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Abstract— In this paper we discuss and compare different
definitions for stability of an infinite-dimensional linear sys-
tem. In particular, we concentrate on a situation where the
semigroup generated by the system operator is polynomially
stable. We derive conditions for strong input-output stability
of the system. In addition, we introduce a weaker concept of
polynomial input-output stability for linear systems, and show
that it corresponds to the recently introduced notion of P-
stability in the frequency domain.

I. INTRODUCTION

There are many ways of defining “stability” of a linear
infinite-dimensional system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X (1a)
y(t) = Cx(t) (1b)

on a separable Hilbert space X . For example, in the time
domain a common approach is to relate the stability of (1) to
the stability properties of the strongly continuous semigroup
T (t) generated by A. On the other hand, in the frequency
domain the characteristic (and sometimes the only available)
property of a system is the way the output of the system
depends on its input. Because of this, in the frequency
domain stability is usually defined as the property of a system
that “stable inputs” (in an appropriate sense) lead to “stable
outputs”. The main purpose of this paper is to discuss and
compare selected definitions for stability of linear distributed
parameter systems.

Systems of the form (1) where A generates an expo-
nentially stablizable semigroup T (t) and where B and C
are bounded operators are well-understood [1], [2]. Also
the more general situation where B and C are allowed
to be unbounded operators has been studied extensively
in the literature [3], [4]. In this paper we concentrate on
a situation where B ∈ L(U,X) and C ∈ L(X,Y ), but
the semigroup T (t) is not exponentially stabilizable. The
stability properties of a system with a semigroup T (t) that
is only strongly stabilizable has been considered previously
in, for example, [5], [6], [7]. In the previous references, the
main type of stability was defined as follows.

Definition 1.1 (Input-Output Stability): The system (1) is
called input-output stable if u ∈ L2(0,∞;U) implies y ∈
L2(0,∞;Y ) and ‖y‖L2 ≤ M‖u‖L2 for some M ≥ 0
independent of u.

On a separable Hilbert space the Paley-Wiener Theorem
implies that an equivalent condition for input-output stability
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is that the Laplace transforms û and ŷ of u and y, respec-
tively, have the property that if û ∈ H2(C+, U), then also
ŷ ∈ H2(C+, Y ), and ‖ŷ‖H2

≤ M‖û‖H2
for some constant

M ≥ 0. Since ŷ = Pû where P (λ) = CR(λ,A)B is
the transfer function of (1), this is in turn equivalent to the
property P (·) ∈ H∞(C+,L(U, Y )).

The main novelty in this paper is that we study a situation
where the semigroup T (t) is polynomially stable [8], [9],
i.e., T (t) is uniformly bounded, iR ⊂ ρ(A) and there exist
α > 0 and M ≥ 1 such that

‖T (t)A−1‖ ≤ M

t1/α
, ∀t > 0.

As our first main results, we show that if A generates a
polynomially stable semigroup, it is possible to derive natural
and easily verifiable conditions on the operators B and C so
that the system (1) is input-output stable in the sense of
Definition 1.1.

In some situations the input-output stability in the sense of
Definition 1.1 may be too strict a definition for stability of
a linear system. In particular, this may be the case if the
inputs to the plant are known to have special properties,
such as a certain number of continuous derivatives. This
type of situation is often encountered in studying output
regulation with infinite-dimensional signal generators [10],
[11]. In the output regulation problem we are first and
foremost concerned of the stability properties of the closed-
loop system, whose input is produced by another linear
system called the exosystem. The exosystem, in turn, can
produce signals with various levels of smoothness depending
on the choice of its initial state. Motivated by situations
like this, we introduce a new concept of polynomial input-
output stability, which generalizes the input-output stability
in Definition 1.1 in the following way. Here Wα,2 is the
Sobolev space of order α [12].

Definition 1.2 (Polynomial Input-Output Stability): Let
α ∈ N0. The system (1) is polynomially input-output stable
with α if u ∈ Wα,2(0,∞;U) implies y ∈ L2(0,∞;Y ) and
‖y‖L2 ≤M‖u‖Wα,2 for some M ≥ 0 independent of u.

