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Abstract
We construct a controller to solve robust output tracking
problem for a stable linear continuous-time periodic system
on a finite-dimensional space. We begin by transforming
the time-dependent plant to a time-invariant discrete-time
system using the “lifting technique”. The controller is then
designed to achieve robust output tracking for the lifted sys-
tem. We show that an exact solution to the control problem
for a continuous-time periodic system necessarily requires
an error feedback controller with an infinite-dimensional in-
ternal model. The results are illustrated with an example
where robust output tracking is considered for a stable pe-
riodic scalar system.

1 Introduction
The purpose of this paper is to study the problem of
robust output tracking for a stable periodically time-
dependent linear system

ẋ(t) = A(t)x(t) +B(t)u(t), x(0) = x0 ∈ X(1a)
y(t) = C(t)x(t) +D(t)u(t)(1b)

on a finite-dimensional space X = Cn. It is well-
known that for a time-invariant linear system the robust
output output tracking problem can be solved using
a controller incorporating an internal model of the
exosystem’s dynamics. This is a consequence of the
fundamental internal model principle [4, 3].

Unfortunately, the internal model principle is not
directly applicable in the case of time-dependent sys-
tems. However, for discrete-time periodically time-
dependent systems the robust output regulation prob-
lem has been shown to have a solution involving two
steps: In the first step, the discrete-time periodic sys-
tem is rewritten as a time-invariant discrete-time sys-
tems using a technique called “lifting” [10, 2]. The sec-
ond step involves constructing an internal model based
robust controller for the lifted system. The resulting
control law can then be used to control the original pe-
riodic plant. Indeed, this approach has been successfully
used in solving the robust output tracking and distur-

∗Department of Mathematics, Tampere University
of Technology, PO. Box 553, 33101 Tampere, Finland,
lassi.paunonen@tut.fi

bance rejection problem for periodic discrete-time sys-
tems in [6, 7, 5, 9, 8, 12].

The lifting technique is also available for periodic
continuous-time systems [1, 11]. For both discrete-
time and continuous-time systems the lifted system is a
time-invariant discrete-time system with the same state
space as the original system. However, for a discrete-
time system the output space of the lifted system has
dimension τp, where p is the dimension of the output
space of (1) and τ ∈ N is the period length. On the
other hand, if we consider a continuous-time system
with a p-dimensional output space, the output of the
lifted system lies in an infinite-dimensional Hilbert space
L2(0, τ ;Cp), where τ > 0 is again the period length.

The above difference has particularly severe con-
sequences in connection to the robust output track-
ing problem, because the classical definition of an in-
ternal model is not applicable for systems with an
infinite-dimensional output spaces. However, recent ad-
vances in the theory of robust output regulation for
infinite-dimensional systems [14, 15, 16] provide tools
for studying internal models for systems with infinite-
dimensional output spaces without difficulties. In par-
ticular, the references [14, 15] introduce alternative ways
of defining the internal model in such a way that the
concept is useful even in the case of infinite-dimensional
output spaces.

In this paper we apply the results in [15] to design
a periodic discrete-time controller in such a way that

• The closed-loop system consisting of the plant and
the controller is stable.

• The output y(·) converges asymptotically to the
reference signal yref (·) in a suitable sense.

• The control law tolerates small perturbations in the
parameters (A(·), B(·), C(·), D(·)) of the plant.

We approach the problem by first lifting the sys-
tem (1) to a time-invariant linear discrete-time sys-
tem, and by subsequently designing an internal-model
based discrete-time error feedback controller to solve
the transformed control problem. Since the lifted sys-
tem has an infinite-dimensional output space, also the
internal-model based controller is necessarily infinite-
dimensional. Because of this drawback the proposed
solution of the control problem is first and foremost



theoretical. However, the approach and the controller
structure presented in this paper may open new possi-
bilities in constructing approximate controllers for ro-
bust output tracking. Moreover, the stabilization of
the closed-loop system requires the assumption that the
transfer function of the lifted system at the frequency
µ = 1 of the exosystem is boundedly invertible. For
time-invariant systems this is a standard assumption,
but for time-periodic systems this condition is quite re-
strictive.

