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Abstract: We study output tracking and disturbance rejection for an Euler-Bernoulli beam
with Kelvin-Voigt damping. The system has distributed control and pointwise observation.
As our main result we design a finite-dimensional low-order internal model based controller
that is based on a spectral Galerkin method and model reduction by Balanced Truncation.
The performance of the designed controller is demonstrated with numerical simulations and
compared to the performance of a low-gain internal model based controller.
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1. INTRODUCTION

In this paper we design a finite-dimensional error feedback
controller for output tracking and disturbance rejection
of an Euler–Bernoulli beam equation with Kelvin-Voigt
damping on Ω = (−1, 1) (Ito and Morris, 1998, Sec. 3),

vtt(ξ, t) + (EIvξξ + dKV Ivξξt)ξξ (ξ, t) + dvvt(ξ, t) (1.1a)

= b1(ξ)u1(t) + b2(ξ)u2(t) +Bd0(ξ)wdist(t) (1.1b)

v(−1, t) = vξ(−1, t) = 0, (1.1c)

v(1, t) = vξ(1, t) = 0 (1.1d)

v(ξ, 0) = v0(ξ), vt(ξ, 0) = v1(ξ), (1.1e)

y(t) = (v(ξ1, t), v(ξ2, t))
T . (1.1f)

The parameters E > 0 and I > 0 are the (constant) elastic
modulus and the second moment of area, respectively, and
dKV > 0 and dv ≥ 0 are the coefficient associated to the
Kelvin–Voigt damping and viscous damping, respectively.
The beam is assumed to have constant density ρ = 1.
The system has two inputs u(t) = (u1(t), u2(t))T and two
outputs y(t) = (y1(t), y2(t))T (see Section 2 for details).

We study output tracking and disturbance rejection, where
the aim is to design a control law in such a way that
the output y(t) of (1.1) converges to a given reference
signal yref (t), i.e., ‖y(t)− yref (t)‖ → 0 as t →∞, despite
the external disturbance signals wdist(t). The considered
signals yref : [0,∞)→ Rp and wdist : [0,∞)→ Rnd are of
the form

yref (t) = a10 +

q∑
k=1

(a1k cos(ωkt) + b1k sin(ωkt)) (1.2a)

wdist(t) = a20 +

q∑
k=1

(a2k cos(ωkt) + b2k sin(ωkt)) (1.2b)

for some known frequencies {ωk}qk=0 ⊂ R with 0 = ω0 <

ω1 < . . . < ωq and possibly unknown constants {ajk}k,j ⊂

R and {bjk}k,j ⊂ R (any of the constants are allowed to
be zero). This control problem — typically called output
regulation — has been studied extensively in the literature
for controlled partial differential equations (Xu and Sallet,
2014; Deutscher, 2015; Xu and Dubljevic, 2016; Jin and
Guo, 2019) and distributed parameter systems (Pohjo-
lainen, 1981; Hämäläinen and Pohjolainen, 2000; Byrnes
et al., 2000; Rebarber and Weiss, 2003; Immonen, 2006,
2007; Natarajan et al., 2014; Paunonen, 2016).

In this paper we solve the output tracking and disturbance
rejection problem with a finite-dimensional dynamic error
feedback controller introduced recently in (Paunonen and
Phan, 2020). The controller design is based on Galerkin
approximation theory for a class of linear systems (Banks
and Kunisch, 1984; Morris, 1994), in particular including
controlled parabolic PDEs, and it uses model reduction to
reduce the dimension of the controller 1 . Output regula-
tion of an Euler–Bernoulli beam with Kelvin–Voigt damp-
ing (single-input-single-output with clamped–free bound-
ary conditions) was also considered in (Paunonen and
Phan, 2020, Sec. V.C), where the controller was based on
the Finite Element Method. As the main novelty of this
paper we instead base our controller on a spectral Galerkin
method with non-local basis functions based on Chebyshev
polynomials (Shen, 1995; Shen et al., 2011).

