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We introduce the concept of polynomial input-output stability
for infinite-dimensional linear systems. We show that this stability
type corresponds exactly to the recent notion of P-stability in
the frequency domain. In addition, we show that on a Hilbert
space a regular linear system whose system operator generates
a polynomially stable semigroup is always polynomially input-
output stable, and present additional conditions under which the
system is input-output stable. The results are illustrated with an
example of a polynomially input-output stable one-dimensional
wave system.

Index Terms—Distributed parameter system, stability

I. INTRODUCTION

The concept of “stability” for a regular linear system [16],
[15]

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X (1a)
y(t) = Cx(t) (1b)

on a Banach space X can be defined in various ways. In this
paper we study the stability of (1) in the input-output sense,
where the system is defined to be stable if every “stable input”
u(·) : [0,∞)→ U results in a “stable output” y(·) : [0,∞)→
Y . Both U and Y are Hilbert spaces. One of the most well-
known of such stability types is the input-output stability1 [15].

Definition 1 (Input-Output Stability). The system (1) is called
input-output stable if for x0 = 0 the property u ∈ L2(0,∞;U)
implies y ∈ L2(0,∞;Y ) and ‖y‖L2 ≤ M‖u‖L2 for some
M ≥ 0 independent of u.

The purpose of this paper is to introduce a new stability
type called polynomial input-output stability, which relaxes
Definition 1 by restricting the class of stable inputs u. In
addition, we study the properties of this stability type and,
in particular, show that it corresponds precisely to a recently
introduced frequency domain stability type. We also prove that
on a Hilbert space any regular linear system whose system
operator A generates a polynomially stable semigroup [5] is
polynomially input-output stable.

The motivation for this paper derives from robust out-
put regulation of distributed parameter systems with infinite-
dimensional exosystems. Recently, the theory of robust output
regulation in this setting has been developed concurrently
in the time domain [12], [13], [6] and in the frequency
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1It should be noted that there is some variation in the terminology used
in the literature. A more precise term for the concept in Definition 1 would
be “L2-input-output stability”, and “input-output stability” is sometimes used
for other forms of stability.

domain [9]. However, even though results of similar nature
appear in both domains, the exact relationships between the
corresponding parts of the theory are not at all properly
understood. This gap between the two domains is largely
caused by the lack of correspondence between the stability
types of the closed-loop system on the two sides of the fence.

In this paper we take the first steps towards remedying
the situation. In particular, we investigate suitable forms of
stability for the closed-loop systems in both the time and
frequency domains, and study their relationships. In the time-
domain the most common approach to stability is to require
that the closed-loop semigroup is stable [12]. However, for
the purpose of bridging the gap between the two domains the
input-output stability in Definition 1 has a clear advantage over
stability defined in terms of the semigroup: the input-output
stability has an exact counterpart in the frequency domain.
Indeed, due to the Paley–Wiener Theorem the system (1)
is input-output stable if and only if its transfer function
P (λ) satisfies P (·) ∈ H∞(C+,L(U, Y )). Unfortunately,
it has been observed that in robust output regulation with
infinite-dimensional exosystems the input-output stability of
the closed-loop system, or equivalently its H∞-stability, is in
general unachievable [9]. However, in [9] it was shown that
the robust output regulation problem can instead be solved
under the weaker assumption of P-stability of the closed-
loop system [9, Sec. 3.2]. This stability type relaxes H∞-
stability by permitting polynomial growth of the transfer
function on the imaginary axis (for details, see Definition 5).
Similarly, in the time-domain case it has been observed that
even though the exponential stabilization of the closed-loop
semigroup is impossible, it can be stabilized polynomially
under very reasonable assumptions, and that the robust output
regulation problem can be solved using this as the main
stability type [14].

Motivated by the above consideration, and especially by
the solvability of the robust output regulation problem under
the assumption of polynomial stability of the closed-loop
semigroup, we introduce a new time-domain stability type
called the polynomial input-output stability. Here Wα,2 is the
Sobolev space of order α ≥ 0 [1], see Section II-B for details.

Definition 2 (Polynomial Input-Output Stability). The sys-
tem (1) is polynomially input-output stable with α ≥ 0
if for x0 = 0 the property u ∈ Wα,2(0,∞;U) implies
y ∈ L2(0,∞;Y ) and ‖y‖L2 ≤ M‖u‖Wα,2 for some M ≥ 0
independent of u.

