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A Lyapunov Approach to Robust Regulation of Distributed
Port–Hamiltonian Systems

Lassi Paunonen, Yann Le Gorrec and Héctor Ramı́rez

This paper studies robust output tracking and disturbance
rejection for boundary controlled infinite-dimensional port–
Hamiltonian systems including second order models such as
the Euler–Bernoulli beam. The control design is achieved using
the internal model principle and the stability analysis using a
Lyapunov approach. Contrary to existing works on the same
topic no assumption is made on the external well-posedness of
the considered class of PDEs. The results are applied to robust
tracking of a piezo actuated tube used in atomic force imaging.

Index Terms—Distributed port-Hamiltonian system, boundary
control system, robust output regulation, controller design.

I. INTRODUCTION

We consider robust output regulation for a class of linear
partial differential equations (PDEs) with boundary control and
observation, namely, port-Hamiltonian systems (PHS) [11],
[13]
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on a one-dimensional spatial domain [a, b] (see Section II for
detailed assumptions). In robust regulation, the purpose of the
control u(t) ∈ Rp is to achieve the asymptotic convergence
of the output y(t) ∈ Rp of (1) to a given reference signal
yref (t), i.e., ‖y(t) − yref (t)‖ → 0 as t → ∞, despite external
disturbance signals wdist(t) := (wdist,1(t), wdist,2(t), wdist,3(t)).
The signals yref (t) and wdist(t) are assumed to have the forms

yref (t) = a0 +

q∑
k=1

[
a1
k cos(ωkt) + a2

k sin(ωkt)
]
, (2a)

wdist(t) = b0 +

q∑
k=1

[
b1k cos(ωkt) + b2k sin(ωkt)

]
, (2b)
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for known frequencies 0 = ω0 < ω1 < · · · < ωq and unknown
amplitudes {a1

k}qk=0, {a2
k}qk=1 ⊂ Rp, and {b1k}qk=0, {b2k}

q
k=1 ⊂

Rnd,1+p+nd,3 .
Several recent articles have considered output regulation

for individual linear PDEs, such as 1D heat equations [4],
beam equations [12] and wave equations [6]. In this paper
we solve the control problem for a class of boundary con-
trolled 1D PDEs (1), which covers many particular hyperbolic
PDE systems such as boundary controlled wave equations,
Schrödinger equations, Timoshenko and Euler–Bernoulli beam
models with spatially varying physical parameters, and is used
in modeling and control of flexible structures, heat exchangers,
and chemical reactors. We focus here on impedance passive
PHS (1), and solve the output regulation problem using a
finite-dimensional dynamic error feedback controller

ẋc(t) = Jcxc(t) + δcBc(yref (t)− y(t)), xc(0) ∈ Xc (3a)
u(t) = δcB

∗
cxc(t) +Dc(yref (t)− y(t)) (3b)

where Jc is skew-symmetric, Bc ∈ Rp×nc , and Dc ∈ Rp×p
satisfies Dc ≥ 0. Finally, δc > 0 is a gain parameter. In
studying the class (1) of PDEs our aim is to design the
controller (3) under assumptions that can be verified directly
based on the properties of the original PDE (1) and the
matrices (P0, P1, P2, G0,W1,W2, W̃ ), without the need to
reformulate (1) as an abstract system.

Our results for the class (1) are based on the theoretical re-
sults on robust output regulation of abstract boundary control
and observation systems [3], [21] presented in this paper. They
extend the theory related to internal model based controllers
for passive well-posed linear systems and PHS in [7]–[10],
[18], and they compose the main technical contributions of
the paper. In particular, we introduce a new Lyapunov-type
argument for the stability analysis of the closed-loop system
consisting of the boundary control system and the controller
(extending our earlier results in [16] for PHS with distributed
control and observation). In addition, the controller design is
done without assuming well-posedness of the original control
system (which was assumed in [18]) and the analysis is
completed directly in the abstract boundary control system
framework (whereas in [9], [10] the boundary control inputs
were first reformulated as distributed inputs using a state exten-
sion). The class (1) includes models which are not wellposed
(in the sense of [20, Sec. 2]). The stability analysis of the
closed-loop system is also related to references [14], [17]
studying the stability of coupled impedance passive systems
in a different context i.e. when the infinite dimensional system
is undamped and the controller strictly input passive.

The paper is organised as follows. In Section II we define
the considered class of boundary controlled PHS and state
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our main result for the PDEs (1) (these are proved later in
Section V). In Sections III–V we present our main results for
abstract boundary control systems. The results are applied in
solving a concrete output regulation problem in Section VI.
The paper ends with some conclusions and perspectives.
Notation. If X and Y are Banach spaces and A : X → Y
is a linear operator, we denote by D(A), N (A) and R(A)
the domain, kernel and range of A, respectively. The space of
bounded linear operators from X to Y is denoted by L(X,Y ).
If A : X → X , then σ(A) and ρ(A) denote the spectrum and
the resolvent set of A, respectively. For λ ∈ ρ(A) the resolvent
operator is R(λ,A) = (λ−A)−1. The inner product on a
Hilbert space is denoted by 〈·, ·〉. For T ∈ L(X) on a Hilbert
space X we define ReT = 1

2 (T + T ∗). Hk(a, b;Rn) is the
kth order Sobolev space of functions f : [a, b] → Rn. For
T ∈ L(X) we denote T > 0 if T − εI ≥ 0 for some ε > 0.

II. THE MAIN RESULTS FOR PHS

In this section we summarise our main results for the
class (1) of boundary controlled PDEs. The parameters
P2, P1, P0, G0 ∈ Rn×n are assumed to satisfy P2 = −PT2 ,
P1 = PT1 , P0 = −PT0 , G0 = GT0 ≥ 0, and H(·) is a
bounded and Lipschitz continuous matrix-valued function such
that H(z) = H(z)T and H(z) ≥ κI , with κ > 0, for all
z ∈ [a, b]. The distributed disturbance input profile is assumed
to satisfy Bd(·) ∈ L2(a, b;Rn×nd,1) and can be unknown.

We consider first and second order PHS by assuming that
either P2 is invertible (the system (1) is of order N = 2) or
P2 = 0 and P1 is invertible (the system is of order N =
1). The boundary inputs and ouputs are determined using the
following boundary port variables.