Recently in [13], [14] the class H∞(C+;L(U, Y )) of
transfer functions was extended by allowing polynomial
growth of ‖P (iω)‖ on the imaginary axis iω ∈ iR. These
so-called P-stable transfer functions were introduced to meet
the requirements of the theory of output regulation in the
frequency domain. In this paper we show that the P-stability
in [13], [14] (in a slightly stronger sense) corresponds to the
polynomial input-output stability in Definition 1.2.

To summarize the main contributions, in this paper we
• present conditions for a linear system (1) with a poly-



nomially stable semigroup to be input-output stable in
the sense of Definition 1.1.

• introduce the concept of polynomial input-output sta-
bility.

• show that polynomial input-output stability (in the time
domain) corresponds to P-stability (in the frequency
domain).

II. STRONGLY STABLE SYSTEMS

In this section we review the strong stability of system
as defined in [5], [6], [7], and study it in the case where
A generates a polynomially stable semigroup. As our main
result, we present sufficient conditions for the stability of (1).
We begin by defining the input, output and input-output maps
as in [6], [4], [3].

Definition 2.1: We define the extended input map Φ by

Φu = lim
t→∞

∫ t

0

T (t− s)Bu(s)ds u ∈ L2(0,∞;U)

if the limit exists and belongs to X for every u ∈
L2(0,∞;U).

The extended output map Ψ is defined by

Ψx = CT (·)x : [0,∞)→ Y.

for every x ∈ X .
We define the extended input-output map F such that

(Fu)(·) = y(·) : [0,∞)→ Y , where

y(t) =

∫ t

0

CT (t− s)Bu(s)ds u ∈ L2(0,∞;U), t ≥ 0.

In [6], [7] a strongly stable system is defined in the
following way.

Definition 2.2 (Strongly stable system): The system (1) is
said to be

(i) input stable if the extended input map satisfies Φ ∈
L(L2(0,∞;U), X)

(ii) output stable if the extended output map satisfies Ψ ∈
L(X,L2(0,∞;Y ))

(ii) input-output stable if the extended input-output map
satisfies F ∈ L(L2(0,∞;U), L2(0,∞;Y ))

If T (t) is a strongly stable semigroup and (1) has the above
properties, then it is called a strongly stable system.

On a Hilbert space, the Paley-Wiener Theorem [1, Thm.
A.6.21] can be used to give frequency domain character-
izations for the stability concepts in Definition 2.2. The
definition of the Hardy spaces H2 and H∞ can be found
in [1, Def. A.6.14].

Lemma 2.3: The system (1) is

(i) input stable if and only if B∗R(·, A∗)x ∈ H2(C+;U)
for all x ∈ X .

(ii) output stable if and only if CR(·, A)x ∈ H2(C+;Y )
for all x ∈ X .

(iii) input-output stable if and only if CR(·, A)B ∈
H∞(C+;L(U, Y )).

A. Systems with Polynomially Stable Semigroups

Throughout this section we assume that T (t) generated by
A is polynomially stable. Since T (t) is uniformly bounded,
the operators −A and −A∗ are invertible and sectorial in
the sense of [15, Sec. 2.1] or [16, Sec. 3.8]. Because of this,
the fractional powers (−A)β and (−A∗)γ are well-defined
operators for all β, γ ∈ R.

On a Hilbert space the polynomial stability of a semigroup
has the following characterizations. For the proof of the
theorem, see [17, Lem. 2.4], [9, Lem. 2.3, Thm. 2.4], and [18,
Lem. 3.2].

Theorem 2.4: Assume A generates a uniformly bounded
semigroup on a Hilbert space X , and iR ⊂ ρ(A). For fixed
constants α, β > 0 the following properties are equivalent.

(a) ‖TA(t)A−1‖ ≤ M

t1/α
, ∀t > 0

(a′) ‖TA(t)(−A)−β‖ ≤ M

tβ/α
, ∀t > 0

(b) ‖R(iω,A)‖ = O(|ω|α)

(c) sup
Reλ≥0

‖R(λ,A)(−A)−α‖ <∞.

We consider input and output operators satisfying

R(B) ⊂ D((−A)β) and R(C∗) ⊂ D((−A∗)γ). (2)

for some β, γ ≥ 0. Under these conditions, the Closed Graph
Theorem [1, Thm. A.3.4.9] implies that (−A)βB ∈ L(U,X)
and (−A∗)γC∗ ∈ L(Y,X).

