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Abstract. In this paper the solvability of the infinite-dimensional Sylvester
differential equation is considered. This is an operator differential equation
on a Banach space. Conditions for the existence of a unique classical solution
to the equation are presented. In addition, a periodic version of the equation
is studied and conditions for the existence of a unique periodic solution are
given. These results are applied to generalize a theorem which characterizes
the controllers achieving output regulation of a distributed parameter system
with a nonautonomous signal generator.
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1. Introduction

In this paper we consider the solvability of a Sylvester differential equation on a
Banach space. This is an operator differential equation of form

Σ̇(t) = A(t)Σ(t)− Σ(t)B(t) + C(t), Σ(0) = Σ0, (1.1)

where (A(t),D(A(t))) and (B(t),D(B(t))) are families of unbounded operators on
Banach spaces X and Y , respectively, C(·) is an operator-valued function and Σ0

is a bounded linear operator. The equations of this type have an application in
the output regulation of linear distributed parameter systems when the reference
signals are generated with a periodic exosystem of form

v̇(t) = S(t)v(t), v(0) = v0 ∈ Cq, (1.2a)

yref (t) = F (t)v(t). (1.2b)

By the periodicity of the exosystem we mean that S(·) and F (·) are periodic
functions with the same period, i.e. there exists τ > 0 such that S(t + τ) = S(t)
and F (t+ τ) = F (t) for all t ∈ R. Paunonen and Pohjolainen [9] have shown that
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the solvability of the output regulation problem related to this type of exosystem
can be characterized using the properties of the solution to a certain Sylvester
differential equation.

The results in [9] generalize the theory of periodic output regulation of lin-
ear finite-dimensional systems presented by Zhang and Serrani [13]. In the finite-
dimensional theory the Sylvester differential equations are ordinary matrix dif-
ferential equations and A(·), B(·) and C(·) are smooth matrix-valued functions.
However, if we want to consider output regulation of infinite-dimensional lin-
ear systems, the matrix-valued function A(·) becomes a family (A(t),D(A(t)))
of unbounded operators associated to the closed-loop system consisting of the
distributed parameter system to be controlled and the controller.

The treatment of the Sylvester differential equation presented in this paper
generalizes the results on the solvability of finite-dimensional equations of this type
[13, 7]. Also the infinite-dimensional equation has been studied in the case where
A(t) ≡ A and B(t) ≡ B are generators of strongly continuous semigroups [5, 4].
In the case of time-dependent families of operators some results are also known
for time-dependent Riccati equations [2]. On the other hand, in the time-invariant
case the equation becomes an infinite-dimensional Sylvester equation [1, 11, 12].
Our approach in solving the Sylvester differential equation (1.1) generalizes the
methods used in [11].

We have in [9] studied a Sylvester differential equation of form (1.1), where
(A(t),D(A(t))) is a family of unbounded operators and B(t) ≡ B is a matrix.
In this paper we consider the solvability of the equation in a more general case
where also B(t) are allowed to be unbounded operators. We restrict ourselves to a
situation where the domains of the unbounded operators are independent of time.
The main tools in our analysis are the strongly continuous evolution families as-
sociated to families of unbounded operators and nonautonomous abstract Cauchy
problems [10, Ch. 5], [6, Sec. VI.9].

We apply the theoretic results on the solvability of (1.1) to the output regu-
lation of infinite-dimensional systems. In particular we present a characterization
of the controllers achieving output regulation of a linear distributed parameter
system to the signals generated by a nonautonomous periodic signal generator.

The paper is organized as follows. In Section 2 we introduce notation, recall
the definition of a strongly continuous evolution family and state the basic as-
sumptions on the families of operators. The solvability of the Sylvester differential
equation is considered in Section 3. The main results of the paper are Theorems
3.2 and 3.3. In Section 4 we apply these results to output regulation. Section 5
contains concluding remarks.

2. Notation and Definitions

If X and Y are Banach spaces and A : X → Y is a linear operator, we denote by
D(A) andR(A) the domain and the range of A, respectively. The space of bounded
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linear operators from X to Y is denoted by L(X,Y ). If A : X → X, then σ(A) and
ρ(A) denote the spectrum and the resolvent set of A, respectively. For λ ∈ ρ(A)
the resolvent operator is given by R(λ,A) = (λI −A)−1. The space of continuous
functions f : I ⊂ R → X is denoted by C(I,X) and the space of continuously
differentiable functions by C1(I,X). Finally, we denote by C(I,Ls(X,Y )) the
space of strongly continuous L(X,Y )-valued functions.

In dealing with families of unbounded operators we use the theory of strongly
continuous evolution families [10, Ch. 5], [6, Sec. VI.9].

Definition 2.1 (A Strongly Continuous Evolution Family). A family of bounded
operators (U(t, s))t≥s ⊂ L(X) is called a strongly continuous evolution family if

(a) U(s, s) = I for s ∈ R.

(b) U(t, s) = U(t, r)U(r, s) for t ≥ r ≥ s.
(c)

{
(t, s) ∈ R2

∣∣ t ≥ s} 3 (t, s) 7→ U(t, s) is a strongly continuous mapping.