2 Assumptions on the Plant and the Controller
The parameters of the plant (1) on the spate space
X = Cn are such that A(·) : R → Cn×n is τ -periodic
and locally integrable, B(·) ∈ Cτ (R;Cn×m), C(·) ∈
Cτ (R;Cp×n), D(·) ∈ Cτ (R;Cp×m), where Cτ (R;H)
denotes the space of continuous τ -periodic H-valued
functions. The state of the plant (1) is then given by

x(t) = ΦA(t, 0)x0 +

∫ t

0

ΦA(t, s)B(s)u(s)ds,

where ΦA(t, s), t ≥ s is the fundamental matrix of (1)
satisfying ΦA(0, 0) = I. Since A(·) is τ -periodic, we
have that ΦA(t + τ, s + τ) = ΦA(t, s) for all t ≥ s. We
assume the plant is uniformly exponentially stable. For
a periodic system this means that its characteristic mul-
tipliers, i.e., the eigenvalues of ΦA(τ, 0), have absolute
values strictly less than one.

The main control problem consist of tracking of
a reference signal yref (·) ∈ Cτ (R;Cp). This signal is
obtained as an output of the periodic exosystem

v̇(t) = 0 · v(t), v(0) = v0 ∈ C(2a)
yref (t) = −F (t)v(t)(2b)

corresponding to the initial state v0 = 1 when we choose
F (·) = −yref (·) ∈ Cτ (R;Cp).

2.1 The Lifted Systems Using the lifting tech-
nique [1, 11], the plant (1) can be represented as a time-
invariant discrete-time system

xk+1 = Axk + Buk, x0 = x0(3a)
yk = Cxk + Duk,(3b)

on the space X = Cn with input space U = L2(0, τ ;Cm)
and output space Y = L2(0, τ ;Cp). The lifted state xk,
input uk and output yk are defined by

xk = x(kτ),

uk = u(kτ + ·) : [0, τ)→ U

yk = y(kτ + ·) : [0, τ)→ Y

The operators (A,B,C,D) are bounded so that A ∈
L(X), B ∈ L(U,X), C ∈ L(X,Y ), and D ∈ L(U, Y ),
and they are defined so that for all x ∈ X and u ∈ U

Ax = ΦA(τ, 0)x

Bu =

∫ τ

0

ΦA(τ, s)B(s)u(s)ds

(Cx)(·) = C(·)ΦA(·, 0)x

(Du)(·) = D(·)u(·) + C(·)
∫ ·

0

ΦA(·, s)B(s)u(s)ds.

The lifted system (3) is thus a linear time-invariant
system on a finite-dimensional space, and its input and
output spaces are infinite-dimensional Hilbert spaces.
Because the periodic system (1) was assumed to be
stable, also the lifted system is stable and σ(A) ⊂ D.
The transfer function of the system (3) is given by

P(µ) = C(µI −A)−1B + D ∈ L(U, Y ), µ ∈ ρ(A).

The exosystem (2) can be similarly transformed to
a discrete-time system

vk+1 = vk, v0 = v0 ∈W(4a)

yref
k = −Fvk(4b)

where vk = v0 for all k ∈ N0, yref
k = yref (kτ + ·),

F ∈ L(C, Y ) = Y , and

yref
k = −Fvk = −Fv0 = −F (·)v0.

In this paper we choose to study the asymptotic
convergence of y(·) to yref (·) in the following L2-sense,
because it is the natural form of convergence for the
lifted systems.

Definition 2.1. We say that y(·) converges asymptot-
ically to yref (·) if

‖yk − yref
k ‖

2 =

∫ (k+1)τ

kτ

‖y(t)− yref(t)‖2dt
k→∞−→ 0.

It should be noted that this form of convervence
does not imply ‖y(t)− yref (t)‖Cp → 0 as t→∞.

In order to solve the robust output regulation
problem, we make the following standing assumption
on the plant. This is a standard assumption in robust
control of time-invariant systems, but in the case of
lifted systems it becomes quite restrictive. This is due
to the fact that the input and output spaces of the lifted
system are infinite-dimensional.

Assumption 2.1. The transfer function P(1) ∈
L(U, Y ) of (3) at µ = 1 is boundedly invertible.