Definition II.1. The boundary port variables f∂(t) and e∂(t)
associated to the system (1) are defined as[
f∂(t)
e∂(t)

]
= RextΦ(Hx(t)), with Rext =

1√
2

[
Q −Q
I I

]
where Q ∈ R2nN×2nN and Φ(·) : HN (a, b;Rn)→ R2nN are
defined so that
• if N = 2, then

Q =

[
P1 P2

−P2 0

]
, Φ(Hx) :=


(Hx)(b)
∂(Hx)
∂z (b)

(Hx)(a)
∂(Hx)
∂z (a)

 ,
whenever Hx ∈ H2(a, b;Rn).

• if N = 1, then Q = P1 and Φ(Hx) =
[
Hx(b)
Hx(a)

]
whenever

Hx ∈ H1(a, b;Rn).

The input u(t) ∈ Rp, output y(t) ∈ Rp (the numbers of
inputs and outputs are the same) and the disturbance inputs
wdist(t) = (wdist,1(t), wdist,2(t), wdist,3(t))T ∈ Rnd,1+p+nd,3 of
the system are defined as in (1). We assume the matrices
W1,W2, and W̃ determining the inputs and outputs satisfy
the following (concrete and checkable) conditions. As shown
later in Lemma V.3, part (b) of Assumption II.2 guarantees
that (1) is impedance passive.

Assumption II.2. Denote Σ := [ 0 I
I 0 ] ∈ R2nN×2nN . We

assume W1 ∈ Rp×2nN and W2 ∈ Rnd,3×2nN with nd,3 =
nN − p and W̃ ∈ Rp×2nN satisfy the following
(a) W :=

[
W1

W2

]
∈ RnN×2nN has full rank and WΣWT ≥ 0

(b) 〈(WT
1 W̃ + W̃TW1 − Σ)g, g〉 ≥ 0 for all g ∈ N (W2).

Our second assumption concerns stabilizability properties
of (1). The system (1) is exponentially stable if there exist
M,α > 0 such that with u(t) ≡ 0 and wdist(t) ≡ 0 we have

‖x(·, t)‖L2(a,b) ≤Me−αt‖x(·, 0)‖L2(a,b)

for all x(·, 0) ∈ L2(a, b;Rn) such that Hx(·, 0) ∈
HN (a, b;Rn) and for which (1c) hold for t = 0.

Assumption II.3. For any K ∈ Rp×p, K > 0, system (1)
becomes exponentially stable with output feedback u(t) =
−Ky(t).

The output feedback u(t) = −Ky(t) alters the bound-
ary conditions of the PDE (1) by changing W1 in (1c) to
W1+KW̃ . By [10, Lem. 7] Assumption II.3 holds in particular
if W1 ∈ RnN×2nN (i.e., (1) has p = nN inputs) and if
Assumption II.2 holds. For further results on stability of (1),
see [1].

Definition II.4 contains the construction of the controller (3).
The controller has an internal model of the frequencies in (2)
in the sense that {±iωk}qk=1 ∪{0} are eigenvalues of Jc with
geometric multiplicities equal to p (see also Section IV).

Definition II.4. Given 0 < ω1 < · · · < ωq in (2), choose the
parameters of the controller (3) on Xc = Rp(2q+1) so that
Dc > 0, δc > 0,

Jc = blockdiag(J0
c , J

1
c , . . . , J

q
c ), (4a)

J0
c = 0p, Jkc =

[
0 ωkIp

−ωkIp 0

]
, (4b)

Bc =

B
0
c

...
Bqc

 , B0
c = Ip, Bkc =

[
Ip
0

]
. (4c)

The following theorem is the main result of this section.

Theorem II.5. Let Assumptions II.2 and II.3 be satisfied
and let 0 = ω0 < ω1 < · · · < ωq . Assume (1) has no
transmission zeros at {±iωk}qk=0 ⊂ iR. For every Dc > 0
there exists δ∗c > 0 such that for all δc ∈ (0, δ∗c ) the controller
in Definition II.4 achieves output tracking and disturbance
rejection for all signals in (2). In particular, there exists α > 0
(depending on δc ∈ (0, δ∗c )) such that

eαt‖y(t)− yref(t)‖ → 0 as t→∞ (5)

for all yref(t) and wdist(t) in (2) and for all initial states
x(·, 0) ∈ L2(a, b;Rn) and xc(0) ∈ Rp(2q+1) such that
Hx(·, 0) ∈ HN (a, b;Rn) and which satisfy the boundary
conditions (1c) at t = 0.

The controller is robust in the sense that the tracking (5)
is achieved (with a modified α > 0) also if the parameters
(P2, P1, P0, G0,W1,W2, W̃ ,H, Bd) of (1) are perturbed in
such a way that Assumption II.2 continues to hold and the
closed-loop system remains exponentially stable.
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The proof of Theorem II.5 is presented in Section V. If
ω0 = 0 is a transmission zero, then J0

c and B0
c can be removed

from the controller parameters in (4) and Theorem II.5 holds
for yref (t) and wdist(t) with a0 = 0 and b0 = 0.

III. BACKGROUND ON BOUNDARY CONTROL SYSTEMS

Our main abstract results are formulated for the general
class of boundary control and observation systems [3], [19]

ẋ(t) = A0x(t) +Bdwdist,1(t), x(0) = x0 ∈ Z (6a)
Bx(t) = u(t) + wdist,2(t) (6b)
Bdx(t) = wdist,3(t) (6c)

y(t) = Cx(t) (6d)

on a Hilbert space X . We present these abstract results only
in the case Dc = 0. This simplification does not result in loss
of generality, because if Dc 6= 0, then (6b) becomes

(B +DcC)x(t) = ũ(t) + (wdist,2(t) +Dcyref (t)) (7)

(which has the same structure as (6b)) where ũ(t) is the control
produced by the controller (3) with Dc = 0. We make the
following standard assumptions on the parameters of (6).

Assumption III.1. We assume X and Z ⊂ X are (complex)
Hilbert spaces and A0 ∈ L(Z,X), B ∈ L(Z,Cp), Bd ∈
L(Cnd,1 , X), Bd ∈ L(Z,Cnd,3) and C ∈ L(Z,Cp) have the
properties:
(a) The operator A := A0|D(A) with D(A) = N (B) ∩
N (Bd) generates a contraction semigroup T (t) on X .

(b) The operator
[

B
Bd

]
∈ L(Z,Cp+nd,3) is surjective.

(c) Re〈Ax, x〉 ≤ Re〈Bx,Cx〉Cp for all x ∈ Z.