A strongly continuous evolution family is called exponentially bounded if there
exist constants M ≥ 1 and ω ∈ R such that

‖U(t, s)‖ ≤Meω(t−s)

for all t ≥ s. The evolution family is called periodic (with period τ > 0) if

U(t+ τ, s+ τ) = U(t, s)

for all t ≥ s.

Strongly continuous evolution families are related to nonautonomous abstract
Cauchy problems. If we consider an equation

ẋ(t) = A(t)x(t) + f(t),

x(s) = xs ∈ X

and if U(t, s) is a strongly continuous evolution family associated to the family
(A(t),D(A(t))) of operators, then if for every s ∈ R this equation has a classical
solution x(·) ∈ C1([s,∞), X) such that x(t) ∈ D(A(t)) for all t ≥ s, this solution
is given by

x(t) = U(t, s)xs +

∫ t

s

U(t, r)f(r)ds (2.1)

for all t ≥ s. If the family (A(t),D(A(t))) of operators is periodic with period
τ > 0, then also the associated evolution family is periodic with the same period.

Throughout this paper we consider a case where the domains of the un-
bounded operators are independent of time, i.e.

A(t) : D(A) ⊂ X → X, B(t) : D(B) ⊂ Y → Y

for all t. We assume that there exist exponentially bounded strongly continuous
evolution families UA(t, s) and UB(t, s) related to the families (A(t),D(A)) and
(−B(t),D(B)) of operators, respectively, and that the evolution family UB(t, s)
satisfies Definition 2.1 for all t, s, r ∈ R. This means that the nonautonomous
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abstract Cauchy problem associated to this family of operators can be solved
forward and backwards in time and the minus sign in the family of operators
corresponds to the reversal of time in the equation. Because of this, we can also
think of the situation in such a way that the evolution family related to the family
(B(t),D(B)) of operators satisfies Definition 2.1 for all t ≤ r ≤ s. Motivated by
this, we denote this evolution family by UB(s, t) for t ≥ s.

3. The Infinite-Dimensional Sylvester Differential Equation

In this section we consider the infinite-dimensional Sylvester differential equation

Σ̇(t) = A(t)Σ(t)− Σ(t)B(t) + C(t), Σ(0) = Σ0 (3.1)

on an interval [0, T ]. The equation is considered in the strong sense for y ∈ D(B).
The main result of this paper is Theorem 3.2 which states sufficient conditions

for the existence of a classical solution to the Sylvester differential equation. As we
are motivated by the periodic output regulation problem for distributed parameter
systems [9], we will also show that if the families of operators (A(t),D(A)) and
(B(t),D(B)) and the function C(·) are periodic with the same period, then under
suitable additional assumptions on the growths of the evolution families UA(t, s)
and UB(s, t) the Sylvester differential equation has a unique periodic solution. This
result is presented in Theorem 3.3.

We begin by defining the classical solution of the Sylvester differential equa-
tion on the interval [0, T ].

Definition 3.1. A strongly continuous function Σ(·) ∈ C([0, T ],Ls(Y,X)) satisfying
Σ(·)y ∈ C1([0, T ], X) and Σ(t)y ∈ D(A) for all y ∈ D(B) and t ∈ [0, T ] is called
the classical solution of the Sylvester differential equation (3.1) if it satisfies the
equation on [0, T ].

The next theorem is the main result of the paper. It states sufficient condi-
tions for the solvability of the Sylvester differential equation on the interval [0, T ].
The parabolic conditions [10, Sec. 5.6] appearing in the theorem essentially require
that the operators A(t) for t ∈ [0, T ] are generators of analytic semigroups on X.

Theorem 3.2. Assume the following are satisfied.

1. There exists µ ∈ R such that UA(t, s) satisfies the parabolic conditions:

(P1) The domain D(A) is dense in X.

(P2) We have {λ ∈ C | Reλ ≥ µ } ⊂ ρ(A(t)) for every t ∈ [0, T ] and there
exists a constant M ≥ 1 such that

‖R(λ,A(t))‖ ≤ M

|λ− µ|+ 1
, Reλ ≥ µ, t ∈ [0, T ].

(P3) There exists a constant L ≥ 0 such that for t, s, r ∈ [0, T ]

‖(A(t)−A(s))R(µ,A(r))‖ ≤ L|t− s|.
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2. The domain D(A(t)∗) =: D(A∗) is independent of t ∈ [0, T ] and dense in X∗.
For all x ∈ X and x∗ ∈ D(A∗) the mapping

t 7→ 〈x,A(t)∗x∗〉

is continuous on [0, T ].

3. The domain D(B) is dense in Y . For every y ∈ D(B) the function B(·)y
is continuous, we have UB(s, t)y ∈ D(B) and the evolution family UB(s, t)
satisfies the differentiation rules

∂

∂t
UB(s, t)y = −UB(s, t)B(t)y,

∂

∂s
UB(s, t)y = B(s)UB(s, t)y.

for all t, s ∈ [0, T ].

4. For every y ∈ Y the function C(·)y is Hölder continuous on [0, T ].

5. Σ0(D(B)) ⊂ D(A).