The motivation for this study comes from the fact that
spectral methods are powerful numerical approximation
tools — typically achieving great accuracy with low num-
bers of basis functions — but to our knowledge they have
not been used previously in controller design for output

1 Note that the Internal Model Principle (Paunonen and Pohjo-
lainen, 2010) requires a controller solving the control problem for
all yref (t) and wdist (t) in (1.2) necessarily has dimension of at

least “number of outputs × number of (complex) frequencies”, i.e.,
2(2q+1). Thus in our setting the controller having “low order” means
that the dimension is not much higher than 2(2q + 1).



regulation of PDEs. In addition, in the case of Chebyshev
functions the Chebfun MATLAB library (available at
https://www.chebfun.org/) (Driscoll et al., 2014; Tre-
fethen, 2013) can be employed in computing the Galerkin
approximation.

Finally, we compare the performance of our controller to
the so-called “simple” internal model based controller, and
demonstrate that our new controller achieves a consider-
ably improved rate of convergence of the output tracking.
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2. THE OUTPUT REGULATION PROBLEM

In (1.1) the functions b1(·), b2(·) ∈ C1(−1, 1;R) are
fixed input profiles satisfying bj(±1) = b′j(±1) = 0,
j = 1, 2, and the disturbance input term has the
form Bd0(ξ)wdist(t) =

∑nd

k=1 bdk(ξ)wkdist(t) for wdist(t) =
(wkdist(t))

nd

k=1 and for some fixed but unknown profile func-
tions bdk(·) ∈ C1(−1, 1;R) with bdk(±1) = b′dk(±1) = 0 for
k ∈ {1, . . . , nd} 2 .

The Output Regulation Problem. Design a dynamic
error feedback controller such that the following hold.

(1) The closed-loop system is exponentially stable.
(2) For any initial values of the system (1.1) and the

controller and for any {ajk}k,j ⊂ R and {bjk}k,j ⊂ R
‖y(t)− yref(t)‖ → 0

at a uniform exponential rate as t→∞.

As shown in (Paunonen and Phan, 2020), the controller
constructed in this paper is also robust in the sense
that it tolerates changes and uncertainty in some of the
parameters of the system (1.1) (see (Paunonen and Phan,
2020) for details).

3. REDUCED ORDER INTERNAL MODEL BASED
CONTROLLER DESIGN

The controller we design is the finite-dimensional “Observer-
based robust controller” introduced in (Paunonen and
Phan, 2020, Sec. III.A). It has the general form

ż1(t) = G1z1(t) +G2e(t) (3.1a)

ż2(t) = (ArL +BrLK
r
2)z2(t) +BrLK

N
1 z1(t)− Lre(t) (3.1b)

u(t) = KN
1 z1(t) +Kr

2z2(t) (3.1c)

with state (z1(t), z2(t))T ∈ Z := Z0×Cr and input e(t) =
y(t)− yref (t). The matrices (G1, G2, A

r
L, B

r
L,K

N
1 ,K

r
2 , L

r)
are constructed using the algorithm in Section 3.2. Theo-
rem III.1 in (Paunonen and Phan, 2020) states that if the

2 Theory would allow weaker assumptions on bj and bdk, but
spectral methods do not work well for discontinuous functions.

order N ∈ N of the Galerkin approximation in Step 2
of the algorithm and the order r ≤ N of the Balanced
Truncation model reduction in Step 4 are sufficiently
high, then the controller (3.1) solves the output regulation
problem.

3.1 The Galerkin Approximation of the Beam Model

The controller design uses a Galerkin approximation
(AN , BN , CN ) of (1.1) written as first order system

ẋ(t) = Ax(t) +Bu(t) +Bdwdist(t)

y(t) = Cx(t)

on a Hilbert space X. We review the construction of
(AN , BN , CN ) in this section. As described in (Paunonen
and Phan, 2020), the controller design algorithm requires
that the operator A is associated to a coercive sesquilinear
a(·, ·) form defined on another Hilbert space V ⊂ X.
In order to utilise the spectral Galerkin method based
on Chebyshev polynomials, we formulate the beam sys-
tem (1.1) as a first order system with state x(t) =
(v(·, t), v̇(·, t))T on the space X = V0 × L2

ω(−1, 1) where
L2
ω(−1, 1) is the L2-space with the weight ω(ξ) = (1 −

ξ2)−1/2 and V0 = { f ∈ H2
ω(−1, 1) | f(±1) = f ′(±1) = 0 }.

Here also the Sobolev space H2
ω(−1, 1) is defined with the

weight ω(·). The motivation for the use of the weighted
spaces is that the Chebyshev polynomials Tk(·) are orthog-
onal with respect to the inner product of L2

ω(−1, 1), and
this property can be leveraged in computing the Galerkin
approximation (Shen, 1995).