By [15, Thm. 3.4] part (c) of Assumption III.1 is equivalent
to the system (6) being impedance passive in the sense that

1

2

d

dt
‖x(t)‖2X ≤ 〈u(t), y(t)〉Cp .

We also denote A := A0|D(A) with D(A) = N (Bd), and in
this notation we have A = A|D(A) and D(A) = D(A)∩N (B).

For λ ∈ ρ(A) we denote the transfer function (from the
input u(t) to the output y(t)) of the system (1) by P (λ). By [3,
Thm. 2.9], for any u ∈ U and λ ∈ ρ(A) we have P (λ)u = Cx
where x ∈ Z is such that (λ − A)x = 0 and Bx = u. If we
denote ReT = 1

2 (T + T ∗), then the passivity of the system
implies that ReP (iω) ≥ 0 for all iω ∈ ρ(A) ∩ iR, see [20].

We assume the controller (3) on Xc = Cnc satisfies J∗c =
−Jc ∈ Cnc×nc , Bc ∈ Cnc×p, Dc ∈ Cp×p with Dc ≥ 0 and
δc > 0 (as mentioned above, in Sections III–V we let Dc = 0).
We now show that the closed-loop system consisting of (6) and
the controller (3) on Xc = Cnc leads to a well-defined closed-
loop state xe(t) := (x(t), xc(t))

T and regulation error e(t) for
all reference and disturbance signals in (2). The closed-loop
system (with Dc = 0) has the form

ẋe(t) =

[
A0 0

−δcBcC Jc

]
xe(t) +

[
Bd 0
0 δcBc

] [
wdist,1(t)
yref (t)

]
[
B −δcB∗c
Bd 0

]
xe(t) =

[
wdist,2(t)
wdist,3(t)

]
e(t) =

[
C, 0

]
xe(t)− yref (t)

with state xe(t) = (x(t), xc(t))
T ∈ Xe := X×Xc. We denote

Ae =

[
A0 0

−δcBcC Jc

]
, Be =

[
B −δcB∗c
Bd 0

]
,

Be =
[
Bd 0
0 δcBc

]
, and Ce =

[
C, 0

]
.

Proposition III.2. Under Assumption III.1 and for J∗c =
−Jc and Dc = 0 the operator Ae := Ae|N (Be) gen-
erates a strongly continuous contraction semigroup Te(t)
on Xe. For any yref(·) ∈ C2([0,∞);Cp) and wdist(·) ∈
C2([0,∞);Cnd,1+p+nd,3) and for all initial states x(0) ∈
Z and xc(0) ∈ Xc satisfying the compatibility conditions
Bx(0) = δcB

∗
cxc(0) + wdist,2(0) and Bdx(0) = wdist,3(0)

the closed-loop system has a state

x(·) ∈ C(0, T ;Z) ∩ C1(0, T ;X), xc(·) ∈ C1(0, T ;Xc)

and e(t) = y(t)− yref(t) ∈ C(0, T ;Cp) for all T > 0.

Proof. The closed-loop system is a boundary control and ob-
servation system on the spaces Z×Xc and Xe = X×Xc. The
operator Be is surjective due to Assumption III.1(b). Our aim
is to show that Ae generates a contraction semigroup on Xe.
Since Ce ∈ L(Z ×Xc,Cp) and Bd and Bc are bounded, the
properties of the closed-loop system’s state then follow (due to
linearity) from [21, Prop. 4.2.10 and Prop. 10.1.8]. We now use
the Lumer–Phillips Theorem. Let xe := (x, xc)

T ∈ N (Be).
Then Bx = δcB

∗
cxc and Bdx = 0. In particular x ∈ D(A)

and A0x = Ax. The impedance passivity of (A,B,C) implies
Re〈Ax, x〉 ≤ Re〈Bx,Cx〉 for all x ∈ Z [15, Thm. 3.4]. Thus

Re〈Aexe, xe〉 = Re〈Ax, x〉+ Re〈Jcxc − δcBcCx, xc〉
≤ Re〈Bx,Cx〉 − Re〈Cx, δcB∗cxc〉 = 0,

since Jc is skew-adjoint and δcB∗cxc = Bx. Therefore Ae is
dissipative, and it remains to show that λ − Ae is surjective
for some λ > 0. Let λ > 0, y1 ∈ X , and y2 ∈ Xc be
arbitrary. We will construct xe := (x, xc)

T ∈ N (Be) such
that (y1, y2)T = (λ−Ae)xe. Recall that P (λ) is the transfer
function of (A,B,C) and denote Pc(λ) = δ2

cB
∗
cR(λ, Jc)Bc.

Since λ > 0 is real, we have Pc(λ) ≥ 0 and P (λ) ≥ 0, and it
can be shown that Q1(λ) := I+P (λ)Pc(λ) and Q2(λ) := I+
Pc(λ)P (λ) are boundedly invertible. Denote Rλ = R(λ,A)
and Rcλ = R(λ, Jc) for brevity. Due to the theory in [3], [21,
Ch. 10] the “abstract elliptic problem”

(λ− A)x = y1

Bx = Q2(λ)−1(δcB
∗
cR

c
λy2 − Pc(λ)CRλy1)

has a solution x ∈ Z. Now [3, Thm. 2.9] and linearity imply

Cx = CRλy1 + P (λ)Q2(λ)−1(δcB
∗
cR

c
λy2 − Pc(λ)CRλy1)

= Q2(λ)−1(CRλy1 + δcP (λ)B∗cR
c
λy2).

If we now define

xc = Rcλy2 − δcRcλBcQ1(λ)−1(CRλy1 + δcP (λ)B∗cR
c
λy2),

then

δcB
∗
cxc = δcB

∗
cR

c
λy2

− Pc(λ)Q1(λ)−1(CRλy1 + δcP (λ)B∗cR
c
λy2)

= Q2(λ)−1(δcB
∗
cR

c
λy2 − Pc(λ)CRλy1) = Bx
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and thus xe := (x, xc)
T satisfies Bexe = 0. A direct

computation also shows that −δcBcCx + (λ − Jc)xc = y2,
and thus indeed (y1, y2)T = (λ−Ae)xe.