The infinite-dimensional Sylvester differential equation (3.1) has a unique classical
solution Σ(·) on [0, T ] given by the formula

Σ(t)y = UA(t, 0)Σ0UB(0, t)y +

∫ t

0

UA(t, s)C(s)UB(s, t)yds (3.2)

for all y ∈ Y .

Proof. Since UA(t, s) satisfies the parabolic conditions, we have from [10, Sec. 5.6]
that for all x ∈ X, x′ ∈ D(A), and t > s

∂

∂t
UA(t, s)x = A(t)UA(t, s)x,

∂

∂s
UA(t, s)x′ = −UA(t, s)A(s)x′.

Let y ∈ D(B), x∗ ∈ D(A∗), and s ∈ [0, T ]. Using the differentiation rules for
UA(t, s) and UB(s, t) we see that for any t ∈ (s, T ]

∂

∂t
〈UA(t, s)C(s)UB(s, t)y, x∗〉

= 〈A(t)UA(t, s)C(s)UB(s, t)y, x∗〉 − 〈UA(t, s)C(s)UB(s, t)B(t)y, x∗〉

= 〈UA(t, s)C(s)UB(s, t)y,A(t)∗x∗〉 − 〈UA(t, s)C(s)UB(s, t)B(t)y, x∗〉

∂

∂t
〈UA(t, 0)Σ0UB(0, t)y, x∗〉

= 〈A(t)UA(t, 0)Σ0UB(0, t)y, x∗〉 − 〈UA(t, 0)Σ0UB(0, t)B(t)y, x∗〉

= 〈UA(t, 0)Σ0UB(0, t)y,A(t)∗x∗〉 − 〈UA(t, 0)Σ0UB(0, t)B(t)y, x∗〉.

To show that (3.2) is a solution of the Sylvester differential equation we will use
the Leibniz integral rule [8, Lem. VIII.2.2]. This result states that if the function
f :

{
(t, s)

∣∣ 0 ≤ s ≤ t ≤ T
}
→ C is continuous, and if ∂

∂tf(t, s) exists and is
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continuous and uniformly bounded on
{

(t, s)
∣∣ 0 ≤ s < t ≤ T

}
, then the mapping

t 7→
∫ t
0
f(t, s)ds is differentiable on (0, T ) and

d

dt

∫ t

0

f(t, s)ds = f(t, t) +

∫ t

0

∂

∂t
f(t, s)ds.

Our assumptions imply that the function

(t, s)→ f(t, s) = 〈UA(t, s)C(s)UB(s, t)y, x∗〉

is continuous for 0 ≤ s ≤ t ≤ T and the computation above shows that its deriv-
ative with respect to t is continuous. It thus remains to show that this derivative
is uniformly bounded. Since the mappings (t, s) → UA(t, s) and (t, s) → UB(s, t)
are strongly continuous, there exist constants MA,MB > 0 such that

max
0≤s≤t≤T

‖UA(t, s)‖ ≤MA, max
0≤s≤t≤T

‖UB(s, t)‖ ≤MB .

Using these estimates we see that∣∣∣∣ ∂∂tf(t, s)

∣∣∣∣ ≤ ‖UA(t, s)C(s)UB(s, t)y‖ · ‖A(t)∗x∗‖

+ ‖UA(t, s)C(s)UB(s, t)B(t)y‖ · ‖x∗‖

≤ ‖UA(t, s)‖ · ‖C(s)‖ · ‖UB(s, t)‖ (‖y‖ · ‖A(t)∗x∗‖+ ‖B(t)y‖ · ‖x∗‖)

≤ MAMB max
r∈[0,T ]

‖C(r)‖
(
‖y‖ max

r∈[0,T ]
‖A(r)∗x∗‖+ ‖x∗‖ max

r∈[0,T ]
‖B(r)y‖

)
< ∞.

This concludes that we can use the Leibniz integral rule.
For the function Σ(·) defined in (3.2) we now have

d

dt
〈Σ(t)y, x∗〉 =

d

dt
〈UA(t, 0)Σ0UB(0, t)y, x∗〉

+
d

dt

∫ t

0

〈UA(t, s)C(s)UB(s, t)y, x∗〉ds

= 〈UA(t, 0)Σ0UB(0, t)y,A(t)∗x∗〉 − 〈UA(t, 0)Σ0UB(0, t)B(t)y, x∗〉

+

∫ t

0

(〈UA(t, s)C(s)UB(s, t)y,A(t)∗x∗〉 − 〈UA(t, s)C(s)UB(s, t)B(t)y, x∗〉) ds

+ 〈UA(t, t)C(t)UB(t, t)y, x∗〉

= 〈Σ(t)y,A(t)∗x∗〉 − 〈Σ(t)B(t)y, x∗〉+ 〈C(t)y, x∗〉. (3.3)

We will next show that the mapping t 7→ Σ(t)y is continuously differentiable on
(0, T ) and that Σ(t)y ∈ D(A) for all t ∈ [0, T ]. We will do this by first considering
the nonautonomous Cauchy problem