Definition 2 relaxes the definition of input-output stability,
and coincides with it in the case of α = 0. As the main
result of this paper we show in Section III that polynomial
input-output stability is the exact time-domain correspondent



2

of P-stability in the frequency domain.
In the final part of this paper we study the situation where

the semigroup T (t) generated by A is polynomially stable,
i.e., if T (t) is uniformly bounded, iR ⊂ ρ(A) and there exist
α̃ > 0 and M ≥ 1 such that [5]

‖T (t)A−1‖ ≤ M

t1/α̃
, ∀t > 0. (2)

We will see that polynomial input-output stability appears
naturally in situations where the semigroup generated by A
is polynomially stable. In fact, we will show that if A gener-
ates a polynomially stable semigroup satisfying (2), then the
system (1) is polynomially input-output stable with exponent
α = α̃ + 2. Moreover, if B and C are bounded operators,
then (1) is polynomially input-output stable with α = α̃.

Polynomial input-output stability was first introduced in a
preliminary version [11] of this article for integer exponents
α ∈ N, and for systems with bounded operators B and C.
In this paper we extend the study for real exponents α ≥ 0,
and allow the system (1) to have unbounded input and output
operators. Moreover, in [11] the definition of P-stability was
stronger than the original definition introduced in [9]. In this
paper we prove the correspondence of polynomial input-output
stability and P-stability using the original definition of P-
stability.

We illustrate polynomial input-output stability by consider-
ing a one-dimensional damped wave equation with collocated
control and observation. We prove that the system under
consideration is polynomially input-output stable by showing
that its transfer function grows polynomially on the imaginary
axis.

II. POLYNOMIAL INPUT-OUTPUT STABILITY

A. Mathematical Preliminaries

Throughout the paper we consider a regular linear sys-
tem (1) [16], [15] on a Banach space X . The operator
A : D(A) ⊂ X → X generates a strongly continuous
semigroup T (t) on X . For a fixed λ0 > ω0(T (t)) we define
the scale spaces X1 = (D(A), ‖(λ0 − A)·‖) and X−1 =
(X, ‖R(λ0, A)·‖) (the completion of X with respect to the
norm ‖R(λ0, A)·‖). We denote by A−1 : X ⊂ X−1 → X−1
and T−1(t) the extensions of the operator A and the semigroup
T (t), respectively, to the space X−1. The input space U
and the output space Y are Hilbert spaces. The control and
observability operators B and C are admissible with respect
to A, and we define the Lebesgue extension CL of C as

CLx = lim
t↘0

1

t
C

∫ t

0

T (s)xds

with D(CL) consisting of those x ∈ X for which the limit
exists. If C ∈ L(X,Y ), then CL = C. Since (1) is a regular
linear system, we have that R(R(λ,A)B) ⊂ D(CL) for all
λ ∈ ρ(A) and the transfer function of (1) is given by [16, Sec.
4]

P (λ) = CLR(λ,A)B ∀λ ∈ ρ(A).

We can without loss of generality assume that the system has
no feedthrough, i.e., D = 0, because this operator has no effect
on the considered stability properties of (1).

The concept of polynomial input-output stability is given in
terms of the extended input-output map of the system (1).

Definition 3. The extended input-output map F∞ of (1) is
defined so that F∞ : L2

loc(0,∞;U) → L2
loc(0,∞;Y ) and

(F∞u)(·) = y(·) : [0,∞) → Y for x0 = 0 and for every
u ∈ L2

loc(0,∞;U).

Since (1) is a regular linear system, the extended input-
output map has the representation [16, Thm. 4.4]

(F∞u)(t) = CL

∫ t

0

T (t− s)Bu(s)ds

for every u ∈ L2
loc(0,∞;U) and for almost all t ≥ 0.

B. Definition of Polynomial Input-Output Stability

We begin by defining the Sobolev spaces Wα,2 for α ≥
0 and renorming them in a suitable way. For α ∈ N0 we
define [1]

Wα,2(0,∞;U) =
{
u ∈ L2

∣∣ u(k) ∈ L2 for 0 ≤ k ≤ α
}

‖u‖2Wα,2 =

α∑
k=0

‖u(k)‖2L2 .

Denote by C∞0 (0,∞;U) the space of smooth functions with
compact support, and denote by û the Laplace transform
of a function u ∈ L2(0,∞;U). Since C∞0 (0,∞;U) is
dense in Wα,2(0,∞;U), Lemma 12 shows that a function
u ∈ L2(0,∞;U) satisfies u ∈ Wα,2(0,∞;U) if and only if
λ 7→ (1 + λ)αû(λ) ∈ H2(C+;U), and that we can define an
equivalent norm on Wα,2(0,∞;U) by

|||u|||Wα,2 = ‖(1 + λ)αû‖H2 .