IV. ROBUST TRACKING AND DISTURBANCE REJECTION

In this section we formulate the robust output regulation
problem and present a general condition for a controller (3)
to solve this problem.
The Robust Output Regulation Problem. Let 0 < ω1 <
· · · < ωq . Choose a controller (3) in such a way that the
following hold.
(a) The semigroup Te(t) generated by Ae = Ae|N (Be) is

exponentially stable.
(b) There exists α > 0 such that for all yref(t) and wdist(t)

of the form (2) and for all initial states x(0) ∈ Z and
xc(0) ∈ Xc satisfying the boundary conditions of (6) the
regulation error satisfies

eαt‖y(t)− yref(t)‖ → 0 as t→∞.

(c) If (A0,B,Bd, Bd,C) in (6) are perturbed in such a
way that Assumption III.1 is satisfied and the perturbed
closed-loop operator generates an exponentially stable
semigroup, then (b) continues to hold for some α̃ > 0.

The robust output regulation problem only has a solution
if the control system does not have transmission zeros at
{±iωk}qk=0 (a transmission zero at λ ∈ ρ(A) is equivalent to
P (λ) ∈ Cp×p being singular). For impedance passive systems
it is natural to make the following stronger assumption.

Assumption IV.1. Let 0 = ω0 < ω1 < · · · < ωq . We assume
±iωk ∈ ρ(A) and ReP (±iωk) > 0 for all k ∈ {0, . . . , q}.

The following theorem shows that a controller incorporating
an internal model (in the sense of conditions (8) below)
will solve the robust output regulation problem provided that
the closed-loop system is exponentially stable. The result
generalises [10, Thm. 4] by removing the assumption of
regularity (and well-posedness) of the closed-loop system, and
the proof is completed without reformulating (6) as a system
with extended state and distributed inputs.

Theorem IV.2. Let 0 = ω0 < ω1 < · · · < ωq . A controller (3)
with J∗c = −Jc, Dc = 0 and δc > 0 solves the robust
output regulation problem if Ae = Ae|N (Be) generates an
exponentially stable semigroup and

R(±iωk − Jc) ∩R(Bc) = {0}, ∀k ∈ {0, . . . , q} (8a)
N (Bc) = {0}. (8b)

Then there exists α > 0 such that

eαt‖y(t)− yref(t)‖ → 0, as t→∞

for any yref(t) and wdist(t) of the form (2) and for all x(0) ∈
Z and xc(0) ∈ Xc satisfying the compatibility conditions
Bx(0) = δcB

∗
cxc(0) + wdist,2(0) and Bdx(0) = wdist,3(0).

Proof. Assume the closed-loop system is exponentially stable
and (8) are satisfied. Then there exist Me, ωe > 0 such that

‖Te(t)‖ ≤Mee
−ωet. Let {µk}qk=−q be such that µk = ωk for

k > 0, µ0 = 0, and µk = −ω|k| for k < 0. We can then write

yref (t) =

q∑
k=−q

ykr e
iµkt, wdist(t) =

q∑
k=−q

w1k

w2k

w3k

 eiµkt
for some constant elements {ykr }k, {w1k}k, {w2k}k, and
{w3k}k. Since iµk ∈ ρ(Ae) for all k, we have from [21,
Sec. 10.1] that we can choose Σk ∈ Z such that

(iµk − Ae)Σk = Be

[
w1k

ykr

]
(9a)

BeΣk =

[
w2k

w3k

]
. (9b)

Consider initial conditions x(0) ∈ Z and xc(0) ∈ Xc

satisfying the compatibility conditions Bx(0) = δcB
∗
cxc(0) +

wdist,2(0) and Bdx(0) = wdist,3(0). If we define Σ(t) =∑q
k=−q e

iµktΣk ∈ Z, then

d

dt
(xe(t)− Σ(t))

= Aexe(t) +Be

[
wdist,1(t)
yref (t)

]
−

q∑
k=−q

iµke
iµktΣk

= Ae(xe(t)− Σ(t))

due to (9a). For all t ≥ 0 we also have from (9b) that

Be(xe(t)− Σ(t)) =

[
wdist,2(t)
wdist,3(t)

]
−

q∑
k=−q

eiµktBeΣk = 0.

Thus xe(t) − Σ(t) ∈ D(Ae) is a classical solution of the
abstract Cauchy problem d

dt (xe(t)−Σ(t)) = Ae(xe(t)−Σ(t)),
and therefore ‖xe(t) − Σ(t)‖ = ‖Te(t)(xe(0) − Σ(0))‖ ≤
Mee

−ωet‖xe(0)− Σ(0)‖.
If we write Σk =

[
Πk
Γk

]
∈ Z × Xc, then (9a) and the

conditions (8) imply[
iµk − A0 0
δcBcC iµk − Jc

] [
Πk

Γk

]
=

[
Bdw1k

δcBcy
k
r

]
⇒ (iµk − Jc)Γk = δcBc(y

k
r − CΠk)

(8a)⇒ Bc(y
k
r − CΠk) = 0

(8b)⇒ ykr = CΠk = CeΣk.

Using CeΣk = ykr , we can write e(t) = y(t)− yref (t) as

e(t) = Cexe(t)−
q∑

k=−q

ykr e
iµkt = Cexe(t)−

q∑
k=−q

CeΣke
iµkt

= Ce(xe(t)− Σ(t)).

Finally, since CeA
−1
e ∈ L(X,Cp) for boundary control sys-

tems, we have

‖e(t)‖ = ‖Ce(xe(t)− Σ(t))‖
= ‖CeA−1

e Te(t)Ae(xe(0)− Σ(0))‖
≤Mee

−ωet‖CeA−1
e ‖ · ‖Ae(xe(0)− Σ(0))‖

and thus eαt‖e(t)‖ → 0 as t→∞ for any 0 < α < ωe.
Since the proof can be repeated analogously for any pertur-

bations of (A0,B,Bd, Bd,C) for which Assumption III.1 is
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satisfied and the closed-loop semigroup is exponentially stable,
the controller satisfies part (c) of the robust output regulation
problem.

V. A PASSIVE ROBUST CONTROLLER

In this section we prove that if the system (6) is expo-
nentially stable and the parameters of the controller (3) on
Xc = Cp(2q+1) are chosen as (real) matrices Dc = 0,

Jc = blockdiag(J0
c , J

1
c , . . . , J

q
c ), (10a)

J0
c = 0p, Jkc =

[
0 ωkIp

−ωkIp 0

]
, (10b)

Bc =

B
0
c

...
Bqc

 , B0
c = Ip, Bkc =

[
Ip
0

]
, (10c)

then the controller solves the robust output regulation problem
for a range of gain parameters δc > 0. The following theorem
is the main abstract result of the paper, and it is also used in
proving Theorem II.5 at the end of this section.