Similarly as in (Ito and Morris, 1998, Sec. 3), letting
wdist(t) ≡ 0, taking an inner product 〈·, ·〉ω (the inner
product of L2

ω(−1, 1)) of both sides of (1.1) with a ψ1 ∈ V0
and integrating by parts leads to the weak form

〈v̈, ψ1〉ω + 〈EIv′′ + dKV Iv̇
′′, (ωψ1)′′〉L2 (3.2a)

+ dv〈v̇, ψ1〉ω = 〈b1u1 + b2u2, ψ1〉ω. (3.2b)

Defining the state of the first order system as x(t) =
(v(·, t), v̇(·, t)), the above weak form can be written as

〈ẋ(t), ψ〉X + a(x(t), ψ) = 〈Bu(t), ψ〉X , ψ ∈ V
on V = V0 × V0 if we define Bu =

[
0

b1u1+b2u2

]
for

u = (u1, u2)T ∈ C2 and

a(φ, ψ) = −〈φ2, ψ1〉V0 + 〈EIφ′′1 + dKV Iφ
′′
2 , (ωψ2)′′〉L2

+ dv〈φ2, ψ2〉ω
for φ = (φ1, φ2)T ∈ V , ψ = (ψ1, ψ2)T ∈ V . By (Maday,
1990, Lem. 5.1) we can define an inner product on V0 by

〈φ1, ψ1〉V0
= EI〈φ′′1 , (ωψ1)′′〉L2 , φ1, ψ1 ∈ V0,

and the norm ‖·‖V0
induced by 〈·, ·〉V0

is equivalent to
the norm on H2

ω(−1, 1). The following lemma shows that
if X = V0 × L2

ω(−1, 1) and V = V0 × V0 are equipped
with the norms ‖(φ1, φ2)T ‖2X = ‖φ1‖2V0

+ ‖φ2‖2ω and

‖(φ1, φ2)T ‖2V = ‖φ1‖2V0
+ ‖φ2‖2V0

, then the form a(·, ·) is
bounded and coercive, and therefore the standing assump-
tions in (Paunonen and Phan, 2020) are satisfied. The
proof of Lemma 3.1 using (Maday, 1990) was given to the
authors by the anonymous referee.

Lemma 3.1. The sesquilinear form a(·, ·) is bounded and
coercive, i.e., there exist q1, q2 > 0 and λ0 ∈ R such that

|a(φ, ψ)| ≤ q1‖φ‖V ‖ψ‖V , ∀φ, ψ ∈ V
Re a(φ, φ) ≥ q2‖φ‖2V − λ0‖φ‖2X ∀φ ∈ V.



Proof. By (Maday, 1990, Lem. 5.1) there exists β > 0 such
that ‖f‖ω ≤ β‖f‖V0

for all f ∈ V0. Let φ = (φ1, φ2)T ∈ V
and ψ = (ψ1, ψ2)T ∈ V be arbitrary. Since |〈φk, ψj〉V0

| ≤
‖φk‖V0

‖ψj‖V0
≤ ‖φ‖V ‖ψ‖V for k, j ∈ {1, 2}, we have

|a(φ, ψ)| =
∣∣−〈φ2, ψ1〉V0

+ 〈φ1, ψ2〉V0
+
dKV
E
〈φ2, ψ2〉V0

+ dv〈φ2, ψ2〉ω
∣∣

≤
(

2 +
dKV
E

)
‖φ‖V ‖ψ‖V + dv‖φ2‖ω‖ψ2‖ω

≤
(

2 +
dKV
E

+ dvβ
2

)
‖φ‖V ‖ψ‖V .

Thus the first claim holds with q1 = 2 + dKV /E + dvβ
2.

Moreover, the definitions of ‖·‖V and ‖·‖X imply

Re a(φ, φ) =
dKV
E
〈φ2, φ2〉V0

+ dv〈φ2, φ2〉ω

=
dKV
E
‖φ‖2V −

dKV
E
‖φ1‖2V0

+ dv‖φ2‖2ω

≥ dKV
E
‖φ‖2V −

dKV
E

(
‖φ1‖2V0

+ ‖φ2‖2ω
)

and thus the second claim holds with q2 = λ0 = dKV

E . �

The Galerkin approximation is defined by constructing
a sequence of approximating finite-dimensional subspaces
V N of V . The approximating subspaces are required to
have the property that (see (Morris, 1994, Sec. 5.2)) any
element φ ∈ V can be approximated by elements in V N in
the norm on V , i.e.,

∀φ ∈ V ∃(φN )N , φ
N ∈ V N : ‖φN − φ‖V

N→∞−→ 0.

