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Abstract. In this paper we study robust output tracking and distur-
bance rejection of linear partial differential equation (PDE) models. We
focus on demonstrating how the abstract internal model based controller
design methods developed for “regular linear systems” can be utilised in
controller design for concrete PDE systems. We show that when imple-
mented for PDE systems, the abstract control design methods lead in a
natural way to controllers with “PDE parts”. Moreover, we formulate
the controller construction in a way which utilises minimal knowledge of
the abstract system representation and is instead solely based on nat-
ural properties of the original PDE. We also discuss computation and
approximation of the controller parameters, and illustrate the results
with an example on control design for a boundary controlled diffusion
equation.

1. Introduction

Robust output regulation has been studied actively in the literature for
controlled linear partial differential equations as well as for distributed pa-
rameter systems. In this control problem the aim is to achieve asymptotic
convergence of the system’s output to a predefined reference signal despite
a class of external disturbance signals and uncertainties in the parameters
of the system. The primary motivation for studying the control problem
for infinite-dimensional linear systems is that this abstract framework facil-
itates the study of classes of linear PDE models and makes it possible to
introduce general controller design methods which are applicable to a range
of different types of PDEs. This way the abstract approach unifies and
avoids repetition in the parts of the controller design which are independent
of the type of the PDE model under consideration. The output regulation
problem adapts extremely well to the abstract infinite-dimensional setting
because the associated controller design approaches have a lot of structure
which is either independent or depends only in a very particular way on
the considered system (e.g., through transfer function values or locations of
transmission zeros).

When such an abstract controller construction method is applied in the
control of a concrete PDE model, the resulting controller is typically either
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a finite-dimensional ODE model (such as in [9, 6, 14, 13]), or alternatively
an abstract linear system (in [8, 7, 11, 12, 20, 18]). In the latter case the
natural expectation is that the controller is “of similar type” as the original
system, namely, a PDE model. The abstract controllers do indeed possess
this intuitive property and this structure is easy to observe in the case of
PDEs with distributed inputs and outputs. However, this relationship be-
tween the system and controller may become less obvious in the case of PDEs
with boundary control and observation, where the abstract framework has a
higher level of generality due to the unboundedness of the input and output
operators. Moreover, some of the controller construction algorithms require
a certain level of technical knowledge on the abstract framework, and this
can make the design methods tedious to implement for those researchers
who are not already familiar with the corresponding abstract theory.

In this paper we demonstrate how a selected controller design method for
abstract infinite-dimensional systems produces PDE controllers when ap-
plied in the control of PDEs with boundary control and observation. More-
over, we show that the controller design method can be presented in a way
which requires minimal knowledge of the “abstract framework” and where
the parameter choices are completely based on the original PDE system
(in particular, stabilizability via feedback and output injections, and com-
putation of selected transfer function values). Our results are applicable
for a wide range of boundary controlled PDEs in 1D (such as reaction–
convection–diffusion equations, damped wave and beam equations, and cou-
pled PDE-PDE and PDE-ODE systems), as well as nD convection–diffusion
equations.

The observer-based robust controller [11, Sec. VI] studied in this paper
consists of an ODE part (the internal model of the reference and disturbance
signals) and a modified copy of the controlled system which is used as a
Luenberger-type observer in the stabilization of the closed-loop system. As
our main result we show that when applied in PDE control, the infinite-
dimensional part of our controller is always a state of a PDE system which
is of similar type as the original system. We achieve this by rewriting the
abstract controller in a new way and by analysing the detailed properties
of the controller state. In this paper we allow the controlled system to be
a general regular linear system, but for simplicity limit our attention to the
situation where this model can be stabilized with state feedback and output
injection with bounded operators. Using the results in [12], our approach
also generalises to the situation where the stabilization of the system requires
boundary feedback or boundary output injection, but the controller form
becomes somewhat more complicated. Our approach can also be applied
to other abstract controller structures (e.g., those for “non-robust” output
regulation in [20]) to design PDE-type controllers.