Theorem V.1. Let 0 = ω0 < ω1 < · · · < ωq . Assume A gen-
erates an exponentially stable semigroup T (t), C := C|D(A) is
admissible with respect to T (t), and Assumption IV.1 holds.
Then there exists δ∗c > 0 such that for all δc ∈ (0, δ∗c ) the
controller (3) on Xc = Cp(2q+1) with parameters (10) and
Dc = 0 solves the robust output regulation problem for all
yref(t) and wdist(t) in (2).

The main part of the proof of Theorem V.1 consists of
showing the exponential stability of the closed-loop system for
δc ∈ (0, δ∗c ), and for this we use a new Lyapunov argument.
Similar methods have been used in study of stability of
coupled PHS especially in [14], [17]. Our situation is different
from the previous references due to the fact that the infinite-
dimensional system (6) is exponentially stable and the unstable
controller (3) is finite-dimensional. The proof of Theorem V.1
begins with the definition of a component H ∈ L(Xc, X)
of the Lyapunov candidate function in Lemma V.2. For the
proofs we define a block-diagonal similarity transform T =
blockdiag(T0, T1, . . . , Tq) ∈ Cnc×nc where nc = p(2q + 1)
such that for k ∈ {1, . . . , q}

T0 = Ip, Tk =

[
I I
iI −iI

]
, T−1

k =
1

2

[
I −iI
I iI

]
.

Moreover, we define G1 = T−1JcT ∈ Cp(2q+1)×p(2q+1) and
G2 = T−1Bc ∈ Cp×p(2q+1). A direct computation shows that

G1 = blockdiag(iω0Ip, iω1Ip,−iω1Ip, . . . , iωqIp,−iωqIp)

G2 =
1

2

[
Ip, Ip, . . . , Ip

]T
.

Lemma V.2. Let Assumption IV.1 hold and assume A gen-
erates an exponentially stable semigroup on X . Let Xc =
Cp(2q+1) and let Jc and Bc be as in (10). Then there exists
H ∈ L(Xc, X) satisfying R(H) ⊂ Z such that

HJc = AH and BH = −B∗c , (11)

and we have CH ∈ L(Xc,Cp). Moreover, there exist constants
δ∗0 ,Mc > 0 such that for any δc ∈ (0, δ∗0) we can choose
Pc0 > 0 such that ‖Pc0‖ ≤Mc and

Pc0(Jc + δ2
cBcCH) + (Jc + δ2

cBcCH)∗Pc0 = −δ2
cI.

Proof. Since Jc = TG1T
−1, an operator H ∈ L(Xc, X)

with R(H) ⊂ Z satisfies (11) if and only if HTG1 =
AHT and BHT = −B∗cT . Due to the block-diagonal
structure of G1, the operator HT has the form HT =
(H0, H1, H−1, . . . ,Hq, H−q). Since B∗cT =

[
I, . . . , I

]
, for

each k ∈ {0, . . . , q} the operators H±k : Cp → X are
determined by z±k = H±ky for all y ∈ Cp where z±k are
the solutions of the abstact elliptic equations{

(±iωk − A)z±k = 0

Bz±k = −y.

By [21, Prop. 10.1.2, Rem. 10.1.3 & 10.1.5] the above
equations have unique solutions and Hk ∈ L(Cp, X) and
R(Hk) ⊂ Z for all k ∈ {−q, . . . , q}. Thus H ∈ L(Xc, X)
and R(H) ⊂ Z. We further have from [3, Thm. 2.9] that
CH±ky = Cz±k = −P (±iωk)y for all y ∈ Cp and
k ∈ {0, . . . , q}. Because of this, we have

CHT = −
[
P (iω0), P (iω1), P (−iω1), . . . , P (iωq), P (−iωq)

]
,

which in particular implies CH ∈ L(Xc,Cp).
To prove the second claim, we first note that Assump-

tion IV.1 implies that Reλ > 0 for all λ ∈ σ(P (±iωk)) and k.
Indeed, if k ∈ {0, . . . , q} and Reλ ≤ 0, then ReP (±iωk) > 0
implies Re(P (±iωk) − λ) = |Reλ| + ReP (±iωk) > 0, and
thus P (±iωk)− λ is nonsingular.

In the next step we use the results in [8, App. B] to show
that there exist constants M0, ω0, δ

∗
0 > 0 such that

‖exp((Jc + δ2
cBcCH)t)‖ ≤M0e

−ω0δ
2
c t (12)

for all δc ∈ (0, δ∗0) and t ≥ 0. If we denote K = −CHT , then

Jc + δ2
cBcCH = T (G1 − δ2

cG2K)T−1.

Now K = [K0,K1,K2, . . . ,K2q] where Reλ < 0 for all
λ ∈ σ(Kk) and k ∈ {0, . . . , 2q}, and G2 = 1

2 [I, . . . , I]T . Thus
(G1−δ2

cG2K)∗ = G∗1−δ2
cK
∗G∗2 is of the form of Ac(ε) in [8,

App. B] with ε = δ2
c/2. The proof of Theorem 1 in [8, App. B]

shows that there exist M1, ω0, δ
∗
0 > 0 such that ‖exp((G∗1 −

δ2
cK
∗G∗2)t)‖ ≤ M1e

−ω0δ
2
c t for all δc ∈ (0, δ∗0) and t ≥ 0.

This further implies that if we define M0 = M1‖T‖‖T−1‖,
then (12) holds for all δc ∈ (0, δ∗0) and t ≥ 0.

Let δc ∈ (0, δ∗0) and denote Tδc(t) = exp((Jc+δ2
cBcCH)t)

for brevity. Since Jc + δ2
cBcCH is Hurwitz, we can choose

P̃c0 > 0 such that

(Jc + δ2
cBcCH)P̃c0 + (Jc + δ2

cBcCH)∗P̃c0 = −I.

Here P̃c0 =
∫∞

0
Tδc(t)

∗Tδc(t)dt, and thus (12) implies

‖P̃c0‖ ≤
∫ ∞

0

‖Tδc(t)‖2dt ≤M2
0

∫ ∞
0

e−2ω0δ
2
c tdt =

M2
0

2ω0δ2
c

.