The matrix AN : V N → V N is defined by restricting
a(·, ·) to V N × V N , i.e.,

〈−ANφ, ψ〉 = a(φ, ψ) for all φ, ψ ∈ V N .
The input matrix BN ∈ L(U, V N ) is defined by

〈BNu, ψ〉 = 〈u,B∗ψ〉 for all ψ ∈ V N ,
and CN ∈ L(V N , Y ) is the restriction of C ∈ L(X,Y ) onto
V N . Approximating (or even knowing!) Bd ∈ L(Ud, X) is
not necessary in our controller design.

In this paper we define the approximating subspaces
V N = V N0 ×V N0 according to the spectral Galerkin method
in (Shen, 1995). The basis functions φk of V N are defined
to be linear combinations of the Chebyshev polynomials
Tk(ξ) so that φk satisfy the boundary conditions of V =
V0×V0. As shown in (Shen, 1995, Sec. 3.1), we can choose

V N0 = span{φ0(·), . . . , φN−4(·)}
where for k = {0, . . . , N − 4} we have

φk(ξ) = Tk(ξ)− 2(k + 2)

k + 3
Tk+2(ξ) +

k + 1

k + 3
Tk+4(ξ).

Then V N0 = { f ∈ span{T0(·), . . . , TN (·)} | f(±1) =
f ′(±1) = 0 }. In the Galerkin approximation the solution
v(ξ, t) of (1.1) is approximated with

vN (ξ, t) =

N−4∑
k=0

αk(t)φk(ξ).

The matrices of the approximate system (AN , BN , CN )
are then derived from the system of ordinary differential
equations which are obtained from the second order weak

form (3.2) with ψ2 = φl for l ∈ {0, . . . , N − 4}. The
resulting system is

N−4∑
k=0

〈φk, φl〉ω(α̈k(t) + dvα̇k(t))

+

N−4∑
k=0

〈φ′′k , (ωφl)′′〉L2(EIαk(t) + dKV Iα̇k(t))

= 〈b1, φl〉ωu1(t) + 〈b2, φl〉ωu2(t)

for l ∈ {0, . . . , N − 4}. The output matrix CN defined by

y(t) =

[
vN (ξ1, t)
vN (ξ2, t)

]
=

N−4∑
k=0

[
φk(ξ1)
φk(ξ2)

]
αk(t).

Setting α(t) = (α0(t), . . . , αN−4(t))T , we have

Mα̈(t) + EI · Fα(t) + (dKV F + dvM)α̇(t) = BN0 u(t)

y(t) = CN0 α(t),

where M = (〈φk, φl〉ω)lk ∈ R(N−3)×(N−3) and F =
(〈φ′′k , (ωφl)′′〉L2)lk ∈ R(N−3)×(N−3). The exact values
of the inner products Mlk := 〈φk, φl〉ω and Flk :=
〈φ′′k , (ωφl)′′〉L2 are given in Lemma 3.2 below. The values
〈b1, φl〉ω and 〈b2, φl〉ω can be computed based on the (trun-
cated) Chebyshev series expansions of b1 and b2. Indeed, if

bj(ξ) =
∑∞
k=0 q

j
kTk(ξ), then the orthogonality of the basis

{Tk}∞k=0 with respect to the inner product 〈·, ·〉ω implies
that for j = 1, 2 and l ∈ {0, . . . , N − 4} we have

〈bj , φl〉ω

= 〈bj , Tl〉ω −
2(l + 2)

l + 3
〈bj , Tl+2〉ω +

l + 1

l + 3
〈bj , Tl+4〉ω

= ‖Tl‖2ωq
j
l −

2(l + 2)

l + 3
‖Tl+2‖2ωq

j
l+2 +

l + 1

l + 3
‖Tl+4‖2ωq

j
l+4.