Furthermore, for real values α ≥ 0 the Sobolev spaces
Wα,2(0,∞;U) are given by

Wα,2(0,∞;U) =
{
u ∈ L2

∣∣ |||u|||Wα,2 <∞
}
,

and |||u|||Wα,2 = ‖(1 + λ)αû‖H2 is again equivalent to the
norm ‖·‖Wα,2 (For definition of Wα,2(0,∞;U) and ‖·‖Wα,2

for α > 0, see [4, Def. 6.2.2].)
The polynomial input-output stability in Definition 2 can

now be reformulated in the following way.

Definition 4 (Polynomial Input-Output Stability). The sys-
tem (1) is called polynomially input-output stable with α ≥
0 if the extended input-output map F∞ satisfies F∞ ∈
L(Wα,2(0,∞;U), L2(0,∞;Y )).

III. PROPERTIES OF POLYNOMIALLY INPUT-OUTPUT
STABLE SYSTEMS

In this section we study the properties of polynomial input-
output stability. In particular, we show that it is equivalent to
the concept of P-stability introduced recently in [9].

Definition 5 (P-Stability). The system (1) with the transfer
function P (·) is called P-stable with α ≥ 0 if the following
conditions are satisfied.
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(a) P (·) is analytic in C+.
(b) P (·) ∈ H∞(C+

ξ ;L(U, Y )) for every ξ > 0, where C+
ξ =

{λ ∈ C | Reλ > ξ }
(c) There exists MP ≥ 1 such that ‖P (iω)‖ ≤MP (1+|ω|α)

for every ω ∈ R.

For example, the transfer function P (·) defined by

P (λ) =

∞∑
k=1

1

k4/3(λ+ 1/k2 − ik)
,

for λ 6= −1/k2+ik is P-stable but P (·) /∈ H∞(C+;L(U, Y )).
The conditions of Definition 5 are satisfied for α = 2/3.

Definition 5 differs from the original definition of P-stable
transfer functions in [9] due to the fact that here we consider
the exponent α ≥ 0 to be fixed. In the original version
P (·) is required to satisfy (c) for some such exponent. With
our modification the set of P-stable transfer functions with
α ≥ 0 is not an algebra, but our version is better suited for
studying the relationship between the exponents in P-stability
and polynomial input-output stability. The algebra of P-stable
transfer functions can be obtained by defining

FP =
{
P (·)

∣∣ P (·) is P-stable with some α ≥ 0
}
.

The following theorem contains the main result of this
paper. It details a relationship between the polynomial input-
output stability in the time-domain and the P-stability in the
frequency domain with equal exponents α ≥ 0 in the defini-
tions. We are only interested in the situation where the growth
bound of T (t) satisfies ω0(T (t)) = 0, since ω0(T (t)) < 0
would immediately imply P (·) ∈ H∞(C+;L(U, Y )) [15,
Lem. 10.3.3].

Theorem 6. Assume ω0(T (t)) = 0.
(1) If there exist MA ≥ 1, m ∈ N such that

‖R(λ,A)‖ ≤ MA

(Reλ)m
0 < Reλ ≤ 1. (3)

and if the system (1) is P-stable with α ≥ 0, then (1) is
polynomially input-output stable with α ≥ 0.

(2) If iR ⊂ ρ(A) and if the system (1) is polynomially input-
output stable with α ≥ 0, then it is P-stable with α ≥ 0.

The condition (3) is in particular satisfied with m = 1
and MA = supt≥0‖T (t)‖ if the semigroup T (t) is uniformly
bounded. The following property of P-stable transfer functions
is needed in the proof of the theorem. The lemma also confirms
that under the given assumptions P-stability with α = 0
coincides with H∞-stability.

Lemma 7. Assume that ω0(T (t)) = 0 and that there exist
MA ≥ 1, m ∈ N such that (3) holds. If the system is P-stable
with α ≥ 0, then λ 7→ (1 + λ)−αP (λ) ∈ H∞(C+;L(U, Y )).

Proof. Since both λ 7→ (1 + λ)−α and P (·) are analytic in
C+, so is the function λ 7→ (1+λ)−αP (λ). By Definition 5(b)
the mapping λ 7→ (1 + λ)−αP (λ) is uniformly bounded for
λ ∈ C+ with Reλ ≥ 1, and it therefore remains to show that
it is uniformly bounded for 0 < Reλ ≤ 1.