Notation. For Hilbert spaces X and Y we denote the space of bounded
linear operators A : X → Y by L(X,Y ). The resolvent operator of A :
D(A) ⊂ X → X is defined as R(λ,A) = (λI−A)−1 for λ ∈ C in the resolvent
set ρ(A), and the adjoint of A is denoted by A∗ : D(A∗) ⊂ X → X. The
inner product on X is denoted by 〈·, ·〉X . We denote the Λ-extension [17,
Def. 5.1] of an operator C by CΛ.
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2. Preliminaries

2.1. The Robust Output Regulation Problem. Throughout the paper
consider controlled PDE systems with an input u(t) ∈ U = Cm, a measured
output y(t) ∈ Y = Cp, and an additional disturbance input wdist(t) ∈
Ud = Cnd . The main objective in output regulation is to design a dynamic
error feedback controller so that the output y(t) converges asymptotically
to a given reference signal yref(t) despite the external disturbance signals
wdist(t). The considered reference and disturbance signals are of the form

yref (t) =

q∑
k=0

ak cos(ωkt+ θk)(1a)

wdist(t) =

q∑
k=0

bk cos(ωkt+ ϕk)(1b)

where the frequencies 0 = ω0 < ω1 < . . . < ωq are known and the amplitudes
{ak}qk=1 ⊂ Y and {bk}qk=1 ⊂ Ud and phases {θk}qk=0, {ϕk}

q
k=0 ⊂ [0, 2π) can

be unknown.
Our main control problem, the “Robust Output Regulation Problem” [14,

7] is defined in detail in the following.

The Robust Output Regulation Problem. Construct a dynamic error
feedback controller so that the following hold.

(a) The closed-loop system consisting of the system and the controller
is exponentially stable when wdist(t) ≡ 0 and yref (t) ≡ 0.

(b) There exists α > 0 such that for all initial states of the system and
the controller and for all {ak}qk=1, {bk}qk=1, {θk}qk=0, and {ϕk}qk=0
in (1) the output y(t) satisfies∫ ∞

0
e2αt‖y(t)− yref (t)‖2dt <∞.

(c) If the parameters of the system are perturbed in such a way that the
exponential closed-loop stability is preserved, then (b) still holds for
some modified α̃ > 0.

2.2. Assumptions on the PDE System. As our main assumption we
suppose that the controlled PDE system can be expressed as a regular linear
system [19, 17]. Even though the regular linear system representation of the
system is required in the proofs of our main results, our goal is to present
the controller design and the controller structure in a way which is largely
independent of this abstract formulation. Instead it is mainly sufficient to
know that such a representation exists. That being said, we assume the PDE
has an abstract representation

ẋ(t) = Ax(t) +Bu(t) +Bdwdist(t), x(0) = x0(2a)

y(t) = CΛx(t) +Du(t) +Ddwdist(t).(2b)

We assume (A, [B,Bd], C, [D,Dd]) is a regular linear system [17, Sec. 5]
on a Hilbert space X with input space U × Ud = Cm × Cnd and output
space Y = Cp. In particular, A : D(A) ⊂ X → X generates a strongly
continuous semigroup T (t) on X. Our assumption also implies that for any
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[u,wdist ]
T ∈ L2

loc(0,∞;U × UD) and x0 ∈ X the state x(t) of the system is
the unique mild solution of (2a) (defined in [16, Def. 4.1.1]) given by [16,
Prop. 4.2.5]

x(t) = T (t)x0 +

∫ t

0
T (t− s) [Bu(s) +Bdwdist(s)] ds.

On the other hand, by [16, Rem. 4.2.6] the state also satisfies

〈x(t)− x0, φ〉X =

∫ t

0

[
〈x(s), A∗φ〉X + 〈u(s), B∗φ〉U

+ 〈wdist(s), B
∗
dφ〉Ud

]
ds

(3)

for all t > 0 and φ ∈ D(A∗). It is important to note that it is precisely the
identity (3) which connects the state x(t) of the system (2) to the weak solu-
tion of the original PDE system. This relationship is illustrated in concrete
examples in [16, Rem. 10.2.2, 10.2.4 and Sec. 10.7, 10.8].