The following theorem summarizes the main results of this
section. In particular, the strong stability of the system (1) is
guaranteed if the exponents β, γ ≥ 0 in (2) are large enough.

Theorem 2.5: Consider the system (1) on a separable
Hilbert space X and assume the semigroup T (t) is poly-
nomially stable with α > 0. Then the following are true.
(i) If β + γ ≥ α, then (1) is input-output stable.

(ii) If β > α/2, then (1) is input stable.
(iii) If γ > α/2, then (1) is output stable.
(iv) If β > α/2 and γ > α/2, then the system (1) is strongly

stable (in the sense of Definition 2.2).
Proof: We begin by showing that (i) is satisfied. To

this end, assume β + γ ≥ α in (2). By Theorem 2.4 there
exists M̃ ≥ 1 such that supReλ≥0‖R(λ,A)(−A)−α‖ ≤ M̃ .
We have α− β − γ ≤ 0, and thus (−A)α−β−γ ∈ L(X).

Since σ(A) ⊂ C−, the function CR(·, A)B is analytic
in C+. Denote Bβ = (−A)βB ∈ L(U,X) and Cγ =
C(−A)γ ∈ L(X,Y ) (the unique bounded extension of
C(−A)γ : D((−A)γ) → Y to X), which satisfies ‖Cγ‖ =
‖(−A∗)γC∗‖. For all λ ∈ C with Reλ ≥ 0 we have

‖CR(λ,A)B‖ = ‖C(−A)γR(λ,A)(−A)−β−γ(−A)βB‖
= ‖CγR(λ,A)(−A)−β−γBβ‖
= ‖CγR(λ,A)(−A)−α(−A)α−β−γBβ‖
≤ ‖Cγ‖‖R(λ,A)(−A)−α‖‖(−A)α−β−γ‖‖Bβ‖
≤ M̃‖(−A)α−β−γ‖‖(−A)βB‖‖(−A∗)γC∗‖.



Since the bound is independent of λ ∈ C+, this concludes
CR(·, A)B ∈ H∞(C+;L(U, Y )), and thus by Lemma 2.3
the system is input-output stable.

In order to prove (ii) and (iii), assume β, γ > α/2.
Theorem 2.4 shows that there exist Mβ ,Mγ ≥ 1 such that

‖T (t)(−A)−β‖ ≤ Mβ

tβ/α
and ‖T (t)(−A)−γ‖ ≤ Mγ

tγ/α
,

where β/α > 1/2 and γ/α > 1/2. Denote Bβ = (−A)βB ∈
L(U,X) and Cγ = C(−A)γ ∈ L(X,Y ) (the unique
bounded extension of C(−A)γ : D((−A)γ)→ Y to X).

If u ∈ L2(0,∞;U), then for every t ≥ 1 we have∫ t−1

0

‖T (t− s)Bu(s)‖ds

=

∫ t−1

0

‖T (t− s)(−A)−β(−A)βBu(s)‖ds

≤ ‖Bβ‖
∫ t−1

0

‖T (t− s)(−A)−β‖‖u(s)‖ds

≤ ‖Bβ‖
(∫ t−1

0

‖T (t− s)(−A)−β‖2
)1/2

×
(∫ t−1

0

‖u(s)‖2ds
)1/2

≤Mβ‖Bβ‖
(∫ t−1

0

1

(t− s)2β/α

)1/2

‖u‖L2

≤Mβ‖Bβ‖‖u‖L2

(∫ ∞
1

1

s2β/α

)1/2

<∞,

since 2β/α > 1, and∫ t

t−1
‖T (t− s)Bu(s)‖ds

≤ ‖B‖
(

sup
t>0
‖T (t)‖

)∫ t

t−1
‖u(s)‖ds

≤ ‖B‖
(

sup
t>0
‖T (t)‖

)(∫ t

t−1
‖u(s)‖2ds

)1/2

· 1

≤ ‖B‖
(

sup
t>0
‖T (t)‖

)
‖u‖L2 <∞.

Together these estimates conclude that the extended output
map Φ is well-defined and Φ ∈ L(L2(0,∞;U), X). Thus
the system (1) is input stable.