We begin by showing that there exists M ≥ 1 such that
‖P (λ)‖ ≤ M/(Reλ)m for all λ ∈ C+ with 0 < Reλ ≤ 1.

Since ω0(T (t)) = 0 and since the system (1) is regular
and well-posed, there exist M1,MB ,MC ≥ 1 such that
‖P (1+iη)‖ ≤M1, ‖R(1+iη, A−1)B‖ ≤MB and ‖CLR(1+
iη, A)‖ ≤MC for all η ∈ R [15, Lem. 10.3.3]. Now for every
λ = ξ + iη ∈ C+ with 0 < ξ ≤ 1 the resolvent identity
R(λ,A−1) = R(1+ iη, A−1)+(1−ξ)R(1+ iη, A)R(λ,A−1)
implies

‖R(λ,A−1)B‖ ≤ ‖R(1 + iη, A−1)B‖(1 + |1− ξ|‖R(λ,A)‖)

≤MB(1 +
MA

(Reλ)m
)

‖P (λ)‖ ≤ ‖P (1 + iη)‖+ ‖CLR(1 + iη, A)‖‖R(λ,A−1)B‖

≤M1 +MCMB(1 +
MA

(Reλ)m
) ≤ M

(Reλ)m

with M = M1 +MBMC(1+MA). The uniform boundedness
of λ 7→ (1 + λ)−αP (λ) for λ ∈ C+ with 0 < Reλ ≤ 1
now follows exactly as in [2, Lem. 5.3] by considering the
analytic functions λ 7→ FR(λ) = (1 + λ)−αP (λ)(1 + λ2

R2 )m

on ΩR =
{
λ
∣∣ 0 ≤ Reλ ≤ 1, |λ| ≤ R

}
for large R ≥ 1 and

by using the maximum modulus principle.

Proof of Theorem 6: We begin by showing that if the system
is P-stable, then it is polynomially input-output stable. Let
u ∈ C∞0 (0,∞;U) and denote y = F∞u : (0,∞) → Y . Our
aim is to show that y ∈ L2(0,∞;Y ) and that there exists
M ≥ 1 independent of u such that ‖y‖L2 ≤M |||u|||Wα,2 . For
every λ ∈ C+ we have

ŷ(λ) = P (λ)û(λ) = (1 + λ)−αP (λ)(1 + λ)αû(λ)

where λ 7→ (1 + λ)−αP (λ) ∈ H∞(C+;L(U, Y )) by
Lemma 7. Since λ 7→ (1 + λ)αû(λ) ∈ H2(C+;U) by
Lemma 12, we have that ŷ ∈ H2(C+;Y ), which further
implies y ∈ L2(0,∞;Y ) by the Paley–Wiener Theorem [15,
Thm. 10.3.4]. Moreover, the norms satisfy

‖y‖L2 = ‖ŷ‖H2 = ‖(1 + λ)−αP (λ)(1 + λ)αû‖H2

≤ ‖(1 + λ)−αP (λ)‖H∞‖(1 + λ)αû‖H2

= ‖(1 + λ)−αP (λ)‖H∞ |||u|||Wα,2 .

Since u ∈ C∞0 (C+;U) was arbitrary, and since the
space C∞0 is dense in Wα,2, this concludes that F∞ ∈
L(Wα,2(0,∞;U), L2(0,∞;Y )).

Now assume that ω0(T (t)) = 0, iR ⊂ ρ(A), and that the
system (1) is polynomially input-output stable. Our aim is to
show that the system is P-stable. The first two properties in
Definition 5 follow from C+ ⊂ ρ(A) and from [16, Thm.
2.7(3)] since the system is regular and well-posed.