ẋ(t) = A(t)x(t) + C(t)UB(t, 0)v, x(0) = Σ0v,
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where v ∈ D(B). Since x(0) ∈ D(A) and since t 7→ C(t)UB(t, 0)v is Hölder con-
tinuous on [0, T ] we have from [10, Thm. 5.7.1] that this equation has a unique
classical solution given by

x(t) = UA(t, 0)Σ0v +

∫ t

0

UA(t, s)C(s)UB(s, 0)vds

such that x(·) is continuously differentiable on (0, T ) and x(t) ∈ D(A) for all
t ∈ [0, T ]. If we denote by H(·) : [0, T ] → L(Y,X) the strongly continuous map-
ping x(t) = H(t)v, then for all v ∈ D(B) the function t 7→ H(t)v is continuously
differentiable on (0, T ) and H(t)v ∈ D(A). Since t 7→ UB(0, t)y is strongly con-
tinuously differentiable, the choice v = UB(0, t)y ∈ D(B) and a straight-forward
computation finally show that the function

t 7→ H(t)UB(0, t)y = UA(t, 0)Σ0UB(0, t)y +

∫ t

0

UA(t, s)C(s)UB(s, 0)UB(0, t)yds

= UA(t, 0)Σ0UB(0, t)y +

∫ t

0

UA(t, s)C(s)UB(s, t)yds

= Σ(t)y

is continuously differentiable on (0, T ) and Σ(t)y ∈ D(A) for all [0, T ]. Now equa-
tion (3.3) becomes

〈 d
dt

Σ(t)y, x∗〉 = 〈A(t)Σ(t)y, x∗〉 − 〈Σ(t)B(t)y, x∗〉+ 〈C(t)y, x∗〉.

Since x∗ ∈ D(A∗) was arbitrary and since D(A∗) is dense in X∗, this implies

d

dt
Σ(t)y = A(t)Σ(t)y − Σ(t)B(t)y + C(t)y.

This concludes that Σ(·) is a classical solution of the Sylvester differential equation.
To prove the uniqueness of the solution, let Σ1(·) ∈ C([0, T ],Ls(Y,X)) be a

classical solution of the Sylvester differential equation (3.2). Letting y ∈ D(B) and
applying both sides of the equation to UB(s, t)y ∈ D(B) for t > s we obtain

Σ̇1(s)UB(s, t)y = A(s)Σ1(s)UB(s, t)y − Σ1(s)B(s)UB(s, t)y + C(s)UB(s, t)y

⇒ UA(t, s)Σ̇1(s)UB(s, t)y = UA(t, s)A(s)Σ1(s)UB(s, t)y

− UA(t, s)Σ1(s)B(s)UB(s, t)y + UA(t, s)C(s)UB(s, t)y

⇒ d

ds
(UA(t, s)Σ1(s)UB(s, t)y) = UA(t, s)C(s)UB(s, t)y

Integrating both sides of the last equation from 0 to t and using Σ1(0) = Σ0 gives∫ t

0

UA(t, s)C(s)UB(s, t)yds = UA(t, t)Σ1(t)UB(t, t)y − UA(t, 0)Σ1(0)UB(0, t)y

= Σ1(t)y − UA(t, 0)Σ0UB(0, t)y

and thus Σ1(·) = Σ(·). �
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As already mentioned, the conditions imposed on the evolution family UA(t, s)
in Theorem 3.2 require that for t ∈ [0, T ] the operators A(t) generate analytic
semigroups on X. If these conditions are not satisfied, the solution (3.2) can under
weaker conditions be seen as a mild solution of the Sylvester differential equation
(3.1).

To illustrate the parabolic conditions we will present an example of a family
of unbounded operators satisfying these conditions.

Example. Let α(·), γ(·) ∈ C([0, T ],R) be Lipschitz continuous functions such that
α(t) > 0 for all t ∈ [0, T ]. Consider a one-dimensional heat equation with time-
varying coefficients

∂x

∂t
(z, t) = α(t)

∂2x

∂t2
(z, t) + γ(t)x(z, t),

x(z, 0) = x0(z)

x(0, t) = x(1, t) = 0

on the interval [0, 1]. This can be written as a nonautonomous Cauchy problem

ẋ = A(t)x(t), x(t) = x0 ∈ X

on the space X = L2(0, 1) where the family of operators (A(t),D(A)) is given by

A(t)x = α(t)x′′ + γ(t)x,

D(A) =
{
x ∈ X

∣∣ x, x′ abs. cont. x′′ ∈ L2(0, 1), x(0) = x(1) = 0
}
.

Furthermore, the operators A(t) have spectral decompositions [3, Ex. A.4.26]

A(t)x =

∞∑
n=1

λn(t)〈x, φn〉φn, x ∈ D(A) =
{
x ∈ X

∣∣ ∞∑
n=1

n4|〈x, φn〉|2 <∞
}

where the eigenvalues are given by λn(t) = −α(t)n2π2+γ(t) and the corresponding

eigenvectors φn =
√

2 sin(nπ·) form an orthonormal basis of X. These decompo-
sitions and the fact that α(·) and γ(·) are Lipschitz continuous functions can be
used to verify that the parabolic conditions are satisfied.