Now the matrix Pc0 := δ2
c P̃c0 has the required properties.
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Proof of Theorem V.1. The proof of [7, Lem. 12] shows
that R(±iωk − G1) ∩ R(G2) = {0} for all k ∈ {0, . . . , q}
and N (G2) = {0}, and by similarity the pair (Jc, Bc) =
(TG1T

−1, TG2) satisfies the conditions (8). By Theorem IV.2
it is thus sufficient to show that the closed-loop system is
exponentially stable (in the case yref (t) ≡ 0 and wdist(t) ≡ 0).

Let H ∈ L(Xc, X) and δ∗0 ,Mc > 0 be as in Lemma V.2,
and let δc ∈ (0, δ∗0). We choose the Lyapunov function
candidate Ve for the closed-loop system by

Ve = 〈x+ δcHxc, P (x+ δcHxc)〉X + 〈xc, Pcxc〉Xc
where x = x(t) and xc = xc(t) are the states of the plant and
the controller, respectively, and P and Pc will be chosen later.
Since the coordinate transform (x, xc) → (x + δcHxc, xc)
is boundedly invertible, Ve is a valid Lyapunov function
candidate whenever P > 0 and Pc > 0.

Let (x(t), xc(t))
T be a classical solution of the closed-

loop system with yref (t) ≡ 0 and wdist(t) ≡ 0. Since
Bx(t) = δcB

∗
cxc(t) and BH = −B∗c , we have B(x(t) +

δcHxc(t)) = 0. Thus x(t) + δcHxc(t) ∈ N (B) = D(A) and
A(x(t) + δcHxc(t)) = A(x(t) + δcHxc(t)). If we denote
Ã = A − δ2

cHBcC : D(A) ⊂ X → X , then a direct
computation using (11) shows that

1

2
V̇e = Re〈ẋ+ δcHẋc, P (x+ δcHxc)〉+ Re〈ẋc, Pcxc〉
= Re〈Ax+ δcHJcxc − δ2

cHBcCx, P (x+ δcHxc)〉
+ Re〈Jcxc − δcBcCx, Pcxc〉

= Re〈Ã(x+ δcHxc), P (x+ δcHxc)〉
+ Re〈(Jc + δ2

cBcCH)xc, Pcxc〉
+ Re〈δ2

cBcCHxc, δcH
∗P (x+ δcHxc)〉

− Re〈C(x+ δcHxc), δcB
∗
cPcxc〉.

Since A generates an exponentially stable semigroup T (t)
on X , there exists a unique P1 ∈ L(X) with P1 > 0 such that
A∗P1 + P1A = −2I . Moreover, the exponential stability also
implies that C is infinite-time admissible with respect to T (t),
and by [21, Thm. 5.1.1] there exists P2 ∈ L(X) with P2 ≥ 0
such that 2 Re〈Ax1, P2x1〉 = −2‖Cx1‖2 for all x1 ∈ D(A).
Thus if we define P = P1 + P2 ∈ L(X), then P > 0 and

2 Re〈Ax1, Px1〉 = −2‖x1‖2 − 2‖Cx1‖2 ∀x1 ∈ D(A).

The scalar inequality 2ab ≤ a2+b2 implies that if x1 ∈ D(A),
then

2 Re〈Ãx1, Px1〉 = 2 Re〈Ax1, Px1〉 − 2δ2
c Re〈Cx1, B

∗
cH
∗Px1〉

≤ −2‖x1‖2 − 2‖Cx1‖2 + δ2
c‖Cx1‖2 + δ2

c‖PHBc‖2‖x1‖2
= −(2− δ2

c‖PHBc‖2)‖x1‖2 − (2− δ2
c )‖Cx1‖2

≤ −‖x1‖2 − ‖Cx1‖2

whenever 0 < δc ≤ δ∗1 with δ∗1 := min{1, 1/‖PHBc‖} > 0.
Since δc ∈ (0, δ∗0) by assumption, we can choose Pc0 > 0

(corresponding to this δc) as in Lemma V.2 and define Pc =
εcPc0 > 0 for some εc > 0. Then ‖Pc‖ ≤Mcεc and

Pc(Jc + δ2
cBcCH) + (Jc + δ2

cBcCH)∗Pc = −εcδ2
cI.

If 0 < δc < min{δ∗0 , δ∗1}, we can estimate (using the inequality
2 Re〈z1, z2〉 ≤ 2‖z1‖‖z2‖ ≤ 1

2‖z1‖2+2‖z2‖2 in the last term)

V̇e = 2 Re〈Ã(x+ δcHxc), P (x+ δcHxc)〉
+ 2 Re〈(Jc + δ2

cBcCH)xc, Pcxc〉
+ 2 Re〈δ2

cBcCHxc, δcH
∗P (x+ δcHxc)〉

− 2 Re〈C(x+ δcHxc), δcB
∗
cPcxc〉

≤ −‖x+ δcHxc‖2 − ‖C(x+ δcHxc)‖2
− εcδ2

c‖xc‖2 + δ4
c‖BcCHxc‖2 + δ2

c‖H∗P (x+ δcHxc)‖2

+
1

2
‖C(x+ δcHxc)‖2 + 2δ2

c‖B∗cPcxc‖2

=
[
−1 + δ2

c‖PH‖2
]
‖x+ δcHxc‖2 −

1

2
‖C(x+ δcHxc)‖2

+ δ2
c

[
−εc + δ2

c‖BcCH‖2 + 2M2
c ε

2
c‖Bc‖2

]
‖xc‖2.

We can now choose a sufficiently small fixed εc > 0 and
δ∗2 > 0 such that if 0 < δc < δ∗c := min{δ∗0 , δ∗1 , δ∗2}, then

V̇e ≤ −ε̃e
(
‖x+ δcHxc‖2 + ‖xc‖2

)
≤ −ε̃e max{‖P−1‖, ‖P−1

c ‖}Ve =: −εeVe,
where εe > 0 depends on the choice of δc > 0. Since Te(t)
is contractive, this proves exponential closed-loop stability. �

We now present the proof of Theorem II.5 for PHS. To
use Theorem V.1 we formulate (1) as a boundary control
system on X = L2(a, b;Cn) with norm defined by ‖x‖H =√
〈Hx, x〉L2 for x ∈ X (since (P2, P1, P0, G0,H,W, W̃ ) are

real, real-valued initial data for (1) and (3) leads to real-valued
solutions). We begin by showing that the condition (b) in
Assumption II.2 implies impedance passivity of (1).