Let M > 0 be such that ‖F∞u‖ ≤ M |||u|||Wα,2 for
all u ∈ Wα,2(0,∞;U). Since C∞0 (0,∞;U) is dense in
L2(0,∞;U), the Paley–Wiener Theorem implies that the
space L{C∞0 } (the image of C∞0 under the Laplace trans-
form) is dense in H2(C+;U). Take û ∈ L{C∞0 (0,∞;U)}
(i.e., u ∈ C∞0 ), and define û0 ∈ H2(C+;U) such that
û0(λ) = (1 + λ)−αû(λ). Since u ∈ Wα,2, and since
λ 7→ (1 + λ)−α is uniformly bounded in C+, we have that
u0 = L−1{û0} ∈Wα,2(0,∞;U). Because

F∞ ∈ L(Wα,2(0,∞;U), L2(0,∞;Y ))
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by assumption, we can define y = F∞u0 ∈ L2(0,∞;Y ). Due
to the Paley–Wiener Theorem we also have ŷ ∈ H2(C+;Y ),
and ŷ(λ) = P (λ)û0(λ) for every λ ∈ C+. Using this we get

‖(1 + λ)−αP (λ)û‖H2 = ‖P (λ)(1 + λ)−αû‖H2

= ‖P (λ)û0‖H2 = ‖ŷ‖H2 = ‖y‖L2 = ‖F∞u0‖L2

≤M |||u0|||Wα,2 = M‖(1 + λ)αû0‖H2 = M‖û‖H2 .

Since û ∈ L{C∞0 (0,∞;U)} was arbitrary and since L{C∞0 }
is dense in H2(C+;U), this implies that the multiplication
map λ 7→ (1 + λ)−αP (λ) is in L(H2(C+;U), H2(C+, Y )),
which together with the continuity of P (·) on iR in particular
shows that

sup
ω∈R

(1 + |ω|α)−1‖P (iω)‖ <∞.

This concludes that the system (1) is P-stable. �

IV. SYSTEMS WITH POLYNOMIALLY STABLE SEMIGROUPS

In this section we study the properties of regular linear
systems whose system operators generate polynomially stable
semigroups. In particular we show that on Hilbert spaces all
such systems are polynomially input-output stable. Moreover,
we derive additional smoothness conditions for B and C
under which the system is input-output stable in the sense
of Definition 1.

The semigroup T (t) is called polynomially stable (with
α̃ > 0) if it is uniformly bounded, if iR ⊂ ρ(A), and if
it satisfies condition (a) in Theorem 8. On a Hilbert space
polynomial stability can be characterized in the following way.
The equivalences between (a), (b), and (c) follow from [2,
Lem. 2.4], [5, Lem. 2.3, Thm. 2.4], and [10, Lem. 3.2].
The remaining part of the proof is presented in detail in the
appendix.

Theorem 8. Assume A generates a uniformly bounded semi-
group T (t) on a Hilbert space X , and iR ⊂ ρ(A). For a fixed
constant α̃ > 0 the following are equivalent.

(a) ‖T (t)A−1‖ ≤ M

t1/α̃
, ∀t > 0

(b) ‖R(iω,A)‖ = O(|ω|α̃)

(b’) ‖(−A)−βR(iω,A)‖ = O(|ω|α̃−β) for − 1 ≤ β ≤ α̃

(c) sup
Reλ≥0

‖R(λ,A)(−A)−α̃‖ <∞.

Throughout this section we assume that X is a Hilbert space
and that the semigroup T (t) generated by A is polynomially
stable. If T (t) is polynomially stable, then it is in particular
uniformly bounded, and the operators −A and −A∗ are
boundedly invertible and sectorial in the sense of [8, Sec. 2.1].
Because of this, the fractional powers (−A)β and (−A∗)γ are
well-defined for all β, γ ∈ R.

The following main result of this section shows that a
regular linear system with a polynomially stable semigroup
is always polynomially input-output stable. It should be noted
that the conditions on the operators B and C in Theorem 9
are always satisfied for β = 0 and γ = 0, since in

this situation we have R(B) ⊂ D((−A−1)β) = X−1 and
C(−A)γ = C ∈ L(X1, Y ) by assumption. The conditions on
B and C in the theorem can in many examples be translated
into requiring a sufficient level of smoothness for the inputs
and outputs. If the input and output operators are bounded the
conditions in Theorem 9 can be greatly simplified, as is shown
in Corollary 10.

Theorem 9. Assume the semigroup T (t) on the Hilbert space
X is polynomially stable with α̃ > 0. If β, γ ≥ 0 are such
that

R(B) ⊂ D((−A−1)β) and

CL(−A)γ : D((−A)γ+1)→ Y extends to Cγ ∈ L(X1, Y ),

then the system (1) is polynomially input-output stable with
α = max{α̃+ 2− β − γ, 0}. In particular, if β + γ ≥ α̃+ 2,
then the system is input-output stable.