Here ‖T0‖2ω = π and ‖Tl‖2ω = π/2 for l ≥ 1. In Matlab

the required Chebyshev coefficients {qjl }Nl=0, j = 1, 2, of
b1 and b2 are readily available using Chebfun. Finally,
based on the formula for φk(·), the matrix CN0 has the
form CN0 = [c0, . . . , cN−4] where

ck =

[
Tk(ξ1)
Tk(ξ2)

]
− 2(k + 2)

k + 3

[
Tk+2(ξ1)
Tk+2(ξ2)

]
+
k + 1

k + 3

[
Tk+4(ξ1)
Tk+4(ξ2)

]
.

Lemma 3.2. (Shen, 1995, Lem. 3.1) The nonzero compo-
nents Mlk, l, k ∈ {0, . . . , N−4}, of M ∈ R(N−3)×(N−3) are
M00 = 35π/18,

Mll =
π
[
(l + 1)2 + 4(l + 2)2 + (l + 3)2

]
2(l + 3)2

, l ≥ 1

Ml,l+2 = Ml+2,l = −π [(l + 2)(l + 5) + (l + 1)(l + 4)]

(l + 3)(l + 5)

Ml,l+4 = Ml+4,l =
π(l + 1)

2(l + 3)
.

The nonzero elements Flk, l, k ∈ {0, . . . , N − 4}, of F ∈
R(N−3)×(N−3) are

Fll = 8(l + 1)2(l + 2)(l + 4)π

Flk =
8π(l + 1)(l + 2)

[
l(l + 4) + 3(k + 2)2

]
k + 3

,

for k = l + 2, l + 4, . . ..

In summary, the matrices (AN , BN , CN ) of the Galerkin
approximation are given by CN =

[
CN0 , 0

]
and



AN =

[
0 IN×N

−EIM−1F −dKVM−1F − dvI · IN×N

]
,

BN =

[
0

M−1BN0

]
.

3.2 The Reduced Order Controller Design Algorithm

The following algorithm from (Paunonen and Phan,
2020, Sec. III.A) determines the parameters of the con-
troller (3.1) so that (G1, G2) are as in Step 1, KN

1 is
as in Step 3, and (ArL, B

r
L, L

r,KN
2 ) are as in Step 4.

The parts G1, G2,K
N
1 constitute the internal model of the

controller, and its construction is based on the fact that
the system (1.1) has two outputs, i.e., Y = C2.

PART I. The Internal Model

Step 1: Choose Z0 = Y 2q+1 = C4q+2,

G1 = diag(02,Ω1, . . . ,Ωq) ∈ L(Z0)

G2 = [I2, I2, 02, . . . , I2, 02]
T ∈ L(Y,Z0),

where Ωk =
[

02 ωkI2
−ωkI2 02

]
for all k ∈ {1, . . . , q} and 02

and I2 are the 2 × 2 zero and identity matrices. The pair
(G1, G2) is controllable by construction.

PART II. The Galerkin Approximation and Stabi-
lization.

Step 2: For a sufficiently large N ∈ N, form a Galerkin
approximation (AN , BN , CN ) on V N of the control sys-
tem (1.1) as described in Section 3.1.

Step 3: Choose parameters α1, α2 ≥ 0, Q1 ∈ L(U0, X),
and Q2 ∈ L(X,Y0) with U0, Y0 Hilbert spaces in such a
way that the systems (A+α1I,Q1, C) and (A+α2I,B,Q2)
are exponentially stabilizable and detectable. Let QN1 and
QN2 be the approximations of Q1 and Q2, respectively,
according to the approximation V N of V . Let Q0 ∈
L(Z0,Cp0) be such that (Q0, G1) is observable, and let
R1 ∈ L(Y ) and R2 ∈ L(U) be positive definite matrices.
Denote

ANs =

[
G1 G2C

N

0 AN

]
, BNs =

[
G2D
BN

]
, QNs =

[
Q0 0
0 QN2

]
.

Define LN = −ΣNC
NR−11 ∈ L(Y, V N ) and KN :=[

KN
1 , K

N
2

]
= −R−12 (BNs )∗ΠN ∈ L(Z0 × V N , U) where

ΣN and ΠN are the non-negative solutions of the finite-
dimensional Riccati equations

(AN + α1I)ΣN + ΣN (AN + α1I)∗

− ΣN
(
CN
)∗
R−11 CNΣN = −QN1 (QN1 )∗

(ANs + α2I)∗ΠN + ΠN (ANs + α2I)

−ΠNB
N
s R
−1
2

(
BNs
)∗

ΠN = −
(
QNs
)∗
QNs .