If x ∈ X , we have∫ t

0

‖CT (t)x‖2dt ≤
∫ 1

0

‖CT (t)x‖2dt

+

∫ ∞
1

‖C(−A)γT (t)(−A)−γx‖2dt

≤
(

sup
t>0
‖T (t)‖

)2

‖C‖2‖x‖2

+M2
γ‖Cγ‖2‖x‖2

∫ ∞
1

1

t2γ/α
dt <∞

since 2γ/α > 1. This shows that the extended output map
Ψ is well-defined and Ψ ∈ L(X,L2(0,∞;Y )). Because of
this, the system (1) is output stable.

Finally, if β, γ > α/2, we have β + γ > α/2 + α/2 = α,
and the strong stability of (1) in the sense of Definition 2.2
follows from (i), (ii), and (iii), and the fact that T (t) is a
strongly stable semigroup.

Remark 2.6: The results (ii) and (iii) in Theorem 2.5 also
follow from each others by duality, since output stability
of (1) is equivalent to input stability of the dual system, and
vice versa.

Theorem 2.5 and Lemma 2.3 immediately imply the
following corollary.

Corollary 2.7: If γ > α/2, then CR(·, A)x ∈ H2(C+;Y )
for every x ∈ X . Similarly, if β > α/2, then B∗R(·, A∗)x ∈
H2(C+;U) for every x ∈ X .

III. STABILITY IN THE FREQUENCY DOMAIN:
P-STABILITY

In this section we review the definition of P-stable transfer
functions. This extension of the class H∞(C+;L(U, Y ))
of transfer functions was introduced recently in [13, Sec.
4.2],[14]. We use a definition where the condition (c) is
slightly stronger than in the original version, where the
polynomial estimate for ‖P (λ)‖ was only required on the
imaginary axis λ ∈ iR.

Definition 3.1 (P-Stability): A system with a transfer
function P (λ) is called P-stable (with α > 0) if the following
conditions are satisfied.
(a) P (·) is analytic in a domain containing C+

(b) P (·) ∈ H∞(C+
ξ ;L(U, Y )) for every ξ > 0, where

C+
ξ = {λ ∈ C | Reλ > ξ }

(c) There exist ε > 0 and MP ≥ 1 such that

‖P (λ)‖ ≤MP (1 + |λ|α)

for every λ ∈ C+ with 0 ≤ Reλ < ε.
Example 3.2: As an example of a transfer function that is

P-stable but not in H∞(C+;L(U, Y )) we can consider

P (λ) =

∞∑
k=1

1

k4/3(λ+ 1/k2 − ik)
,

which satisfies the conditions of Definition 3.1 for α = 2/3.
Besides condition (c), Definition 3.1 also differs from

the definition of P-stable transfer functions in [13], [14]
in another aspect: In the above definition, we consider the
exponent α > 0 to be fixed, whereas in the original definition
it was only required that (c) is satisfied for some such
exponent. The set of transfer functions that are “P-stable with
α > 0” (where α > 0 is fixed) is not an algebra. Indeed, the
product of two transfer functions not need be P-stable with
the same α > 0. Regardless of this drawback, we choose
to pay close attention to the exponent α, because it can be
connected to the properties of the semigroup T (t) and the
extended input-output map F, as the results presented later
in this paper demonstrate. Moreover, the algebra of P-stable
transfer functions used in [13], [14] can be obtained from
Definition 3.1 by defining

FP =
{
P (·)

∣∣ P (·) is P-stable with some α > 0
}
.



The following theorem shows that the concept of P-
stability is indeed closely related to systems where A gen-
erates a polynomially stable semigroup.

Theorem 3.3: If the semigroup T (t) generated by A is
polynomially stable with α > 0, then the system (1) is P-
stable with α > 0.

Proof: (a) Since T (t) is uniformly bounded and iR ⊂
ρ(A), we have that R(·, A) is analytic in ρ∞(A) ⊃ C+ (the
connected component of ρ(A) containing (0,∞)). The same
is true for the transfer function λ 7→ P (λ) = CR(λ,A)B.

(b) Since T (t) is uniformly bounded, the Hille-Yosida
Theorem implies that R(·, A) is uniformly bounded in every
half-plane C+

ξ where ξ > 0. The same is true for the transfer
function λ 7→ P (λ) = CR(λ,A)B.