We can also show that the second condition in Theorem 3.2 is satisfied for this
family of operators. The operators A(t) are self-adjoint and thus we can achieve
this by showing that the mapping t 7→ A(t)x is continuous for all x ∈ D(A). If we
define the operator A0 : D(A)→ X by A0x = x′′ we can write

A(t)x = α(t)A0x+ γ(t)x, x ∈ D(A).

Since the functions α(·) and γ(·) are continuous, we can conclude that the second
condition in Theorem 3.2 is satisfied.

Families of operators satisfying the conditions concerning (B(t),D(B)) in-
clude, for example, all functions B(·) ∈ C([0, T ],Ls(Y )) and the case where
B(t) ≡ B is a generator of a strongly continuous group on Y .
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We conclude this section by considering the periodic Sylvester differential
equation. By this we mean the equation

Σ̇(t) = A(t)Σ(t)− Σ(t)B(t) + C(t) (3.4)

for t ∈ R when the families of unbounded operators and the function C(·) are peri-
odic with the same period τ > 0. The periodic solution of this equation is a periodic
function Σ(·) ∈ C(R,Ls(Y,X)) which is a classical solution of the Sylvester dif-
ferential equation (3.1) with some initial condition Σ(0) = Σ0 ∈ L(Y,X) on an
interval [0, T ]. The following theorem states that if the exponential growths of the
evolution families UA(t, s) and UB(s, t) satisfy a certain condition, then under the
assumptions of Theorem 3.2 the periodic Sylvester differential equation (3.4) has
a unique periodic solution and that this solution has period τ .

Theorem 3.3. Assume the conditions of Theorem 3.2 are satisfied and that the
evolution families (A(t),D(A)) and (B(t),D(B)) and the function C(·) are periodic
with period τ > 0. If there exist constants MA,MB ≥ 1 and ωA, ωB ∈ R such that
ωA + ωB < 0 and such that for all t ≥ s

‖UA(t, s)‖ ≤MAe
ωA(t−s), ‖UB(s, t)‖ ≤MBe

ωB(t−s),

then the periodic Sylvester differential equation (3.4) has a unique periodic solution
Σ∞(·) ∈ C(R,Ls(Y,X)) such that Σ∞(·)y ∈ C1(R, X) and Σ(t)y ∈ D(A) for all
y ∈ D(B) and t ∈ R. The function Σ∞(·) has period τ and is given by the formula

Σ∞(t)y =

∫ t

−∞
UA(t, s)C(s)UB(s, t)yds, y ∈ Y.

Proof. We will first show that Σ∞(·) is a classical solution of the Sylvester differ-
ential equation (3.1) on the interval [0, 2τ ]. Since for every y ∈ Y we have

Σ∞(t)y = UA(t, 0)

∫ 0

−∞
UA(0, s)C(s)UB(s, 0)UB(0, t)yds

+

∫ t

0

UA(t, s)C(s)UB(s, t)yds,

it suffices to show that the linear operator Σ∞(0) : Y → X defined by

Σ∞(0)y =

∫ 0

−∞
UA(0, s)C(s)UB(s, 0)yds, y ∈ Y

is bounded and Σ∞(0)(D(B)) ⊂ D(A). Our assumptions imply that for all y ∈ Y
we have∫ 0

−∞
‖UA(0, s)C(s)UB(s, 0)y‖ds ≤MAMB max

r∈[0,τ ]
‖C(r)‖

∫ 0

−∞
e−(ωA+ωB)sds · ‖y‖

=: M‖y‖,
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where M < ∞. This concludes that Σ∞(0) : Y → X is a well-defined linear
operator and since

‖
∫ 0

−∞
UA(0, s)C(s)UB(s, 0)yds‖ ≤

∫ 0

−∞
‖UA(0, s)C(s)UB(s, 0)y‖ds ≤M‖y‖,

we have Σ∞(0) ∈ L(Y,X). To show that Σ∞(0)(D(B)) ⊂ D(A), let y ∈ D(B) and
write

Σ∞(0)y =

∫ −1
−∞

UA(0, s)C(s)UB(s, 0)yds

+

∫ 0

−1
UA(0, s)C(s)UB(s, 0)yds =: v0 + v1.

If we denote f(s) = UA(0, s)C(s)UB(s, 0)y, then f(s) ∈ D(A) for all s < 0 and
from the previous estimate we have f ∈ L1((−∞,−1), X). We have from [10, Thm.
5.6.1] that A(0)UA(0,−1) ∈ L(X) and thus

∫ −1
−∞
‖A(0)UA(0, s)C(s)UB(s, 0)y‖ds

≤ ‖A(0)UA(0,−1)‖
∫ −1
−∞
‖UA(−1, s)C(s)UB(s, 0)y‖ds

≤ MAMB max
r∈[0,τ ]

‖C(r)‖ · ‖A(0)UA(0,−1)‖ · ‖y‖ · e−ωA

∫ −1
−∞

e−(ωA+ωB)sds <∞.