Since X = Cn is finite-dimensional, this assumption
can only be satisfied if D(t) is invertible for all t ∈ [0, τ ].
Relaxing this requirement is an important topic for
future research.



2.2 The Controller and the Closed-Loop Sys-
tem We consider a discrete-time controller of the form

zk+1 = G1zk + G2ek, z0 = z0 ∈ Z(5a)
uk = Kzk(5b)

on a Banach space Z. Here G1 ∈ L(Z), G2 ∈ L(Y,Z),
K ∈ L(Z,U) and ek = yk−yref

k is the regulation error.
It is clear that the output y(t) converges to the reference
signal yref (t) in the sense of Definition 2.1 if and only if
‖ek‖Y → 0 as k →∞.

The lifted plant and the controller can be written
together as a closed-loop system

xe,k+1 = Aexe,k +Bevk

ek = Cexe,k +Devk

on the space Xe = X × Z with bounded operators
Ce = (C DK) ∈ L(Xe, Y ), De = −F ∈ L(W,Y ),

Ae =

(
A BK
G2C G1 + G2DK

)
Be =

(
0
G2F

)
.

3 The Robust Output Tracking Problem
In the control problem we study a situation where the
parameters (A(·), B(·), C(·), D(·), F (·)) are perturbed
to (Ã(·), B̃(·), C̃(·), D̃(·), F̃ (·)). The class O of admis-
sible perturbations is defined as follows.

Definition 3.1. The class O of admissible perturba-
tions has the following properties.

(a) The nominal parameters belong to the class, i.e.,
(A(·), B(·), C(·), D(·), F (·)) ∈ O.

(b) For all perturbations (Ã(·), B̃(·), C̃(·), D̃(·), F̃ (·)) ∈
O, the operator P̃(1) is boundedly invertible.

The robust output tracking problem is formulated
in detail in the following.

The Robust Output Regulation Problem.
Choose the controller (G1,G2,K) in such a way that the
following are satisfied:

(a) The closed-loop is exponentially stable, i.e.,
σ(Ae) ⊂ D.

(b) For all initial states xe0 ∈ Xe and v0 ∈ W the
regulation error decays to zero at an exponential
rate, i.e., there exist M,ω > 0 such that ‖ek‖ ≤
Me−ωk for all k ∈ N0.

(c) If (A(·), B(·), C(·), D(·), F (·)) are perturbed to
(Ã(·), B̃(·), C̃(·), D̃(·), F̃ (·)) ∈ O in such a way that

the closed-loop system remains exponentially stable,
then for all initial states xe0 ∈ Xe and v0 ∈W the
regulation error ek decays to zero at an exponential
rate.

Part (b) of Definition 3.1 and the stability of the
closed-loop system are preserved under perturbations
for which the norms ‖A− Ã‖, ‖B− B̃‖, ‖C− C̃‖, and
‖D − D̃‖ are small enough. Theorem 4.1 in Section 4
relates the sizes of the above norms to the sizes of the
perturbations in the parameters (A(·), B(·), C(·), D(·))
of the original plant.

We will now show that the robust output regulation
problem can be solved with an infinite-dimensional
controller on the Hilbert space Z = Y = L2(0, τ ;Cp)
if we choose the parameters as G1 = I and G2 = εI with
ε > 0. With these choices the controller (5) becomes

zk+1 = zk + εek z0 = z0 ∈ Z
uk = Kzk.

The sole frequency µ = 1 of the lifted exosystem (4)
is an eigenvalue of G1 with an infinite-dimensional
multiplicity. This can be interpreted as the controller
incorporating an infinite-dimensional internal model
of the exosystem’s dynamics. The following theorem
shows that this property is indeed sufficient for the
controller to solve the robust output regulation problem.

Theorem 3.1. If we choose Z = Y , G1 = I ∈ L(Y ),
G2 = εI ∈ L(Y ), and

K = −P(1)−1 ∈ L(Y,U),

then there exists ε∗ > 0 such that for any 0 < ε ≤ ε∗

the controller (5) solves the robust output regulation
problem.