We make the following assumptions on the stabilizability and transmission
zeros of the controlled PDE system.

Assumption 2.1. Assume that there exists K0 ∈ L(X,U) such that the
state feedback u(t) = K0x(t) stabilizes system (2) exponentially. In addition,
assume that there exists L ∈ L(Y,X) such that the output injection Ly(t)
stabilizes system (2) exponentially.

The fact that K0 and L are bounded operators in Assumption 2.1 means
that we only consider systems which are stabilizable using distributed feed-
back and output injection.

Remark 2.2. In terms of regular linear systems Assumption 2.1 means that
K0 ∈ L(X,U) and L ∈ L(Y,X) are such that the semigroups generated by
A + LC : D(A) ⊂ X → X and A + BK0 : D(A + BK0) ⊂ X → X with
domain D(A+BK0) = {x ∈ X | Ax+BK0x ∈ X } are exponentially stable.

The following condition on transmission zeros is necessary for the solv-
ability of the robust output regulation problem.

Assumption 2.3. The numbers of inputs and outputs of (2) satisfy m ≥ p
and (2) does not have transmission zeros at {±iωk}qk=0.

If we denote the transfer function of the system (from the input u(t)
to the output y(t)) by P (λ), then for any iωk ∈ ρ(A) the condition in
Assumption 2.3 requires that P (±iωk) has full row rank. More generally,
if iωk ∈ iR the condition requires that the transfer function of the system
stabilized with state feedback has full row rank at iωk.

3. Controller Design

In this section we construct an error feedback controller which solves the
robust output regulation problem. Our main result in Theorem 3.2 shows
that the controller state has a part which is the weak solution of a PDE of
the same form as the original system.
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The controller design is based on the construction of the parameters
(G1, G2, L,K) in Definition 3.1 below. The construction uses the matrices
Bk

1 ∈ L(U, Y × Y ) and the operators Hk
K ∈ L(X,Y × Y ) defined by

Bk
1 =

1

2

[
PK(iωk) + PK(−iωk)
iPK(iωk)− iPK(−iωk)

]
, Hk

K =
1

2

[
PKI(iωk) + PKI(−iωk)
iPKI(iωk)− iPKI(−iωk)

]
,

where PK(λ) = (CΛ + DK0)R(λ,A + BK0)B + D and PKI(λ) = (CΛ +
DK0)R(λ,A+BK0).

Definition 3.1 (Controller Parameters). Define Z0 = Cp(2q+1),

G1 = diag(0p, ω1Ωp, . . . , ωqΩp) ∈ Rp(2q+1)×p(2q+1),

with Ωp =
[

0p Ip
−Ip 0p

]
, where 0p, Ip ∈ Rp×p are the zero and identity matrices,

and

G2 =
[
Ip, Ip, 0p, Ip, 0p, . . . , Ip, 0p

]T ∈ Rp(2q+1)×p.

Let L ∈ L(Y,X) and K0 ∈ L(U,X) be as in Assumption 2.1. Define

B1 =


PK(0)
B1

1
...
Bq

1

 and HK =


PKI(0)
H1
K
...

Hq
K

 .
The pair (G1, B1) is controllable due to Assumption 2.3 and K1 ∈ L(Z0, U)
can be chosen so that G1 + B1K1 is Hurwitz. Finally, define K2 = K0 +
K1HK .