(c) By Theorem 2.4 there exists MA ≥ 1 such that
‖R(iω,A)‖ ≤ MA(1 + |ω|α) for every ω ∈ R. If
M = supt≥0‖T (t)‖, then the Hille-Yosida Theorem implies
‖R(λ,A)‖ ≤ M

Reλ for all λ ∈ C+. Let λ = ξ + iω ∈ C be
such that 0 < ξ < 1. We can use the resolvent identity

R(ξ + iω,A) = R(iω,A)− ξR(ξ + iω,A)R(iω,A)

= (I − ξR(ξ + iω,A))R(iω,A)

to estimate

‖R(ξ + iω,A)‖ ≤ (1 + |ξ|‖R(ξ + iω,A)‖)‖R(iω,A)‖
≤ (1 +M)MA(1 + |ω|α) ≤ (1 +M)MA(1 + |λ|α).

This immediately implies that

‖P (λ)‖ ≤ ‖C‖‖R(λ,A)‖‖B‖
≤ ‖B‖‖C‖(1 +M)MA(1 + |λ|α)

whenever 0 < Reλ < 1.
The following property of P-stable transfer functions will

be needed in the next section.
Lemma 3.4: If P (·) = CR(·, A)B is P-stable with α >

0, then λ 7→ (1 + λ)−αP (λ) is in H∞(C+;L(U, Y )), i.e.,
λ 7→ (1 + λ)−αP (λ) is analytic in C+ and

sup
λ∈C+

‖(1 + λ)−αP (λ)‖ <∞.

Proof: Since both λ 7→ (1+λ)−α and P (·) are analytic
in C+, so is the function λ 7→ (1 + λ)−αP (λ).

Since P (·) is P-stable, there exist MP ≥ 1 and ε > 0 such
that ‖P (λ)‖ ≤MP (1 + |λ|α) if 0 < Reλ < ε. This implies
that if 0 < Reλ < ε, then

‖(1 + λ)−αP (λ)‖L(U,Y ) ≤
MP (1 + |λ|α)

|1 + λ|α

≤MP sup
λ∈C+

1 + |λ|α

|1 + λ|α
<∞.

On the other hand, since |1 + λ| ≥ 1 for every λ ∈ C+, we
have

sup
Reλ≥ε

‖(1 + λ)−αP (λ)‖ = sup
Reλ≥ε

|1 + λ|−α‖P (λ)‖

≤ sup
Reλ≥ε

‖P (λ)‖ <∞

due to the condition (b) in Definition 3.1.

IV. POLYNOMIALLY STABLE SYSTEMS

In this section introduce the polynomial input-output sta-
bility of a linear system. This concept is motivated by
systems where A generates a polynomially stable semigroup
and B and C are bounded operators. We relax the conditions
in Definition 2.2 by restricting our attention to inputs with
suitable smoothness properties.

Assumption 4.1: Throughout the rest of this section we
assume α ∈ N0.

The definition of polynomial input-output stability uses
Sobolev spaces [12]

Wα,2(0,∞;U) =
{
u ∈ L2

∣∣ u(k) ∈ L2 for 1 ≤ k ≤ α
}

‖u‖2Wα,2 =

α∑
k=0

‖u(k)‖2L2 .

Later in this section we also consider functions in the space

C∞0 (0,∞;U) =
{
u ∈ C∞

∣∣ u(k)(0) = 0 ∀k,
suppu is compact

}
.

The space C∞0 is a dense subspace of Wα,2 for every α ∈ N.
Definition 4.2 (Polynomially input-output stable system):

Assume α ∈ N0. The system (1) is called polynomially
input-output stable (with α) if the extended input-output
map F satisfies F ∈ L(Wα,2(0,∞;U), L2(0,∞;Y ))

The last main result of this paper presented in the follow-
ing theorem connects the P-stability in the frequency domain
to the polynomial input-output stability in the time domain.

Theorem 4.3: Assume α ∈ N. If the system (1) is P-stable
with α, then it is polynomially input-output stable with α.
On the other hand, if T (t) is uniformly bounded, iR ⊂ ρ(A),
and the system (1) is polynomially input-output stable with
α, then it is P-stable with α.