The choices of the controller parameters are based
on the following characterization of controllers that
solve the robust output regulation problem. The result
is a discrete-time analogue of [16, Thm. 5.1].

Theorem 3.2. A controller (G1,G2,K) that stabilizes
the closed-loop system solves the robust output reg-
ulation problem if and only if for all perturbations
(Ã, B̃, C̃, D̃, F̃) ∈ O for which the closed-loop system
is stable the equations

P̃(1)Kz = −F̃(6a)

(I − G1)z = 0(6b)

have a solution z ∈ Z.

Proof. The proof is analogous to the proofs of [15, Thm.
4] and [16, Thm. 5.1]. �



Proof of Theorem 3.1. In our controller (5) we have
G1 = I ∈ L(Y ) and G2 = εI. Thus I − G1 = 0, and the
equations (6) have a solution if and only if there exists
z ∈ Z such that

P̃(1)Kz = −F̃.

If we choose K = P(1)−1 as suggested, then for any
perturbations (Ã(·), B̃(·), C̃(·), D̃(·), F̃ (·)) ∈ O

P̃(1)Kz = P̃(1)P(1)−1z = −F̃

with the choice z = −P(1)P̃(1)−1F ∈ Y = Z.
It remains to show that the closed-loop system is

exponentially stable. If we define a similarity transfor-
mation Q =

(
I
H

0
−I

)
with H = εC(A− I)−1, then

QAeQ
−1 =

(
I 0
H −I

)(
A BK
εC I + εDK

)(
I 0
H −I

)
=

(
A + εBKC(A− I)−1 −BK
−ε2P(1)KC(A− I)−1 I + εP(1)K

)
=

(
A− εBP(1)−1C(A− I)−1 BP(1)−1

0 (1− ε)I

)
+ ε2

(
0 0

C(A− I)−1 0

)
.

From this form we see that for a small enough ε >
0 the closed-loop system is exponentially stable. In
particular, there exists ε∗ > 0 such that σ(Ae) ⊂ D
whenever 0 < ε ≤ ε∗. �

4 Analysis of the Perturbations
In this section we compare the sizes of the perturba-
tions in the parameters (A(·), B(·), C(·), D(·)) to the
sizes of the perturbations in the lifted system’s oper-
ators (A,B,C,D). In particular we show that if the
perturbations in the original system are small, then the
same is true for the perturbations in the lifted system.
It should be noted that the results in this section only
represent one particular way in which such estimates
can be carried out. The norms in which the changes
in (A(·), B(·), C(·), D(·)) are measured can easily be
changed to best suit the requirements of the applica-
tion at hand.

We assume the following.

• Ã(·) = A(·) + ∆A(·) where ∆A(·) ∈ L1
loc(R,Cn×n)

is τ -periodic. The perturbation is measured in the
norm ‖∆A‖L1 =

∫ τ
0
‖∆A(t)‖Cn×ndt.

• We let

B̃(·) = B(·) + ∆B(·),
C̃(·) = C(·) + ∆C(·),
D̃(·) = D(·) + ∆D(·),

where ∆B(·) ∈ Cτ (R,Cn×m), ∆C(·) ∈
Cτ (R,Cp×n), ∆D(·) ∈ Cτ (R,Cp×m). The
sizes of the perturbations are measured in the
norms ‖∆B‖∞ = max0≤t≤τ‖∆B(t)‖, and ‖∆C‖∞
and ‖∆D‖∞ (defined analogously).

Theorem 4.1. Assume that the controller (G1,G2,K)
solves the robust output regulation problem. There exists
δ > 0 such that if ‖∆A‖L1 < δ, ‖∆B‖∞ < δ, ‖∆C‖∞ <
δ, and ‖∆D‖∞ < δ, then

(a) P̃(1) is boundedly invertible

(b) The perturbed closed-loop system is exponentially
stable.

Since parts (a) and (b) of Theorem 4.1 are satisfied
provided that ‖A−Ã‖, ‖B−B̃‖, ‖C−C̃‖, and ‖D−D̃‖
are small enough, it is sufficient to show that these four
norms can be made arbitrarily small by making ‖∆A‖L1 ,
‖∆B‖∞, ‖∆C‖∞, and ‖∆D‖∞ sufficiently small.