This shows that A(0)f ∈ L1((−∞,−1), X) and since A(0) is a closed linear op-
erator we have that v0 ∈ D(A(0)) = D(A). As in the proof of Theorem 3.2 we
have that since the mapping t 7→ C(t)UB(t, 0)y is Hölder continuous on [−1, 0],
the nonautonomous abstract Cauchy problem

ẋ(t) = A(t)x(t) + C(t)UB(t, 0)y, x(−1) = 0

has a unique classical solution

x(t) =

∫ t

−1
UA(t, s)C(s)UB(s, 0)yds

on [−1, 0]. Thus we also have v1 = x(0) ∈ D(A). Combining these results shows
that we have Σ∞(0)y = v0 + v1 ∈ D(A) and thus Σ∞(0) is the unique classical
solution of the Sylvester differential equation on [0, 2τ ] associated to the initial
condition Σ∞(0).
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To prove the periodicity of Σ∞(·), let t ∈ R. For all y ∈ Y we then have

Σ∞(t+ τ)y =

∫ t+τ

−∞
UA(t+ τ, s)C(s)UB(s, t+ τ)yds

=

∫ t

−∞
UA(t+ τ, s+ τ)C(s+ τ)UB(s+ τ, t+ τ)yds

=

∫ t

−∞
UA(t, s)C(s)UB(s, t)yds = Σ∞(t)y.

This shows that Σ∞(·) is periodic with period τ . This and the fact that Σ∞(·)
is the classical solution of the Sylvester differential equation (3.1) on the interval
[0, 2τ ] imply that Σ∞(·)y ∈ C1(R, X) and Σ∞(t)y ∈ D(A) for all t ∈ R. This
concludes that Σ∞(·) is a periodic solution of the periodic Sylvester differential
equation.

It remains to prove that the periodic Sylvester differential equation (3.4) has
no other periodic solutions. To this end, let Σ(·) be any periodic solution of the
equation corresponding to an arbitrary initial condition Σ(0) = Σ0 ∈ L(W,X).
Let y ∈ Y . We have

Σ(t)y = UA(t, 0)Σ0UB(0, t)y +

∫ t

0

UA(t, s)C(s)UB(s, t)yds

and the difference ∆(t)y = Σ∞(t)y − Σ(t)y satisfies

∆(t)y =

∫ t

−∞
UA(t, s)C(s)UB(s, t)yds− UA(t, 0)Σ0UB(0, t)y

−
∫ t

0

UA(t, s)C(s)UB(s, t)yds

=

∫ 0

−∞
UA(t, s)C(s)UB(s, t)yds− UA(t, 0)Σ0UB(0, t)y

= UA(t, 0)Σ∞(0)UB(0, t)− UA(t, 0)Σ0UB(0, t)y = UA(t, 0)∆(0)UB(0, t)y.

Thus

‖∆(t)‖ ≤MAMBe
(ωA+ωB)t‖∆(0)‖

and the assumption ωA + ωB < 0 implies limt→∞∆(t) = 0. Since Σ(·) and Σ∞(·)
are periodic and since limt→∞‖Σ(t) − Σ∞(t)‖ = 0, we must have Σ(t) ≡ Σ∞(t).
This concludes that no other periodic solutions than Σ∞(·) may exist. �

4. Periodic Output Regulation

In this section we finally apply the results on the solvability of the Sylvester dif-
ferential equation to obtain a characterization for the controllers solving the out-
put regulation problem related to a distributed parameter system and a nonau-
tonomous periodic signal generator. We will use notation typical to mathematical
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systems theory and because of this the choices of symbols differ from the ones used
in the earlier sections.

We consider the output regulation of an infinite-dimensional linear system
in a situation where the reference and disturbance signals are generated by an
exosystem

v̇(t) = S(t)v(t), v(0) = v0 ∈W (4.1)

on a finite-dimensional space W = Cq. We assume the input and output spaces U
and Y , respectively, are Hilbert spaces and that the plant can be written in a
standard form as

ẋ(t) = Ax(t) +Bu(t) + E(t)v(t), x(0) = x0 ∈ X
e(t) = Cx(t) +Du(t) + F (t)v(t)

on a Banach space X. Here e(t) ∈ Y is the regulation error, u(t) ∈ U the input,
E(t)v(t) is the disturbance signal to the state and F (t)v(t) contains the disturbance
signal to the output and the reference signal. The operator A : D(A) ⊂ X → X
is assumed to generate an analytic semigroup on X and the rest of the operators
are bounded. We consider a dynamic error feedback controller of form

ż(t) = G1(t)z(t) + G2(t)e(t), z(0) = z0 ∈ Z
u(t) = K(t)z(t)

on a Banach space Z. Here (G1(t),D(G1)) is a family of unbounded operators, and
G2(t) ∈ L(Y, Z) and K(t) ∈ L(Z,U) for all t ≥ 0. The plant and the controller can
be written as a closed-loop system

ẋe(t) = Ae(t)xe(t) +Be(t)v(t) xe(0) = xe0 ∈ Xe (4.2a)

e(t) = Ce(t)xe(t) +De(t)v(t) (4.2b)

on the Banach space Xe = X × Z by choosing

Ae(t) =

(
A BK(t)

G2(t)C G1(t) + G2(t)DK(t)

)
, Be(t) =

(
E(t)

G2(t)F (t)

)
Ce(t) =

(
C, DK(t)

)
and De(t) = F (t). We assume the family (Ae(t),D(Ae(t))) of

unbounded operators and the operator-valued functions S(·),Be(·), Ce(·) andDe(·)
are periodic with the same period τ > 0. The Periodic Output Regulation Problem
is defined as follows.