In the proof of the theorem, we use the following lemma.
Lemma 4.4: Let α ∈ N. If u ∈ C∞0 (0,∞;U), then λ 7→

(1 + λ)αû(λ) ∈ H2(C+;U) and

1√
α+ 1

‖u‖Wα,2 ≤ ‖(1 + λ)αû‖H2
≤ 2α

√
2‖u‖Wα,2 . (3)

Proof: Let u ∈ C∞0 . We have u ∈ L2(0,∞;U) and
û ∈ H2(C+;U). For every λ ∈ C+

‖(1 + λ)αû(λ)‖U = |1 + λ|α‖û(λ)‖ ≤ (1 + |λ|)α‖û(λ)‖
≤ 2α(1 + |λ|α)‖û(λ)‖ = 2α(‖û(λ)‖+ |λ|α‖û(λ)‖)
= 2α(‖û(λ)‖+ ‖λαû(λ)‖).

This and the scalar inequality (a + b)2 ≤ 2(a2 + b2) for
a, b ≥ 0 further imply

‖(1 + λ)αû‖2H2
≤ sup
σ>0

∫ ∞
−∞
‖(1 + σ + iη)αû(σ + iη)‖2dη

≤ 22α sup
σ>0

∫ ∞
−∞

2
(
‖û(σ + iη)‖2

+ ‖(σ + iη)αû(σ + iη)‖2
)
dη

≤ 22α+1(‖û‖2H2
+ ‖λαû‖2H2

).



For every k ∈ {0, . . . , α} we have

u ∈Wα,2(0,∞;U) ⇒ u(k) ∈ L2(0,∞;U)

⇔ L{u(k)} ∈ H2(C+;U).

Using the properties of the Laplace transform and the fact
that u(l)(0) = 0 for 0 ≤ l ≤ α − 1, for every λ ∈ C+ we
have

L{u(k)}(λ) = λkû(λ) +

k−1∑
l=0

λk−1−lu(l)(0) = λkû(λ).

Since λ 7→ (1 + λ)α and û are analytic in C+, also their
product λ 7→ (1 + λ)αû(λ) is analytic. By the Paley-Wiener
Theorem [1, Thm. A.6.21] the norms satisfy

‖(1 + λ)αû‖2H2
≤ 22α+1(‖û‖2H2

+ ‖λαû‖2H2
)

≤ 22α+1(‖L{u}‖2H2
+ ‖L{u(α)}‖2H2

)

= 22α+1(‖u‖2L2 + ‖u(α)‖2L2) ≤ 22α+1
α∑
k=0

‖u(k)‖2L2

= 22α+1‖u‖2Wα,2 .

This proves the second inequality in (3).
For every λ ∈ C+ and k ∈ {1, . . . , α} we have

|λ|k ≤ |1 + λ|k ≤ |1 + λ|α

since |λ| ≤ |1 + λ|, and |1 + λ| ≥ 1. Thus

‖λkû(λ)‖U = |λ|k‖û(λ)‖U ≤ |1 + λ|α‖û(λ)‖U
= ‖(1 + λ)αû(λ)‖U ,

which in turn implies

‖λkû‖H2 ≤ ‖(1 + λ)αû‖H2
.

Using this, we can estimate

‖u‖2Wα,2 =

α∑
k=0

‖u(k)‖2L2 =

α∑
k=0

‖λkû‖2H2

≤
α∑
k=0

‖(1 + λ)αû‖H2
= (α+ 1)‖(1 + λ)αû‖2H2

.

This proves the first inequality in (3).
Proof of Theorem 4.3: We begin by showing that if the

system is P-stable, then it is polynomially input-output stable.
Let u ∈ C∞0 (0,∞;U) and denote y = Fu : (0,∞) → Y .
Our aim is to show that y ∈ L2(0,∞;Y ) and that there exists
M ≥ 1 independent of u such that ‖y‖L2 ≤M‖u‖Wα,2 . We
have from Lemma 4.4 that λ 7→ (1+λ)αû(λ) ∈ H2(C+;U),
and

‖(1 + λ)αû‖H2
≤ 2α

√
2‖u‖Wα,2 .