Proof. The first two properties in Definition 5 follow from
C+ ⊂ ρ(A) and from [16, Thm. 2.7(3)] since the system
is regular and well-posed. The Closed Graph Theorem im-
plies that Bβ = (−A−1)βB ∈ L(U,X−1), and we have
Cγ ∈ L(X1, Y ) by assumption. Further denote B̃β =
(−A−1)−1Bβ ∈ L(U,X) and C̃γ = Cγ(−A)−1 ∈ L(X,Y ).
We have from [8, Sec. 6.3.3] that (−A−1)β̃ |X = (−A)β̃ for
all β̃ ∈ R. If β + γ ≥ 1, then 2 − β − γ ≤ 1 and for every
λ ∈ ρ(A) = ρ(A−1) we have

P (λ) = CLR(λ,A−1)B = CL(−A)1−βR(λ,A)B̃β

= C̃γ(−A)2−β−γR(λ,A)B̃β .

Thus

‖P (iω)‖ ≤ ‖C̃γ‖‖(−A)2−β−γR(iω,A)‖‖B̃β‖ = O(|ω|α)

with α = max{α̃+ 2−β−γ, 0} by Theorem 8. On the other
hand, if 0 ≤ β + γ < 1, then for every λ ∈ ρ(A) = ρ(A−1)
we have (−A)R(λ,A) = I − λR(λ,A) and

P (λ) = CLR(λ,A−1)B = CL(−A)R(λ,A)(−A−1)−1B

= −CLA−1−1B − λCLR(λ,A)(−A−1)−1B

= −CLA−1−1B − λC̃γ(−A)1−β−γR(λ,A)B̃β .

This in particular implies

‖P (iω)‖ ≤ ‖CLA−1−1B‖
+ |ω|‖C̃γ‖‖(−A)1−β−γR(iω,A)‖‖B̃β‖ = O(|ω|α)

with α = α̃ + 1 − β − γ + 1 = α̃ + 2 − β − γ > 1 by
Theorem 8.

Corollary 10. Assume the semigroup T (t) on the Hilbert
space X is polynomially stable with α̃ > 0 and that B ∈
L(U,X) and C ∈ L(X,Y ). If β, γ ≥ 0 are such that

R(B) ⊂ D((−A)β) and R(C∗) ⊂ D((−A∗)γ),

then the system (1) is polynomially input-output stable with
α = max{α̃− β − γ, 0}. In particular, if β + γ ≥ α̃, then the
system is input-output stable.
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Proof. Since D((−A)β) = D((−A−1)β+1), we haveR(B) ⊂
D((−A−1)β+1). The assumption R(C∗) ⊂ D((−A∗)γ) im-
plies that C(−A)γ has a unique bounded extension Cγ ∈
L(X,Y ). Therefore for all x ∈ D((−A)γ+1) we have

‖C(−A)γ+1x‖ = ‖Cγ(−A)x‖ ≤ ‖Cγ‖‖Ax‖,

which implies that C(−A)γ+1 has an extension to L(X1, Y ).
This concludes that B and C satisfy the assumptions of
Theorem 9 with β̃ = β+1 and γ̃ = γ+1, and thus the system
is polynomially stable with α = max{α̃ − β̃ − γ̃ + 2, 0} =
max{α̃− β − γ, 0}.

The conditions in Theorem 9 and Corollary 10 are not
optimal, and they can be improved in certain special cases,
as the following example illustrates.

Example 11. Consider the diagonal operator A =
diag (λk)

∞
k=1 on X = `2(C). Assume that the eigenvalues

{λk}k ⊂ C− of A have a uniform gap and the semigroup
generated by A is polynomially stable with α̃ > 0, but not ex-
ponentially stable. More precisely, we assume that there exist
constants r,R > 0 such that −R ≤ Reλk ≤ −r|Imλk|−α̃ for
all k ∈ N, and Reλkl → 0 as l → ∞ for some subsequence
(kl)

∞
l=1 ⊂ N. Let B ∈ L(C, X) and C ∈ L(X,C) be rank one

operators B = b ∈ X and C = 〈·, c〉 (finite-rank operators
can be treated similarly). For k ∈ N denote bk = 〈b, ek〉 and
ck = 〈ek, c〉, where {ek}∞k=1 are the natural basis vectors of
X .