With these choices ANs + BNs K
N and AN + LNCN are

Hurwitz if N is sufficiently large (Banks and Ito, 1997,
Thm. 4.8).

PART III. The Model Reduction

Step 4: For a fixed and suitably large r ∈ N, r ≤ N ,
apply the Balanced Truncation method to the stable finite-
dimensional system

(AN + LNCN , [BN + LND, LN ],KN
2 )

to obtain a stable r-dimensional reduced order system

(ArL, [B
r
L, L

r],Kr
2) .

4. NUMERICAL SIMULATIONS

The simulation codes can be downloaded at the address
github.com/lassipau/MTNS20-Matlab-simulations.
The controller is designed for a beam (1.1) with parameters

E = 10, I = 1, dKV = 0.01, dv = 0.4.

The pointwise measurements of the defection are at ξ1 =
−0.6 and ξ2 = 0.3. The profile functions for the control
u(t) = (u1(t), u2(t))T and disturbance wdist(t) ∈ R are

b1(ξ) =
1

3
(ξ + 1)2(1− ξ)6, b2(ξ) =

1

3
(ξ + 1)6(1− ξ)2

bd(ξ) =
1

3
(ξ + 1)2(1− ξ)2.

Our goal is to design a controller which is capable of
tracking and rejecting continuous 2-periodic signals yref (t)
and wdist(t). To this end, we will choose the frequencies
0 = ω0 < ω1 < . . . < ωq to be ωk = kπ for k ∈ {0, . . . , q}
for some suitable value q ∈ N, and we use q = 10 in
our simulations. Due to the robustness of the controller,
for any continuous 2-periodic reference signal yperref (t) the

controller will track the truncated part yref (t) of the
form (1.2) with perfect accuracy, and the remaining part
yref (t)− yperref (t) will appear as an additional external dis-
turbance in the control loop. However, due to the stability
of the closed-loop system, the effect of this difference signal
on the asymptotic regulation error e(t) is guaranteed to be
small as long as the quantity maxt∈[0,2]‖yref (t)− yperref (t)‖
is sufficiently small. The smallness of the truncation error
can be guaranteed for the most important continuous 2-
periodic functions yperref (·) (outside pathological situations)
by choosing a suitably large q ∈ N. In the simulations
we demonstrate the above property of the controller in
the tracking of a triangle signal which contains an infinite
number of frequency components.

The spectral Galerkin approximation used in the con-
troller design is completed with dimV N0 = 39, in which
case the dimension of the approximate first order system
(AN , BN , CN ) is 78. The uncontrolled system is exponen-
tially stable and it has a stability margin which is approx-
imately 0.35. In Step 3 of controller design we choose
the parameters as α1 = 2, α2 = 0.8 and R1 = R2 = I,
Q0 = I, Q1 = I and Q2 = I. The order r ≤ N of the
model reduction in Step 4 of the controller design can be
chosen to be as low as r = 4 while still achieving expo-
nential closed-loop stability. Using such a low-dimensional
“observer-part” in the controller is made possible by the
fact that the uncontrolled system already has quite strong
stability properties. The resulting closed-loop system has
a stability margin ≈ 1.01.

Since the internal model in the controller has dimension
2(2q + 1) = 42, the full size of the controller is dimZ =
46. For simulations we approximate the controlled beam
system (1.1) with a separate higher-dimensional spectral
Galerkin approximation with dimV N0 = 69. Figure 1 plots
some of the eigenvalues of the closed-loop system.
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Fig. 1. Eigenvalues of the closed-loop system.

The controller design algorithm in Section 3.2 requires
that the system does not have transmission zeros at the
(complex) frequencies {iωk}qk=0 ⊂ iR of the reference
and disturbance signals. This property can be tested
numerically using the Galerkin approximation of (1.1) and
it is satisfied in our simulations.