Definition 4.1 (Periodic Output Regulation Problem). Choose the parameters
(G1(·),G2(·),K(·)) of the dynamic error feedback controller in such a way that

1. The evolution family Ue(t, s) associated to the family (Ae(t),D(Ae(t))) is
exponentially stable, i.e. there exist Me, ωe > 0 such that for all t ≥ s

‖Ue(t, s)‖ ≤Mee
−ωe(t−s).

2. For all initial values xe0 ∈ Xe and v0 ∈W of the closed-loop system and the
exosystem, respectively, the regulation error e(t) goes to zero asymptotically,
i.e. e(t)→ 0 as t→∞.
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It has been shown in [9] that under suitable assumptions the solvability of
the Periodic Output Regulation Problem can be characterized using the periodic
Sylvester differential equation

Σ̇(t) = Ae(t)Σ(t)− Σ(t)S(t) +Be(t). (4.3)

Using Theorem 3.3 we can weaken the assumptions required for this character-
ization and thus extend the results presented in [9] for more general classes of
systems and exosystems. We will first state the required assumptions. Since the
space W = Cq is finite-dimensional, the strong continuity of the operator-valued
functions S(·) and Be(·) coincide with the continuity with respect to the uniform
operator topology.

1. The family (Ae(t),D(Ae(t))) satisfies the parabolic conditions.

2. The domain D(Ae(t)
∗) =: D(A∗e) is independent of t ∈ R and dense in X∗e .

For all x ∈ Xe and x∗ ∈ X∗e the mapping t 7→ 〈x,Ae(t)∗x∗〉 is continuous.

3. The matrix-valued function S(·) is continuous, we have |λ| = 1 for all eigen-
values λ of US(τ, 0) and there exists MS ≥ 1 such that ‖US(t, s)‖ ≤ MS for
all t, s ∈ R.

4. The function Be(·) is Hölder continuous.

5. The functions Ce(·) and De(·) are strongly continuous.

The following theorem characterizes the controllers solving the Periodic Out-
put Regulation Problem using the properties of the Sylvester differential equa-
tion (4.3).

Theorem 4.2. Assume that the above conditions are satisfied. If the controller sta-
bilizes the closed-loop system exponentially, then the periodic Sylvester differential
equation (4.3) has a unique periodic classical solution Σ∞(·) and the controller
solves the Periodic Output Regulation Problem if and only if this solution satisfies

Ce(t)Σ∞(t) +De(t) = 0 (4.4)

for all t ∈ [0, τ ].

Proof. Since the conditions of Theorem 3.3 are satisfied, the Sylvester differen-
tial equation (4.3) has a unique periodic classical solution Σ∞(·) with period τ .
Since the space W is finite-dimensional we have Σ∞(·) ∈ C1(R,L(W,Xe)) and
R(Σ∞(t)) ⊂ D(Ae) for all t ∈ R.

We will first study the asymptotic behaviour of the regulation error. For
any initial conditions xe0 ∈ Xe and v0 ∈ W and for any t ≥ 0 the state of the
closed-loop system is given by

xe(t) = Ue(t, 0)xe0 +

∫ t

0

Ue(t, s)Be(s)US(s, 0)v0ds.
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Using the Sylvester differential equation we see that

Ue(t, s)Be(s)US(t, 0)v0 = Ue(t, s)(Σ̇∞(s) + Σ∞(s)S(s)−Ae(s)Σ∞(s))US(s, 0)v0

= Ue(t, s)Σ̇∞(s)US(s, 0)v0 + Ue(t, s)Σ∞(s)S(s)US(s, 0)v0

− Ue(t, s)Ae(s)Σ∞(s)US(s, 0)v0

=
d

ds
Ue(t, s)Σ∞(s)US(s, 0)v0.

The state of the closed-loop system can thus be expressed using a formula

xe(t) = Ue(t, 0)xe0 +

∫ t

0

Ue(t, s)Be(s)US(s, 0)v0ds

= Ue(t, 0)xe0 + Σ∞(t)US(t, 0)v0 − Ue(t, 0)Σ∞(0)v0

= Ue(t, 0)(xe0 − Σ∞(0)v0) + Σ∞(t)v(t)

and the regulation error corresponding to these initial states is given by

e(t) = Ce(t)xe(t) +Dev(t)

= Ce(t)Ue(t, 0)(xe0 − Σ∞(0)v0) + (Ce(t)Σ∞(t) +De(t)) v(t).

Since the closed-loop system is stable there exist constants Me ≥ 1 and ωe > 0
such that for all t ≥ s we have ‖Ue(t, s)‖ ≤ Mee

−ωe(t−s). Using the formula for
the regulation error we have

‖e(t)− (Ce(t)Σ∞(t) +De(t))v(t)‖ = ‖Ce(t)Ue(t, 0)(xe0 − Σ∞(0)v0)‖

≤ Mee
−ωet max

s∈[0,T ]
‖Ce(s)‖ · ‖xe0 − Σ∞(0)v0‖ −→ 0

as t→∞ since ωe > 0. This property describing the asymptotic behaviour of the
regulation error allows us to prove the theorem.