Theorem 3.2 below presents a controller solving the robust output regu-
lation problem based on the parameters constructed in Definition 3.1. The
theorem shows that the controller consists of an ODE system with state z1(t)
(the “internal model”) and an “observer-part” which is a copy of the system
with input u(t), output ŷ(t), and an additional input with input operator L.
In view of the discussion in Section 2.2 the result also shows that x̂(t) is a
weak solution of a PDE of the same form as the original PDE system (with
the additional input through the operator L and with zero disturbance).
The controller can therefore be rewritten as a coupled PDE-ODE system,
and this is illustrated further in the example considered in Section 5.

Theorem 3.2. Let G1, G2, L, and K be as in Definition 3.1 and let e(t) =
y(t)− yref(t). The robust output regulation problem is solved by the dynamic
error feedback controller

ż1(t) = G1z1(t) +G2e(t), z1(0) ∈ Z(4a)

˙̂x(t) = Ax̂(t) +Bu(t) + L(ŷ(t)− e(t)), x̂(0) ∈ X(4b)

ŷ(t) = CΛx̂(t) +Du(t)(4c)

u(t) = K1z1(t) +K2x̂(t).(4d)

With this controller the closed-loop system (consisting of (2) and (4)) has a
unique mild state xe(t) = [x(t), z1(t), x̂(t)]T , u(·) ∈ L2

loc(0,∞;Y ) e(·), ŷ(·) ∈
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L2
loc(0,∞;Y ) and x̂(·) ∈ C([0,∞);X) satisfies

〈x̂(t)− x̂(0), φ〉X =

∫ t

0

[
〈x̂(s), A∗φ〉X + 〈u(s), B∗φ〉U

+ 〈L(ŷ(s)− e(s)), φ〉X
]
ds

for all t ≥ 0 and φ ∈ D(A∗).

Remark 3.3. Definition 3.1 shows that G1 and G2 have explicit formulas
and that L and the part K0 of K2 are chosen as in Assumption 2.1 based
on the stabilizability properties of the original PDE system. Finally, the
values PK(±iωk) and PKI(±iωk) in B1 and HK can be computed based on
the original PDE, as shown in Section 4.

The controller in Theorem 3.2 is based on an abstract controller intro-
duced in [7, 11] with general structure

ż(t) = G1z(t) + G2e(t), z(0) = z0 ∈ Z(5a)

u(t) = Kz(t)(5b)

with e(t) = y(t)−yref (t) on a Hilbert space Z. Here G1 generates a strongly
continuous semigroup on Z and G2 ∈ L(Y, Z) and K ∈ L(Z,U). For the
proof of Theorem 3.2 we define the closed-loop system consisting of the
system (2) and the controller (5). This closed-loop system has state xe(t) =
[x(t), z(t)]T on Xe = X × Z and is of the form

ẋe(t) = Aexe(t) +Bewe(t), xe(0) = xe0(6a)

e(t) = Cexe(t) +Dewe(t)(6b)

where we(t) = [wdist(t), yref (t)]T , xe0 = [x0, z0]T ,

Ae =

[
A BK
G2CΛ G1 + G2DK

]
, Be =

[
Bd 0
0 −G2

]
,

with domain D(Ae) = { [x, z]T ∈ D(CΛ) × D(G1) | Ax + BKz ∈ X }, and
Ce = [CΛ, DK] and De = [0,−I]. The closed-loop system (Ae, Be, Ce, De)
is a regular linear system [11, Thm. 3]. The following additional properties
of the closed-loop system are used in the proof of Theorem 3.2.

Lemma 3.4. Let xe(t) = [x(t), z(t)]T be the mild state of (6). Then z(t)
is the mild solution of the differential equation (5a). Moreover, if V is a
Hilbert space and Q : D(G1) ⊂ Z → V is an admissible output operator
for the semigroup generated by G1, then z(t) ∈ D(QΛ) for a.e. t ≥ 0 and
QΛz(·) ∈ L2

loc(0,∞;V ).