Estimating ‖Ã−A‖: By definition

‖Ã−A‖ = ‖ΦÃ(τ, 0)− ΦA(τ, 0)‖ = ‖∆Φ(τ, 0)‖Cn×n

where we have denoted ∆Φ(t, s) = ΦÃ(t, s) − ΦA(t, s)
for 0 ≤ s ≤ t ≤ τ . In the following we will show
that ‖∆Φ(·, ·)‖∞ = sup0≤s≤t≤τ‖∆Φ(t, s)‖ can be made
arbitrarily small by making ‖∆A‖L1 small. Let t ≥ s
and xs ∈ X be such that ‖xs‖ = 1. Then

∆Φ(t, s)xs = ΦÃ(t, s)xs − ΦA(t, s)xs

=

∫ t

s

ΦA(t, r)∆A(r)ΦÃ(r, s)xsdr

=

∫ t

s

ΦA(t, r)∆A(r)ΦA(r, s)xsdr

+

∫ t

s

ΦA(t, r)∆A(r)∆Φ(r, s)xsdr.

Thus

‖∆Φ(t, s)‖ ≤
∫ t

s

‖ΦA(t, r)‖‖∆A(r)‖‖ΦA(r, s)‖dr

+

∫ t

s

‖ΦA(t, r)‖‖∆A(r)‖‖∆Φ(r, s)‖dr

≤ ‖ΦA‖2∞‖∆A‖L1 + ‖ΦA‖∞
∫ t

s

‖∆A(r)‖‖∆Φ(r, s)‖dr

where ‖ΦA‖∞ = sup0≤s≤t≤τ‖ΦA(t, s)‖. Grönwall’s
lemma implies that

‖∆Φ‖∞ ≤ ‖ΦA‖2∞‖∆A‖L1e‖ΦA‖∞‖∆A‖L1 ,

which in turn concludes that ‖∆Φ(·, ·)‖∞ can be made
arbitrarily small by making ‖∆A‖L1 small.



Estimating ‖B̃−B‖: For every u ∈ L2(0, τ ;U)

‖B̃u−Bu‖X = ‖
∫ τ

0

ΦA(τ, s)∆B(s)u(s)ds‖X

≤
∫ τ

0

‖ΦA(τ, s)‖‖∆B(s)‖‖u(s)‖ds

≤ ‖∆B‖∞‖ΦA(τ, ·)‖L2‖u‖L2 ,

which implies ‖B̃−B‖X ≤ ‖∆B‖∞‖ΦA(τ, ·)‖L2 .

Estimating ‖C̃−C‖: For every x ∈ X

‖C̃x−Cx‖2L2 =

∫ τ

0

‖∆C(t)ΦA(t, 0)x‖2Xdt

≤ ‖∆C‖2∞‖ΦA(·, 0)‖2L2‖x‖2X

and thus ‖C̃−C‖L2 ≤ ‖∆C‖∞‖ΦA(·, 0)‖L2 .

Estimating ‖D̃ − D‖: For all continuous functions
fΦ, fB , fC , where (t, s) 7→ fΦ(t, s) is defined on { (t, s) |
0 ≤ s ≤ t ≤ τ } ⊂ [0, τ ]× [0, τ ],

‖fC(·)
∫ ·

0

fΦ(·, s)fB(s)u(s)ds‖2L2

=

∫ τ

0

‖fC(t)

∫ t

0

fΦ(t, s)fB(s)u(s)ds‖2dt

≤ ‖fC(·)‖2∞
∫ τ

0

(∫ t

0

‖fΦ(t, s)‖‖fB(s)‖‖u(s)ds‖
)2

dt

≤ ‖fC(·)‖2∞‖fB(·)‖2∞‖u‖2L2

∫ τ

0

∫ t

0

‖fΦ(t, s)‖2dsdt

= ‖fC(·)‖2∞‖fB(·)‖2∞‖u‖2L2‖fΦ(·, ·)‖2L2 .