Lemma V.3. If Assumption II.2 holds and wdist(t) ≡ 0, then
the classical solutions of (1) satisfy 1

2
d
dt‖x(t)‖2H ≤ u(t)T y(t).

Proof. Let wdist(t) ≡ 0. The proof of [13, Thm. 4.2] and (b)
imply that the solution of (1) satisfies

1

2

d

dt

∫ b

a

x(z, t)TH(z)x(z, t)dz ≤ 1

2

[
f∂(t)
e∂(t)

]T
Σ

[
f∂(t)
e∂(t)

]
≤ 1

2

[
f∂(t)
e∂(t)

]T
(WT

1 W̃ + W̃TW1)

[
f∂(t)
e∂(t)

]
= y(t)Tu(t)

where we have used that
[
f∂(t)
e∂(t)

]
∈ N (W2) by (1c).

As shown in [13, Sec. 4–5], (1) becomes a boundary control
system (6) on X with choices

A0x := P2
∂2

∂z2

(
Hx
)

+ P1
∂

∂z

(
Hx
)

+ (P0 −G0) (Hx)

D(A0) = Z := {x ∈ L2(a, b;Cn) | Hx ∈ HN (a, b;Cn) }
Bx = W1RextΦ(Hx), Bdx = W2RextΦ(Hx)

Cx = W̃RextΦ(Hx), Bdv = Bd(·)v
where Rext and Φ(·) are as in Definition II.1. For these
definitions the properties in Assumption III.1 follow from [13,
Thm. 4.2] and Lemma V.3.

Proof of Theorem II.5. To apply Theorem V.1 we rewrite the
feedthrough Dc > 0 as in (7), in which case the boundary
control system has the input operator B + DcC and the
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controller (3) has no feedthrough. This corresponds to pre-
liminary output feedback u(t) = −Dcy(t) + ũ(t). Denote by
ADc = A|N (B+DcC) with D(ADc) = N (B +DcC).

By Lemma V.3, the original system is impedance passive,
and since Dc > 0, the output feedback preserves impedance
passivity. The operator ADc is dissipative, and straightforward
perturbation arguments (similar to those in the proof of Propo-
sition III.2) show that R(1−ADc) = X . Thus ADc generates
a contraction semigroup by the Lumer–Phillips Theorem and
this semigroup is exponentially stable by Assumption II.3
(with K = Dc). As shown in [9, Prop. II.4]), C = C|D(ADc )

is admissible with respect to the semigroup generated by ADc .
Finally, we need to verify Assumption IV.1, i.e., that

the transfer function PDc(λ) of (1) with feedback u(t) =
−Dcy(t) + ũ(t) satisfies RePDc(±iωk) > 0 for all k.
Define K0 = 1

2Dc > 0 and denote the transfer function
of (1) with output feedback u(t) = −K0y(t) + ũ(t) by
PK0(λ). By Assumption II.3 PK0(λ) ∈ Rp×p is well-defined
for λ ∈ {±iωk}qk=0, and since (1) has no transmission
zeros at ±iωk, PK0

(±iωk) are nonsingular for all k. Since
Dc = K0 + K0, we have PDc(±iωk) = PK0

(±iωk)(I +
K0PK0(±iωk))−1 = (PK0(±iωk)−1 + K0)−1 for all k.
Since Re(PK0(±iωk)−1) + K0 > 0, it is easy to show
that Assumption IV.1 holds. The claims now follow from
Theorem V.1.

VI. APPLICATION TO ATOMIC FORCE MICROSCOPY

As application example we consider the output tracking
trajectory problem for a piezo actuated tube used in positioning
systems for Atomic Force Microscopy (see Figure 1 (left)).
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PT 230.94

(a) Description morphologique du tube
piézoélectrique (modèle PT 230.94), et la
disposition de ses électrodes (électrodes
externes +x, -x, +y et -y, ainsi que l’élec-
trode interne qui sert de masse électrique).

(b) Fonctionnement du tube piézoélectrique :
la déflection dans 3 directions X , Y et Z, se-
lon l’application de U et �U . La tension maxi-
male est de ±250V pour ±35µm en X et Y , et
±4.5µm en Z.

FIGURE 1.2: Description et fonctionnement du tube piézoélectrique, modèle PT 230.94.

Par conséquent, les techniques de commande en boucle ouverte (Fig. 1.3b-(2)), permettant
de contourner ce problème sont particulièrement adaptées. La commande en boucle ouverte de
l’hystérésis, du creep et des oscillations mal-amorties est basée essentiellement sur les tech-
niques d’inversion de modèle. Pour ce faire, le modèle de l’effet à commander est d’abord iden-
tifié. Ensuite, différentes techniques consistant à inverser ce modèle ou à trouver une structure
équivalente à son inverse sont appliquées [89, 95, 159]. Ces techniques ont été beaucoup étu-
diées pour la commande monovariable, c’est à dire pour les actionneurs mono-axe [39, 127, 30]
ou pour les actionneurs multi-axes mais en étudiant chaque axe de l’actionneur individuellement
[16, 169, 126].

Par ailleurs, les approches relatives à la modélisation et commande multivariable des ac-
tionneurs piézoélectriques multi-axes, en considérant les transferts directs et les couplages si-
multanément, sont nouvelles. Dans cette thèse, nous proposons une extension des techniques de
modélisation et commande utilisées en monovariable aux approches multivariables, permettant
de prendre en compte à la fois les transferts directs et les couplages.

1.2 Objectifs et plan du rapport

Ce travail de thèse s’articule autour de quatre principaux objectifs :

1. Mettre en place des modèles multivariables pour les actionneurs piézoélectriques multi-
axes, les techniques existant dans la littérature étant limitées à la modélisation monova-
riable. La modélisation proposée sera du type boite-noire (Fig. 1.3a), c’est à dire basée
sur des relations entrées-sorties uniquement et sur des modèles mathématiques.

2. Utiliser les modèles multivariables proposés afin de proposer des nouvelles lois de com-
mande multivariables en boucle ouverte, pour les actionneurs piézoélectriques multi-axes.

4

Fig. 1. Atomic Force Microscopy (left). The piezoelectric tube (right).

This actuator provides the high positioning resolution and
the large bandwidth necessary for the trajectory control during
scanning processes. The active part situated at the tip of the
flexible tube is composed of three concentric layers: piezo
material in between two cylindric electrodes (Figure 1 (right)).
The deformation of the active material subject to an external
voltage results in an torque applied at the extremity of the
tube.