Now for every λ ∈ C+ we have

ŷ(λ) = P (λ)û(λ) = (1 + λ)−αP (λ)(1 + λ)αû(λ)

where λ 7→ (1 + λ)−αP (λ) ∈ H∞(C+;L(U, Y )) by
Lemma 3.4. Since λ 7→ (1+λ)αû(λ) ∈ H2(C+;U), we have
that ŷ ∈ H2(C+;Y ) [1, Thm. A.6.26], which further implies

y ∈ L2(0,∞;Y ) by the Paley-Wiener Theorem. Moreover,
the norms satisfy

‖y‖L2 = ‖ŷ‖H2 = ‖(1 + λ)−αP (λ)(1 + λ)αû‖H2

≤ ‖(1 + λ)−αP (λ)‖H∞‖(1 + λ)αû‖H2

≤ 2α
√

2‖(1 + λ)−αP (λ)‖H∞‖u‖Wα,2 .

Since u ∈ C∞0 (C+;U) was arbitrary, and since the
space C∞0 is dense in Wα,2, this concludes that F ∈
L(Wα,2(0,∞;U), L2(0,∞;Y )).

Now assume that T (t) is uniformly bounded, iR ⊂ ρ(A),
and the system (1) is polynomially input-output stable. Our
aim is to show that the system is P-stable. Similarly as
in the proof of Theorem 3.3, the first two properties in
Definition 3.1 follow directly from the assumptions on A
and T (t).

Since C∞0 (0,∞;U) is dense in L2(0,∞;U), the Paley-
Wiener Theorem implies that the space L{C∞0 } (the image
of C∞0 under the Laplace transform) is dense in H2(C+;U).
Take û ∈ L{C∞0 (0,∞;U)} (i.e., u ∈ C∞0 ), and define û0 ∈
H2(C+;U) such that û0(λ) = (1 + λ)−αû(λ). Since u ∈
Wα,2, and since λ 7→ (1+λ)−α is uniformly bounded in C+,
we have that u0 = L−1{û0} ∈Wα,2(0,∞;U). Because

F ∈ L(Wα,2(0,∞;U), L2(0,∞;Y ))

by assumption, we can define y = Fu0 ∈ L2(0,∞;Y ). Due
to the Paley-Wiener Theorem we also have ŷ ∈ H2(C+;Y ),
and ŷ(λ) = P (λ)û0(λ) for every λ ∈ C+. We can use
Lemma 4.4 to estimate

‖(1 + λ)−αP (λ)û‖H2
= ‖P (λ)(1 + λ)−αû‖H2

= ‖P (λ)û0‖H2
= ‖ŷ‖H2

= ‖y‖L2 = ‖Fu0‖L2

≤ ‖F‖‖u0‖Wα,2 ≤ 1√
α+ 1

‖F‖‖(1 + λ)αû0‖H2

=
1√
α+ 1

‖F‖‖û‖H2 .

Since û ∈ L{C∞0 (0,∞;U)} was arbitrary and since L{C∞0 }
is dense in H2(C+;U), this implies that the multiplication
map λ 7→ (1 + λ)−αP (λ) is in L(H2(C+;U), H2(C+, Y )),
which in particular implies that

sup
0<Reλ<1

(1 + |λ|α)−1‖P (λ)‖ <∞.

This concludes that the system (1) is P-stable. �

V. CONCLUSIONS

In this paper we have studied different definitions for
stability of a linear system in the case where the semigroup
T (t) generated by A is not exponentially stabilizable. Our
main interest was in the case where the semigroup T (t) is
polynomially stable. We demonstrated that for such systems
it is possible to derive concrete conditions for the strong
stability in the sense of [5], [7].

In addition, we introduced a new form of stability, the so-
called polynomial input-output stability. The main motivation
for this definition arises from a situation where the outputs
of the systems are not required to be well-behaving for



arbitrary square integrable inputs, but only for a smaller
class of functions with some smoothness properties. In this
paper we only considered one part of strong stability in
Definition 2.2, the input-output stability. Main topics for
future research include corresponding redefinitions of input
and output stabilities, and further study of the systems with
these properties.

The topics for future research also include generalizing
the results on polynomial input-output stability for non-
integer exponents α > 0, as well as studying systems with
unbounded input and output operators B and C.
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