Assume first that (4.4) is satisfied for all t ∈ [0, τ ]. The periodicity of the
functions implies that it is satisfied for all t ∈ R and thus for all initial states
xe0 ∈ Xe and v0 ∈W the regulation error satisfies

‖e(t)‖ = ‖e(t)− (Ce(t)Σ∞(t) +De(t))v(t)‖ −→ 0

as t→∞. This concludes that the controller solves the Periodic Output Regulation
Problem.

To prove the converse implication assume that the controller solves the Peri-
odic Output Regulation Problem. Let t0 ∈ [0, τ) and n ∈ N0 and denote t = nτ+t0.
Using the periodicity of the functions and the above property of the regulation er-
ror we have that for any initial state v0 ∈W of the exosystem and any xe0 ∈ Xe

‖(Ce(t0)Σ∞(t0) +De(t0))v(t)‖ = ‖(Ce(t)Σ∞(t) +De(t))v(t)‖

= ‖e(t)− (Ce(t)Σ∞(t) +De(t))v(t)‖+ ‖e(t)‖ −→ 0
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as n → ∞. Let λ ∈ σ(US(τ, 0)) and let {φk}mk=1 be a Jordan chain associated to
this eigenvalue. We will use the above limit to show that for all k ∈ {1, . . . ,m} we
have (Ce(t0)Σ∞(t0) +De(t0))φk = 0. By assumption we have |λ| = 1 and

US(τ, 0)φ1 = λφ1, US(τ, 0)φk = λφk + φk−1, k ∈ {2, . . . ,m}. (4.5)

The periodicity of the evolution family US(t, s) implies

US(t, 0) = US(nτ + t0, 0) = US(nτ + t0, nτ)US(nτ, (n− 1)τ) · · ·US(τ, 0)

= US(t0, 0)US(τ, 0)n

and thus

0 = lim
n→∞

‖(Ce(t0)Σ∞(t0) +De(t0))US(t, 0)φ1‖

= ‖(Ce(t0)Σ∞(t0) +De(t0))US(t0, 0)φ1‖ ·
(

lim
n→∞

|λ|n
)
.

This implies (Ce(t0)Σ∞(t0) +De(t0))US(t0, 0)φ1 = 0 since |λ| = 1. Using this
and (4.5) we get

0 = lim
n→∞

‖(Ce(t0)Σ∞(t0) +De(t0))US(t, 0)φ2‖

= ‖(Ce(t0)Σ∞(t0) +De(t0))US(t0, 0)φ2‖ ·
(

lim
n→∞

|λ|n
)

and thus also (Ce(t0)Σ∞(t0) +De(t0))US(t0, 0)φ2 = 0. Continuing this we finally
obtain

0 = lim
n→∞

‖(Ce(t0)Σ∞(t0) +De(t0))US(t, 0)φm‖

= ‖(Ce(t0)Σ∞(t0) +De(t0))US(t0, 0)φm‖ ·
(

lim
n→∞

|λ|n
)

which implies (Ce(t0)Σ∞(t0) +De(t0))US(t0, 0)φm = 0. Since λ ∈ σ(US(τ, 0)) and
the associated Jordan chain were arbitrary, we must have

(Ce(t0)Σ∞(t0) +De(t0))US(t0, 0) = 0.

The invertibility of US(t0, 0) further concludes that Ce(t0)Σ∞(t0) + De(t0) = 0.
Since t0 ∈ [0, τ) was arbitrary, this finally shows that Ce(t)Σ∞(t) +De(t) = 0 for
every t ∈ [0, τ ]. �

It should also be noted that Theorem 4.2 is independent of the form of
the controller in the sense that if the closed-loop system can be written in the
form (4.2), then this result implies that the output e(t) of the closed-loop sys-
tem driven by the nonautonomous exosystem (4.1) decays to zero asymptotically
if and only if the solution of the Sylvester differential equation satisfies the con-
straint (4.4). This makes it possible to study the Periodic Output Regulation
Problems with different types of controllers simultaneously. The general results
obtained this way can subsequently be used to derive separate conditions for the
solvability of the problem using different controller types.
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5. Conclusions

In this paper we have considered the solvability of the infinite-dimensional Sylvester
differential equation. We have introduced conditions under which the equation has
a unique classical solution. We have also considered the periodic version of the
equation and shown that if a certain condition on the growth of the evolution fam-
ilies associated to the equation is satisfied, then the periodic Sylvester differential
equation has a unique periodic solution.

We applied the results on the solvability of the equation to the output reg-
ulation of a distributed parameter system with a time-dependent exosystem. In
particular we showed that the controllers solving the output regulation problem
can be characterized using the properties of the solution of the Sylvester differen-
tial equation. Developing the results for the solvability of these types of equations
is crucial to the generalization of the theory of output regulation for more general
classes of infinite-dimensional systems and exogeneous signals.
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