Proof. Consider an open loop system [12, Thm. 2.3]([
A 0
0 G1

]
,

[
B Bd 0
0 0 G2

]
,

[
C 0
0 K

]
,

[
D 0 0
0 0 0

])
with input [u(t), wdist(t), uc(t)]

T and output [y(t), yc(t)]
T . It is easy to see

that this is a regular linear system on Xe = X × Z. The closed-loop sys-
tem (6) is obtained from the open loop system by applying the admissible
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output feedback u(t)
wdist(t)
uc(t)

 =

0 I
0 0
I 0

[ y(t)
yc(t)

]
+

 0
wdist(t)
−yref (t)

 ,
subsequently ignoring the first input and the second output, and finally
adding the feedthrough term Dewe(t). This feedback structure together
with [19, Thm. 6.1 and Eq. (6.1)] imply that z(t) is indeed the mild solution
of (5a).

To prove the second claim we can note that since G2 is a bounded operator,
(G1,G2, Q, 0) is a regular linear system. Since z(t) is the mild solution of (5a)
and since the regulation error satisfies e(·) ∈ L2

loc(0,∞;Y ) (as the output of
the regular closed-loop system), we have z(t) ∈ D(QΛ) for a.e. t ≥ 0 and
QΛz(·) ∈ L2

loc(0,∞;V ) by [19, Thm. 5.5]. �

Proof of Theorem 3.2. Definition 3.1 and [11, Thm. 15]1 imply that the ro-
bust output regulation problem is solved by an abstract controller of the
form (5) on Z = Z0×X with state z(t) = [z1(t), x̂(t)]T and with parameters

G1 =

[
G1 0

(B + LD)K1 A+ LCΛ + (B + LD)K2

]
D(G1) = { [ z1x ] ∈ Z0 ×D(CΛ) | Ax+BK[ z1x ] ∈ X }

G2 =

[
G2

−L

]
, K =

[
K1, K2

]
, K2 = K0 +K1HK .

The closed-loop system has a well-defined mild state xe(t) = [x(t), z1(t), x̂(t)]T .
Thus it remains to show that [z1(t), x̂(t)]T is the mild state of the con-
troller (4) and that u(·), e(·), ŷ(·), and x̂(·) have the claimed properties.

Define Q =
[
K1 K2
0 C

]
with D(Q) = Z0 ×D(A). We have

G1 =

[
G1 0
0 A+ LCΛ

]
+

[
0

B + LD

] [
I 0

] [K1 K2

0 CΛ

]
,

where ([
G1 0
0 A+ LC

]
,

[
0

B + LD

]
,

[
K1 K2

0 C

]
,

[
0
0

])
is a regular linear system. We therefore have from [17, Thm. 5.17] that
Q is an admissible output operator for the semigroup generated by G1 and

its Λ-extension is given by QΛ =
[
K1 K2
0 CΛ

]
with D(QΛ) = Z0 × D(CΛ).

Lemma 3.4 thus implies that z(t) ∈ D(QΛ) = Z0×D(CΛ) for a.e. t ≥ 0 and
QΛz(·) ∈ L2

loc(0,∞;Y ). But since ŷ(t) = CΛx̂(t) + Du(t) = [D, I]QΛz(t),
this immediately implies ŷ(·) ∈ L2

loc(0,∞;Y ). Moreover, the regularity of
the closed-loop system implies e(·) ∈ L2

loc(0,∞;Y ), and thus also the output
u(t) of (5) satisfies u(·) ∈ L2

loc(0,∞;U).

