagonal operator with eigenvalues σ(Au) = {− 1

k2 + ik | |k| ≥ Ne ≥ 1 }.
We can now consider the convergence of the series in Assumption 1. Since

iωk ∈ ρ(Ae) for all k ∈ Z, all the terms are finite and it suffices to consider the
tails |k| ≥ N of the series. For every k ∈ Z with |k| ≥ Ne we have ‖R(ik, Au)‖ = k2.

Since Ab is a finite-dimensional operator we have that for a large enough N ≥ Ne

sup
‖x′

e‖≤1

∑
|k|≥N

1

(1 + ω2
k)

m

nk∑
l=1

∣∣∣∣∣∣
l∑

j=1

(−1)l−j〈R(iωk, Ae)
l+1−jBeφ

j
k, x

′
e〉
∣∣∣∣∣∣
2

≤
∑

|k|≥N

‖R(ik, Ae)‖2 · ‖Beφk‖2
(1 + k2)m

≤ M2
∑

|k|≥N

max{k4, ‖R(ik, Ab)‖2} · 1
k2

(1 + k2)m

= M2
∑

|k|≥N

k2

(1 + k2)m
,

where M = Mr‖Te‖ · ‖T−1
e ‖ · ‖G2‖. This shows that the series in Assumption 1

converges if m = 2.
As already stated, the results in the previous sections conclude that the controller

(G1,G2,K) solves the robust output regulation problem on W 2; i.e., for any initial
states of the system and the controller and for any initial state v0 ∈ W 2 of the
exosystem the regulation error e(t) decays as t → ∞. Furthermore, the regulation
property is robust with respect to perturbations of the system’s operators preserving
the closed-loop stability and Assumption 1. In particular the perturbations to the
output operator Fr do not affect the closed-loop stability and the estimate on the
convergence of the series in Assumption 1 is valid for any output operator satisfying
‖Frφk‖ ≤ Mrk

−1 for some Mr. Because of this we can conclude that the regulation
error goes to zero whenever the perturbed output operator satisfies this kind of bound.

8. Conclusions. In this paper the p-copy internal model of Francis andWonham
was generalized for distributed parameter systems. This definition was compared to
two other generalizations of internal model found in the literature and the definitions
were shown to be equivalent under suitable assumptions. Using this equivalence it
was also proved that a controller is robustly regulating if and only if it contains a
p-copy internal model of the exosystem. This is an extension of the internal model
principle for infinite-dimensional systems.

We constructed a signal generator capable of generating infinite-dimensional poly-
nomially increasing signals. This was done by defining an operator with a possibly
infinite number of nontrivial Jordan blocks.

The solution Σ of the regulator equations was allowed to be unbounded. This
showed a direct connection between the smoothness of the reference and disturbance
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signals considered and the assumptions needed for the solvability of the output regu-
lation problem.

Further research topics include the robust stabilization of the closed-loop system,
which was not considered in this paper. There exists conditions for the strong and
weak stabilization of the exosystem if the signal generator has a diagonal system
operator [9]. However, there are very few results on the robustness properties of these
stabilizing controllers.

Other further research topics include allowing the operators B and C to be un-
bounded and considering signal generators which do not necessarily have pure point
spectrum.
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