We consider the motion of the tube in one direction. In
this case the structure of the system behaves as a clamped-
free beam, represented by the Timoshenko beam model and
actuated through boundary control stemming from the piezo-
electric action at the tip of the beam. By choosing as state

variables the energy variables, namely the shear displace-
ment x1(t) = ∂w

∂z (·, t) − φ(·, t), the transverse momentum
distribution x2(t) = ρ∂w∂t (·, t), the angular displacement
x3(t) = ∂φ

∂z (·, t) and the angular momentum distribution
x4(t) = Iρ

∂φ
∂t (·, t) for t ≥ 0, where w(z, t) is the transverse

displacement and φ(z, t) the rotation angle of the beam, the
port-Hamiltonian model of the uncontrolled Timoshenko beam
has the form (1a)–(1b) with H(·) ≡ diag

(
K, 1

ρ , EI,
1
Iρ

)
∈

R4,

P1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , P0 =


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0


and G0 = diag(0, bw, 0, bφ) [13]. Here ρ, Iρ, E, I and
K are the mass per unit length, the angular moment of
inertia of a cross section, Young’s modulus of elasticity, the
moment of inertia of a cross section, and the shear modulus
respectively, bw, bφ the frictious coefficients. From Definition
II.1 considering that N = 1 and Q = P1 we get

[
f∂(t)
e∂(t)

]
=

1√
2



∂w
∂t (b)− ∂w

∂t (a)
K
(
∂w
∂z (b)− φ(b)

)
−K

(
∂w
∂z (a)− φ(a)

)
∂φ
∂t (b)− ∂φ

∂t (a)

EI ∂φ∂z (b)− EI ∂φ∂z (a)
K
(
∂w
∂z (b)− φ(b)

)
+K

(
∂w
∂z (a)− φ(a)

)
∂w
∂t (b) + ∂w

∂t (a)

EI ∂φ∂z (b) + EI ∂φ∂z (a)
∂φ
∂t (b) + ∂φ

∂t (a)


The beam is clamped at point a, i.e., 1

ρx2(a, t) =
1
Iρ
x4(a, t) = 0 for t ≥ 0 and free/actuated at point b, i.e.,

Kx1(b, t) = 0 and EIx3(b, t) = u(t) for t ≥ 0. The angular
velocity ∂φ

∂t (b, t) at the tip of the beam is measured. The input
and output of the system are then of the form (1) with

W1 =
1√
2

[
0 0 0 1 0 0 1 0

]
W2 =

1√
2

 0 1 0 0 1 0 0 0
−1 0 0 0 0 1 0 0
0 0 −1 0 0 0 0 1


W̃ =

1√
2

[
0 0 1 0 0 0 0 1

]
The matrix W :=

[
W1

W2

]
has full rank and WΣWT =

0. Furthermore 〈(WT
1 W̃ + W̃TW1 − Σ)g, g〉 = 0 for all

g ∈ N (W2), the system is then impedance passive satisfying
Assumption II.2. The system is also exponentially stable and
Assumption II.3 holds. From Proposition III.2 the closed loop
system has a solution and the regulation error is well defined.

We now build a controller to achieve the robust output track-
ing for the Piezoelectric tube model. We use the numerical
values given in Table I to achieve a realistic approximation of
the dynamics of the piezo actuated tube.

For the tracking we consider the reference signal

yref (t) = a sin(ω1t) + b cos(ω2t), a, b ∈ R \ {0}.
with two pairs of frequencies ±ωk where ωi > 0, k ∈
{1, 2}. As an input disturbance signal we consider 50 Hz AC
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Beam’s parame-
ters

Value Simulation
parameters

Value

Beam length 5 cm Nf 50
Beam width 0.3 cm a 200 cm/s
Beam thickness 0.2 cm b 100 cm/s
Material Density 936 kg/m3 c 0.2 N/m
Young’s modulus 4.14 GPa θ 0.6
Transverse diss. 10−4 N·s/m ω1 10 rad/s
coef. ω2 15 rad/s
Rotational diss. 10−4 N·m·s/rad ω3 50 rad/s
coef. Dc 0.002

δc 0.2

TABLE I
SIMULATION PARAMETERS.

noise coming from the electrical network, hence wdist,2(t) =
c sin(2π50t + θ) with unknown c ∈ R and θ ∈ [0, 2π]. Since
the piezo-actuated tube is a single-input single-output system,
we can use a controller of the form (with e(t) = yref (t)−y(t))

ẋc(t) =


0 ω1 0 0 0 0
−ω1 0 0 0 0 0

0 0 0 ω2 0 0
0 0 −ω1 0 0 0
0 0 0 0 0 ω3

0 0 0 0 −ω3 0

xc(t) +


δc
0
δc
0
δc
0

e(t)
u(t) = δc

[
1 0 1 0 1 0

]
xc(t) +Dce(t)

on Xc = R6. By Theorem II.5 the controller achieves
asymptotic output tracking of the reference signal yref (t) if
iω1, iω2, and iω3 are not transmission zeros of the system, if
Dc > 0, and if δc > 0 is sufficiently small.

Fig. 2. Simulation results. The controlled output y(t) (dashed red line) and
the reference yref (t) (solid blue line).

For simulation the Timoshenko beam model was discretized
using a structure preserving method based on the Mixed Finite
Element Method [2], [5]. We denote by Nf the number of
basis elements, and consequently the full finite dimensional
system has order 4Nf . All the numerical values of the param-
eters related to the simulation can be found in table I. Figure
2 depicts the output tracking performance for the zero initial
states of the system and the controller, and exhibits steady
convergence of the tracking error to zero. Due to robustness
the output tracking is achieved even if the physical parameters
of the piezo actuated tube model contain uncertainties or
experience changes, as long as the closed-loop system stability
is preserved.

VII. CONCLUSIONS

In this paper we have proposed a constructive method for
the design of impedance passive controllers for robust output

regulation of port-Hamiltonian systems with boundary control
and observation. Our results use Lyapunov techniques and ex-
tend previous results on this topic by removing the assumption
of wellposedness, which is often highly challenging to verify
for concrete PDE models. Future research topics include the
design of robust controllers for nonlinear PHS.

Acknowledgement. The authors are grateful to Jukka-Pekka
Humaloja for helpful discussions on PHS.
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