Now for every u ∈ L2(0, τ ;Cm) we have

‖D̃u−Du‖L2 = ‖C̃(·)
∫ ·

0

ΦÃ(·, s)B̃(s)u(s)ds

− C(·)
∫ ·

0

ΦA(·, s)B(s)u(s)ds+ ∆D(·)u(·)‖L2

= ‖∆D(·)u(·) + C̃(·)
∫ ·

0

ΦÃ(·, s)∆B(s)u(s)ds

+ C̃(·)
∫ ·

0

∆Φ(·, s)B(s)u(s)ds

+ ∆C(·)
∫ ·

0

ΦA(·, s)B(s)u(s)ds‖L2

≤ ‖∆D‖∞‖u‖L2 + ‖C̃(·)
∫ ·

0

ΦÃ(·, s)∆B(s)u(s)ds‖L2

+ ‖C̃(·)
∫ ·

0

∆Φ(·, s)B(s)u(s)ds‖L2

+ ‖∆C(·)
∫ ·

0

ΦA(·, s)B(s)u(s)ds‖L2

This together with the earlier estimate implies

‖D̃−D‖ ≤ ‖∆D‖∞ + ‖C̃(·)‖∞‖∆B(·)‖∞‖ΦÃ(·, ·)‖L2

+ ‖C̃(·)‖∞‖B(·)‖∞‖∆Φ(·, ·)‖L2

+ ‖∆C(·)‖∞‖B(·)‖∞‖ΦA(·, ·)‖L2 .

The norm ‖D̃ − D‖ can be further estimated by us-
ing ‖C̃(·)‖∞ ≤ ‖C(·)‖∞ + ‖∆C‖∞, ‖ΦÃ(·, ·)‖L2 ≤
‖ΦA(·, ·)‖L2 + ‖∆Φ‖L2 , and by using the fact that
‖∆Φ‖L2 ≤ τ2

2 ‖∆Φ‖∞ can be made small by making
‖∆A‖L1 sufficiently small.

5 Example
As an example, we consider a periodic scalar plant

ẋ(t) = a(t)x(t) + u(t), x(0) = x0 ∈ C
y(t) = x(t) + du(t),

where d > 0 and a(·) ∈ Cτ (R,C) with τ = 2π is such
that

a(t) =

{
−1 0 ≤ t < π
−2 π ≤ t < 2π.

The system is periodic with period τ = 2π, and
exponentially stable, since the fundamental matrix
ΦA(t, s) = e

∫ t
s
a(r)dr satisfies |ΦA(2π, 0)| = |e−3π| < 1.

Our aim is to design a controller to achieve robust
output tracking of a reference signal yref ∈ Cτ (R,C),

yref (t) =

{
t− π/2 0 ≤ t < π
3π/2− t π ≤ t < 2π.

The function yref is depicted in Figure 1.

π
2

−π2

0 2π 4π 6π 8π

Figure 1: The reference signal yref .

Our first task is to find the inverse P(1)−1 of the
transfer function of the plant at µ = 1. The operators
of the lifted plant are then given by

Ax = ΦA(2π, 0)x = e−3πx

Bu =

∫ 2π

0

ΦA(2π, s)B(s)u(s)ds =

∫ 2π

0

ΦA(2π, s)u(s)ds

(Cx)(t) = C(t)ΦA(t, 0)x = ΦA(t, 0)x

(Du)(t) = D(t)u(t) + C(t)

∫ t

0

ΦA(t, s)B(s)u(s)ds

= du(t) +

∫ t

0

ΦA(t, s)u(s)ds.



For µ 6= e−3π the transfer function P(µ) is therefore
determined by u 7→ P(1)u = y in such a way that for
t ∈ [0, 2π]

y(t) = (P(µ)u)(t) = (C(µI −A)−1Bu + Du)(t)

=
ΦA(t, 0)

µ− e−3π

∫ 2π

0

ΦA(2π, s)u(s)ds+ du(t)

+

∫ t

0

ΦA(t, s)u(s)ds

= du(t) +
1

µ− e−3π

∫ 2π

0

KF (t, s)u(s)ds

+

∫ t

0

KV (t, s)u(s)ds

where

KF (t, s) = ΦA(t, 0)ΦA(2π, s)

KV (t, s) = ΦA(t, s)