By Lemma 3.4 the function z(t) = [z1(t), x̂(t)]T is the mild solution
of (5a). Since Z0 is finite-dimensional, the triangular structure of G1 implies
that z1(t) is the (strong) solution of ż1(t) = G1z1(t) + G2e(t). Moreover,

1The result [11, Thm. 15] assumes that the system has an equal number of inputs and
outputs, i.e., m = p. However, the result and its proof remain valid for m ≥ p under
Assumption 2.3 since G1 + B1K1 is Hurwitz by the choice of K1.
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the structure of G1 and u(t) = K1z1(t) +K2x̂(t) also imply that x̂(t) is the
mild solution of the differential equation

˙̂x(t) = (B + LD)K1z1(t) + (A+ LCΛ + (B + LD)K2)x̂(t)− Le(t)
= Ax̂(t) + (B + LD)(K1z1(t) +K2x̂(t)) + L(CΛx̂(t)− e(t))
= Ax̂(t) +Bu(t) + L(ŷ(t)− e(t)).

By [16, Rem. 4.2.6] this means that x̂(·) is continuous and that it satisfies
the integral equation in the claim. �

4. Computing the Controller Parameters

In this section we describe how the values PK(±iωk) and PKI(±iωk) used
in the controller construction can be computed based on the original PDE
system.

4.1. The General Transfer Function Approach. The definitions

PK(λ) = (CΛ +DK0)R(λ,A+BK0)B +D

PKI(λ) = (CΛ +DK0)R(λ,A+BK0)

imply that [PK(λ), PKI(λ)] is the transfer function of the regular linear
system (A + BK0, [B, I], C + DK0, [D, 0]). This is precisely the system
(A, [B, I], C, [D, 0]) under state feedback [u(t), ψ(t)]T = [K0x(t)+ũ(t), ψ(t)]T

(see Fig. 1).

K0

PDE Systemũ(t)

+

ψ(t) y(t)

x(t)

Figure 1. The system structure for computing PK(±iωk)
and PKI(±iωk).

This feedback structure and the fundamental properties of transfer func-
tions imply that the values of PK(iω) and PKI(iω) for ω ∈ {±ωk}qk=0 can be
computed from the original PDE system in the following way (cf. [21, 4]):

Add a new distributed input ψ(t) to the PDE system cor-
responding to the input operator I ∈ L(X). Let u0 ∈ U ,
ψ0 ∈ X, and ω ∈ R. If x0 is the (unique) initial data of the
PDE system such that the weak solution corresponding to the
input (u(t), ψ(t)) = (eiωtK0x0 + eiωtu0, e

iωtψ0) has the form
x(t) = eiωtx0, then the corresponding output has the form
y(t) = eiωty0 where y0 = PK(iω)u0 + PKI(iω)ψ0.

As noted in [4, Sec. 1.1], the above approach (after elimination of the com-
mon factors eiωt) leads to the same static differential equation for x0 ∈ X
as taking the formal Laplace transform of the PDE system with an addi-
tional distributed input ψ(t), under state feedback [u(t), ψ(t)]T = [K0x(t) +
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ũ(t), ψ(t)]T , and with zero initial condition. This same property can also
be observed in the abstract system (2): It is easy to use [16, Rem. 4.2.6] to
show that x0 ∈ X has the above properties if and only if

iω〈x0, φ〉X = 〈x0, A
∗φ〉X + 〈u0 +K0x0, B

∗φ〉U + 〈ψ0, φ〉X
for all φ ∈ D(A∗). This equation coincides (in a weak sense) with the
formal Laplace transform of the corresponding differential equation (with
zero initial condition).

Remark 4.1. The differential equation for computing PK(iω) and PKI(iω)
for ω ∈ {±ωk}qk=0 has a particularly concrete representation if the original
PDE can be expressed as an abstract Boundary Control System

ẋ(t) = Ax(t) +B0
dw

0
d (t), x(0) = x0

Bx(t) = u(t) + w1
d (t), Bdx(t) = w2

d (t)

y(t) = Cx(t),

where A : D(A) ⊂ X → X is a differential operator and B ∈ L(D(A), U)
and Bd ∈ L(D(A), Ud) are boundary trace operators (see [15, 3, 10] for de-
tails). In this situation, the above approach (and elimination of the common
factors eiωt) shows that if u0 ∈ U , ψ0 ∈ X and ω ∈ R and if x0 ∈ D(A) is
the solution of the boundary value problem

(iω −A)x0 = ψ0,(7a)

Bx0 = K0x0 + u0, Bdx0 = 0,(7b)

then y0 = Cx0 = PK(iω)u0 + PKI(iω)ψ0. In particular, x0 ∈ X satisfies the
boundary conditions of the static differential equation (7).