The designed internal model based controller is capable
of tracking any reference signal yref (t) and any distur-
bance signal wdist(t) of the form (1.2) with frequencies
(ωk)10k=0 with arbitrary unknown amplitudes and phases.
As explained above, the controller will also approximately
track and reject any continuous 2-periodic reference and
disturbance signals. Figure 2 shows the output y(t) and
the tracking error in the case where the first component
of yref (t) is a 2-periodic triangle signal, the second com-
ponent of yref (t) is identically zero, and the disturbance
signal is wdist(t) = sin(πt) + 0.4 cos(3πt). The initial de-
flection v0(ξ), the initial velocity v1(ξ) and the initial state
of the controller are all zero.

Fig. 2. The output y(t) and the reference signal yref (t).

Figure 3 plots the norm of the tracking error ‖e(t)‖ =
‖y(t)− yref (t)‖R2 . The asymptotic residual error is due to
the fact that the internal model contains only a finite num-
ber of frequencies and is therefore not capable of tracking
the nonsmooth triangle signal with perfect accuracy.

Fig. 3. The norm ‖e(t)‖ of the tracking error.

Figure 4 depicts the control actions u1(t) and u2(t) in the
simulation. Finally, Figure 5 plots the deflection v(ξ, t) of
the controlled beam.

Fig. 4. The control inputs u1(t) (blue) and u2(t) (red).

Fig. 5. The deflection of the controlled beam.

4.1 Comparison with a Low-Gain Controller

Because the beam system is exponentially stable, the
output tracking problem can alternatively be solved with a
“simple” internal model based controller structure whose
dynamics only contain the internal model, i.e.,

ż(t) = G1z(t) +G2e(t), z(0) ∈ Rnc ,

u(t) = Kz(t),

where G1 and G2 are as in Section 3.2, and thus nc =
2(2q+1) = 42. As shown in (Hämäläinen and Pohjolainen,
2000; Rebarber and Weiss, 2003) or (Paunonen, 2016,
Rem. 10), the matrix K ∈ R2×nc can be chosen as

K = ε
[
P (0)−1,ReP (iω1)−1, ImP (iω1)−1, . . . ,

ReP (iωq)
−1, ImP (iωq)

−1],
where P (λ) ∈ C2×2 is the transfer function of the sys-
tem (1.1). For this choice of K, there exists ε∗ > 0 such
that for any 0 < ε ≤ ε∗ the controller achieves output
tracking and disturbance rejection for the beam system.
In the controller design the values P (iωk) can be reliably
computed using a Galerkin approximation of the system
due to the results in (Morris, 1994).

The low-gain parameter ε > 0 should be designed so
that the closed-loop has the best possible stability margin,
and this can be achieved using root locus type analysis.
For the beam system (1.1) with the chosen parameters
and the internal model (G1, G2) with frequencies ωk =
kπ for k ∈ {0, . . . , 10}, the stabilization of the closed-
loop system arising from this controller structure is very
difficult due to the high number of unstable frequencies in
the internal model. If the number of frequencies is reduced
to ωk = kπ for k ∈ {0, . . . , 5} (potentially resulting
in lower accuracy of the tracking), the best achievable
closed-loop stability margin is approximately 0.0382 with
parameter ε = 0.076. The margin can be compared to the
stability margin ≈ 1.01 achieved with the reduced order
controller in Section 3.2. This smaller stability margin
leads to a significantly slower rate of convergence of the



output. Figure 6 depicts the output of the controlled
system with the low-gain controller with ε = 0.076.

Fig. 6. Output of the system with the low-gain controller.

Note that since in our main controller we were able to
choose the size of the reduced order model in Step 4 as
r = 4, the dimension of our reduced order controller is
only higher by 4 compared to the low-gain controller, but
this additional structure of the controller allows the design
of a significantly larger stability margin. Since the second
controller is based on a low-gain design, it is natural to
ask if using this controller leads to reduced control action.
However, in the case of a stable linear system with the
same number of inputs and outputs the control action
required to produce the desired asymptotic output yref (t)
does not depend on the type of the internal model based
controller (see (Paunonen, 2017, Lem. 3.10 and proofs of
Thm. 3.3 and Lem. 3.4)). Therefore in our simulation
the low-gain controller does not achieve output regulation
with smaller control gains and the controller requires less
control action only for small values of t ≥ 0. The control
inputs produced by the low-gain controller are depicted in
Figure 7.

Fig. 7. Control inputs u1(t) (blue) and u2(t) (red) pro-
duced by the low-gain controller.
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