Let λ ∈ C+ and denote by k0 = arg mink∈N|Imλ−Imλk|.
If d = mink 6=l|λk − λl| > 0, then

|P (λ)| ≤
∑
k∈N

|bk||ck|
|λ− λk|

≤ |bk0 ||ck0 |
|λ− λk0 |

+
∑
k 6=k0

|bk||ck|
d/2

≤ |bk0 ||ck0 |
|Reλk0 |

+
2

d
‖B‖‖C‖

since |λ − λk0 |2 = |Reλ − Reλk0 |2 + |Imλ − Imλk0 |2 ≥
|Reλk0 |2. This shows that P (·) ∈ H∞ if and only if

sup
k∈N

|bk||ck|
|Reλk|

<∞.

Since we assumed that |Reλk| ≤ R, the polynomial stability
of T (t) implies that there exists a constant r > 0 such that
|Reλk| ≥ r|λk|−α̃ for all k ∈ N. Let β, γ ≥ 0 be such that
β + γ = α̃. Then

sup
k∈N

|bk||ck|
|Reλk|

≤ 1

r
sup
k∈N
|λk|α̃|bk||ck|

≤ 1

r

(
sup
k∈N
|λk|β |bk|

)(
sup
k∈N
|λk|γ |ck|

)
<∞

whenever (|λk|βbk)∞k=1 ∈ `∞(C) and (|λk|γck)∞k=1 ∈ `∞(C).
These conditions are always less strict than the conditions of
Corollary 10, which are equivalent to (|λk|βbk)∞k=1 ∈ `2(C)
and (|λk|γck)∞k=1 ∈ `2(C).

V. EXAMPLE

We consider a damped wave equation on [0, 1] with collo-
cated input and output

d2w

dt2
+ 〈dw

dt
, a〉L2a(ξ) =

d2w

dξ2
+ b(ξ)u(t) (4a)

w(0, t) = w(1, t) = 0 (4b)

y(t) =

∫ 1

0

b(ξ)
dw

dt
(ξ, t)dξ (4c)

where the function in the damping term is a(ξ) = ξ2(1 −
ξ)/
√

10 for ξ ∈ [0, 1]. Moreover, b(ξ) = 1 for 0 ≤ ξ ≤ 1/2
and b(ξ) = 0 if 1/2 < ξ ≤ 1.

The system operator A of the wave system generates a
strongly stable contraction semigroup with no spectrum on
the imaginary axis [3]. Since B and C are bounded, we have
that P (·) is analytic in C+, and P (·) ∈ H∞(C+

ξ ;L(U, Y ))
for every ξ > 0. To compute the transfer function P (·) of
the system, we observe that the damped wave equation can
be seen as an undamped wave equation with output feedback.
More precisely, if we consider a system

d2w

dt2
=
d2w

dξ2
+ a(ξ)u0(t) + b(ξ)u(t)

w(0, t) = w(1, t) = 0(
y0(t)
y(t)

)
=

∫ 1

0

(
a(ξ)
b(ξ)

)
dw

dt
(ξ, t)dξ,

then our original system is obtained by applying a negative
output feedback u0(t) = −y0(t) to the undamped system.
The transfer function of the open-loop system is of the form(

ŷ0(λ)
ŷ(λ)

)
=

(
p11(λ) p12(λ)
p21(λ) p22(λ)

)(
û0(λ)
û(λ)

)
.

If we apply the output feedback û0 = −ŷ0, then the mapping
û 7→ ŷ is the transfer function of our original plant. Letting
û0 = −ŷ0, we can solve

ŷ(λ) = p22(λ)û(λ)− p21(λ)(1 + p11(λ))−1p12(λ)û(λ),

and thus P (λ) = p22(λ) − p21(λ)(1 + p11(λ))−1p12(λ).
The components of the open loop transfer function can be
computed explicitly similarly as in [7, Sec. 2.1], and each
pkl(·) for k, l ∈ {1, 2} has an explicit formula given in terms
of hyperbolic functions. This further allows us to derive an
explicit expression for the transfer function P (λ) of (4).

In order to show that the system (4) is polynomially input-
output stable, it suffices to study the behaviour of its transfer
function on iR. The full explicit expression of P (iω) for ω ∈
R is too lengthy to be presented here in its entirety, but it
can easily be used in analyzing the asymptotic behaviour of
|P (iω)|. In particular, if iω = i(2k + 1)π for some k ∈ Z,
then the expression for P (iω) simplifies to

P (iω) =
ω4

420
− i ω3

840 · 525
− i ω

600 · 240
− i 421

840ω

+ i
351(−1)k

350ω2
+ i

3

350ω3
.