Computing the inverse P(1)−1 is equivalent to
finding the formula for u ∈ L2(0, 2π) such that P(1)u =
y for a given y ∈ L2(0, 2π). Since d 6= 0, this is
equivalent to solving the equation

u(t) =
y(t)

d
− 1

d(1− e−3π)

∫ 2π

0

KF (t, s)u(s)ds(7a)

− 1

d

∫ t

0

KV (t, s)u(s)ds(7b)

on [0, 2π]. This is a Volterra–Fredholm integral equation
of the second kind. The equation can be solved numer-
ically, for example, using the Adomian decomposition
method [17, Sec. 8.2.2] where we define

u(t) =

∞∑
l=0

ul(t), u0(t) =
y(t)

d

ul+1(t) = − 1

d(1− e−3π)

∫ 2π

0

KF (t, s)ul(s)ds

− 1

d

∫ t

0

KV (t, s)ul(s)ds.

In particular, the solution u = P(1)−1y can be ap-
proximated using a truncated series u(t) ≈

∑NA
l=0 ul(t)

for some NA ∈ N. The choice of K was made to
achieve exponential closed-loop stability. The standard
perturbation theory therefore implies that if P(1)−1 is
replaced with sufficiently accurate approximation, the
closed-loop stability is preserved.

In this example we replace the infinite-dimensional
controller in Theorem 3.1 with a finite-dimensional
approximation on CNZ with NZ = 21. The elements of

the infinite-dimensional spaces U = Y = L2(0, 2π) are
approximated with truncated Fourier series expansions

y(·) =
∑
|l|≤nY

〈y(·), φl〉L2φl(·)

u(·) =
∑
|l|≤nU

〈u(·), φl〉L2φl(·),

where φl(·) = 1√
2π
eil·. For the simulation we chose

nU = nY = 20. The operator K = P(1)−1 is ap-
proximated by solving (7) with the Adomian decompo-
sition method with truncation parameter NA = 2 (due
to the approximations of U and Y it suffices to compute
P(1)−1φl for |l| ≤ 20). Finally, we chose ε = 0.2.

3

2

1
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Figure 2: The regulation error ek.

2π 4π 6π 8π 10π 12π

Figure 3: The output y(t).

2π 4π 6π 8π 10π 12π

Figure 4: The control input u(t).

Figure 2 depicts the simulated regulation error ek
for iterations k = 0, . . . , 20 with initial state x0 =
2 of the plant, and with a random initial state of
the controller (uniform distribution over the interval
[−1/2, 1/2]). The real parts of the output y(t) and the
control law u(t) are plotted in Figures 3 and 4, respec-
tively, for 2π ≤ t ≤ 18π. Due to the fact that the con-
troller is an approximation of the infinite-dimensional



controller, the solution of the output regulation prob-
lem is not exact. However, the controller does achieve
approximate tracking of the reference signal.

6 Conclusions
In this paper we have considered robust output track-
ing of periodic continuous-time systems. The main tools
in the analysis are the lifting of the time-dependent sys-
tems to autonomous discrete-time systems, and the gen-
eralization of the internal model principle for systems
with infinite-dimensional input and output spaces.

By definition, the statement of the robust out-
put regulation problem for the lifted system allows
a very wide class of perturbations in the parameters
(A(·), B(·), C(·), D(·)) of the plant. In practical appli-
cations it may be that requiring robustness with respect
to all perturbations preserving the closed-loop system
is unnecessary, and instead the relevant perturbations
have very specific forms. This motivates further study
of the necessity of an infinite-dimensional internal model
for robustness in situations where the class of admissible
uncertainties is significantly smaller than the class O in
Definition 3.1. Theorem 3.2 which states a necessary
condition for robustness of a controller with respect to
any given class of perturbations is a natural starting
point for gaining deeper understanding of the properties
of robust controllers. In particular, possibilities for re-
ducing the size of the internal model can be approached
similarly as in the references [15, 13].

Other important topics for further research include
developing suitable ways of approximating the infinite-
dimensional controller. In addition, relaxing the stand-
ing assumption on the invertibility of P(1) would make
the results available for a larger class of periodic sys-
tems.
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