Remark 4.2. As shown in [11, Thm. 15], the operator HK ∈ L(X,Z0) is
the solution of the Sylvester equation

G1HK = HK(A+BK0) +G2(CΛ +DK0)

defined on D(A + BK0). However, we emphasize that HK has an explicit
formula based on PKI(±iωk), and solving this operator equation is not re-
quired. On the other hand, in certain situations such as for parabolic equa-
tions the operator HK can be approximated reliably with a solution of the
Sylvester equation projected onto a finite-dimensional space.

4.2. Reduction to Simpler Systems. In the case where iω ∈ ρ(A) the
values PK(iω) and PKI(iω) can be computed based on solutions of simpler
differential equations. Standard properties of transfer functions show that
for any λ ∈ ρ(A) ∩ ρ(A+BK0) we have

PK(λ)u0 = P (λ)(I −GK(λ))−1u0

PKI(λ)ψ0 = CR(λ,A)ψ0 + PK(λ)K0R(λ,A)ψ0

whereGK(λ) := K0R(λ,A)B is the transfer function of the system (A,B,K0, 0).
The system (

A, [B, I],

[
C
K0

]
,

[
D 0
0 0

])
,(8)
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is the original PDE system with an additional distributed input ψ(t) cor-
responding to the input operator I ∈ L(X) and with an additional output
with operator K0. The transfer function of (8) is given by[

P (λ) CR(λ,A)
GK(λ) K0R(λ,A)

]
,

and thus its values at λ = ±iωk contain the necessary information for com-
puting PK(±iωk) and PKI(±iωk). This transfer function of (8) can be
computed using the same approach as in Section 4.1 (but without the state
feedback).

4.3. Numerical Approximations. Due to the internal model structure
of the controller the output tracking and disturbance rejection are achieved
whenever the parameter K = [K1,K2] of the controller is such that the

closed-loop system is exponentially stable. Replacing K with K̃ in the
closed-loop system leads to

Ãe =

[
A BK̃

G2CΛ G1 + G2DK̃

]
= Ae +

[
B
G2D

] [
0, K̃ −K

]
.

Since the nominal values K1 and K2 = K0 + K1HK are guaranteed to
stabilize the closed-loop semigroup Te(t) generated by Ae and since

[
B
G2D

]
is an admissible input operator for Te(t), the closed-loop system is stable

for any K̃ for which ‖K̃ −K‖ is sufficiently small. Because of this, we can

replace K1 and HK in the controller with any approximations K̃1 and H̃K for
which ‖K̃1 −K1‖ and ‖H̃K −HK‖ are sufficiently small. This immediately
implies that it is sufficient to compute the values [PK(±iωk), PKI(±iωk)]
with finite numerical accuracy, e.g., using software for solving the boundary
value problems in Sections 4.1 and 4.2.

Moreover, since dimY = p, the operators PKI(±iωk) are compact and
can be approximated with finite-rank operators. For any orthonormal basis
{ψn}n∈N of X we can define

HN
K =

N∑
n=1

〈·, ψn〉PKI(±iωk)ψn,

and the approximation error ‖HN
K − HK‖ can be made arbitrarily small

with a sufficiently large N ∈ N. This shows that it is sufficient to com-
pute PKI(±iωk)ψ0 for ψ0 = ψn for a finite number of basis functions n ∈
{1, . . . , N}. In the method presented in Sections 4.1 and 4.2 this means
that only a finite number of boundary value problems with ψ0 = ψn, n ∈
{1, . . . , N}, need to be solved (and each of these can be solved numerically).