This in particular implies that P (·) is not uniformly bounded
on the imaginary axis, and thus P (·) /∈ H∞(C+;L(U, Y )).
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Moreover, the general expression for P (iω) can be used to
show that for ω ∈ R with sufficiently large |ω| the norm of the
transfer function behaves as |P (iω)| = O(|ω|4). Together with
Theorem 6 this concludes that the system (4) is polynomially
input-output stable with α = 4. In particular this means that
if u ∈W 4,2(0,∞;C), then y ∈ L2(0,∞;C).

APPENDIX

Lemma 12. Let α ∈ N. If u ∈ C∞0 (0,∞;U), then λ 7→
(1 + λ)αû(λ) ∈ H2(C+;U) and

1√
α+ 1

‖u‖Wα,2 ≤ ‖(1 + λ)αû‖H2 ≤ 2α‖u‖Wα,2 . (5)

Proof. Let u ∈ C∞0 . We have u ∈ L2(0,∞;U) and û ∈
H2(C+;U). For every k ∈ {0, . . . , α} we have

u ∈Wα,2(0,∞;U) ⇒ u(k) ∈ L2(0,∞;U)

⇔ L{u(k)} ∈ H2(C+;U).

Using the properties of the Laplace transform and the fact that
u(l)(0) = 0 for 0 ≤ l ≤ α− 1, for every λ ∈ C+ we have

L{u(k)}(λ) = λkû(λ) +

k−1∑
l=0

λk−1−lu(l)(0) = λkû(λ).

For every λ ∈ C+

‖(1 + λ)αû(λ)‖2U = |1 + λ|2α‖û(λ)‖2U ≤ (1 + |λ|)2α‖û(λ)‖2U
≤ 22α(1 + |λ|2α)‖û(λ)‖2U = 22α(‖û(λ)‖2U + ‖λαû(λ)‖2U ).

Since λ 7→ (1 + λ)α and û are analytic in C+, also their
product λ 7→ (1 + λ)αû(λ) is analytic. The above pointwise
inequality implies ‖(1+λ)αû‖2H2 ≤ 22α(‖û‖2H2 +‖λαû‖2H2),
and using the Paley–Wiener Theorem [15, Thm. 10.3.4] we
get

‖(1 + λ)αû‖2H2 ≤ 22α(‖û‖2H2 + ‖λαû‖2H2)

= 22α(‖u‖2L2 + ‖u(α)‖2L2) ≤ 22α
α∑
k=0

‖u(k)‖2L2

= 22α‖u‖2Wα,2 .

This proves the second inequality in (5).
For every λ ∈ C+ and k ∈ {0, . . . , α} we have |λ|k ≤
|1 + λ|k ≤ |1 + λ|α. Thus

‖λkû(λ)‖U = |λ|k‖û(λ)‖U ≤ |1 + λ|α‖û(λ)‖U
= ‖(1 + λ)αû(λ)‖U ,

which in turn implies ‖λkû‖H2 ≤ ‖(1 + λ)αû‖H2
and

‖u‖2Wα,2 =

α∑
k=0

‖u(k)‖2L2 =

α∑
k=0

‖λkû‖2H2

≤
α∑
k=0

‖(1 + λ)αû‖2H2
= (α+ 1)‖(1 + λ)αû‖2H2

.

This proves the first inequality in (5).

Proof of Theorem 8. We have from [5, Lem. 2.3, Thm. 2.4]
that (a), (b), and (c) are equivalent. On the other hand, (b)
is a special case of (b’) with β = 0, and (b’) for β = α̃

follows immediately from (c). For 0 < β < α̃ the property
(b’) follows from the cases β = 0 and β = α̃, and from the
Moment Inequality [8, Prop. 6.6.4]. For β = −1 we have

‖(−A)R(iω,A)‖ ≤ 1 + |ω|‖R(iω,A)‖ = O(|ω|α̃+1),

where we have used (−A)R(iω,A) = I−iωR(iω,A) and (b).
Finally, if −1 < β < 0, then 0 < −β < 1 and the Moment
Inequality [8, Prop. 6.6.4] implies that there exists a constant
Mβ ≥ 1 such that

‖(−A)−βR(iω,A)‖ ≤Mβ‖R(iω,A)‖1+β‖(−A)R(iω,A)‖−β

= O(|ω|α̃−β)

since we have ‖R(iω,A)‖1+β = O(|ω|α̃(1+β)) by (b),
‖(−A)R(iω,A)‖−β = O(|ω|(α̃+1)(−β)) as above, and since
α̃(1 + β) + (α̃+ 1)(−β) = α̃− β.
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