5. Controller Design for Heat Equations

As a concrete model we consider a heat equation

xt(ξ, t) = ∆x(ξ, t) +B0
d(ξ)w0

d (t), x(ξ, 0) = x0(ξ)

∂x

∂n
(ξ, t)|∂Ω = b(ξ)u(t) +B1

d(ξ)w1
d (t)

y(t) =

∫
∂Ω
x(ξ, t)c(ξ)dξ,
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on a one or two-dimensional spatial domain Ω ⊂ Rn. We assume that
Ω = (a, b) if n = 1 and that Ω is bounded and convex with piecewise
C2-boundary if n = 2. The system has scalar-valued input u(t) ∈ R and
output y(t) ∈ R acting on the boundary with b, c ∈ L2(∂Ω;R), b 6= 0 and
c 6= 0. We assume w0

d (t) ∈ Rnd0 , w1
d (t) ∈ Rnd1 , B0

d(·) ∈ L2(Ω;R1×nd0),
and B1

d(·) ∈ L2(∂Ω;R1×nd1). The PDE defines a regular linear system on
X = L2(Ω) [2, Thm. 2], and it is unstable due to eigenvalue at 0 ∈ C.

Theorem 3.2 shows that if the parameters G1, G2, K1, K2, and L are as
in Definition 3.1, then the robust output regulation problem is solved by the
controller

ż1(t) = G1z1(t) +G2(y(t)− yref (t)) z1(0) ∈ Z0

x̂t(ξ, t) = ∆x̂(ξ, t) + L(ξ)
(∫
∂Ω
x̂(ξ, t)c(ξ)dξ − y(t) + yref (t)

)
∂x̂

∂n
(ξ, t)|∂Ω = b(ξ)(K1z1(t) +K2x̂(·, t)), x̂(ξ, 0) = x̂0(ξ)

u(t) = K1z1(t) +K2x̂(·, t).

In particular, x̂(·, ·) is the weak solution of the PDE in the controller equa-
tions. To construct the controller parameters, we can first choose G1 and
G2 as in Definition 3.1 corresponding to the output space Y = C and the
frequencies 0 = ω0 < ω1 < . . . < ωq in the considered reference and distur-
bance signals. The stabilization of the system can be achieved using LQR
design [1] or (if n = 1) explicit choices of the bounded K0 and L. The results
in Section 4.1 show that for ω = ±ωk ∈ R the values PK(iω) and PKI(iω)
can be computed by solving the boundary value problem

iωx0(ξ) = ∆x0(ξ) + ψn(ξ)

∂x0

∂n
(ξ)|∂Ω = b(ξ)(u0 +K0x0(·)), y0 =

∫
∂Ω
x0(ξ)c(ξ)dξ.

With the choices u0 = 1 ∈ C and ψn = 0 ∈ L2(0, 1) we then have y0 =
PK(iω), and for u0 = 0 and ψn ∈ L2(0, 1) we get y0 = PKI(iω)ψn. As in
Section 4.3 the boundary value problem can be solved numerically and it
suffices to compute y0 for a finite number of ψn from an orthonormal basis
of L2(Ω). In the 1D case the equations become ODEs, ∂Ω = {a, b}, and

K0x0 = −
∫ b
a x0(ξ)k0(ξ)dξ for some k0 ∈ L2(a, b). Such boundary value

problems can be solved easily and with very high precision using the free
Chebfun MATLAB library [5] (available at www.chebfun.org).

MATLAB simulation codes for a 2D heat equation on a rectangle and
a 1D heat equation (with spatially varying heat conductivity) are available
at github.com/lassipau/CDC22-Matlab-simulations/. The codes utilise the
RORPack MATLAB library (github.com/lassipau/rorpack-matlab/) and
Chebfun in the controller construction. Fig. 2 illustrates the 2D simulation
example and results.
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