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Abstract— We study output tracking and disturbance rejec-
tion for linear infinite-dimensional time-delay systems using
dynamic error feedback controllers with state delays. The class
of systems covers many partial differential equations with state,
input, and output delays. As our main result we characterize
the solvability of the control problem in terms of the solvability
of the associated regulator equations.

I. INTRODUCTION

We study the output regulation problem for an infinite-
dimensional time-delay system of the form

ẋ(t) =

r∑
j=0

Ajx(t− τj) +

r∑
j=0

Bju(t− τj) +Bdw(t), (1a)

y(t) =

r∑
j=0

Cjx(t− τj) +

r∑
j=0

Dju(t− τj) (1b)

with x(0) = x0 ∈ X and x(·) = xh(·) ∈ L2(−τr, 0;X),
where 0 = τ0 < τ1 < · · · < τr. The main goal in the
control problem is to choose a control law in such a way
that the output y(t) of the plant converges asymptotically
to a reference signal yref (·) despite the external disturbance
signal w(·). The signals yref (·) and w(·) are assumed to be
generated by an exosystem of the form

v̇(t) = Sv(t), v(0) = v0 ∈W (2a)
w(t) = Ev(t) (2b)

yref (t) = −Fv(t). (2c)

In the literature the output regulation problem for finite-
dimensional time-delay systems has been considered most
notably in the references [1], [2] in the case of static
state feedback control, and in [3] with both state and error
feedback control laws. In particular, in [3] the solvability
of the output regulation problem was characterized in terms
of solvability of the so-called regulator equations [4]. More
recently, the output regulation problem for finite-dimensional
delay systems was solved using an internal model based
controller in [5] and using state predictors in [6].

In this paper we employ the operator theoretic methods
used in [7], [8], [9] to study infinite-dimensional time-delay
systems, such as linear partial differential equations with
delays. As our main result we show that the output regu-
lation problem is solvable with an error feedback controller
with delays if and only if the infinite-dimensional regulator
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equations

ΣS =

r∑
j=0

AejΣTS(−τj) +Be (3a)

0 =

r∑
j=0

CejΣTS(−τj) +De (3b)

have a solution Σ ∈ L(W,Xe). Here ((Aej), Be, (Cej), De)
are the parameters of the closed-loop system consisting of the
plant and the controller, and TS(t) is the strongly continuous
group generated by the system operator S of the exosystem.
Our results generalize the characterization of the solvability
of the output regulation presented in [3] in the case of finite-
dimensional time-delay systems. Our results also allow the
exosystem (2) to be an infinite-dimensional system. This
generalization facilitates the study of nonsmooth periodic and
almost periodic reference and disturbance signals [10].

The characterization of the solvability of the output reg-
ulation problem in terms of the solvability of (3) is based
on the property that the solution of (3a) describes the steady
state behaviour of the closed-loop system. If the system (1),
the exosystem and the controller are finite-dimensional, the
equation (3a) has a solution whenever the closed-loop system
is stable and the eigenvalues of S have nonnegative real
parts [3], [11]. For infinite-dimensional systems — and
especially for infinite-dimensional exosystems — the solv-
ability of the operator equation (3a) becomes an interesting
mathematical problem. In this paper we present various
sufficient conditions for the existence and uniqueness of
solutions of (3a). We in particular show that (3a) has a unique
solution whenever the closed-loop system is exponentially
stable and the system operator S of the exosystem is a
bounded operator.

The paper is organized as follows. In Section II we
introduce notation and present the standing assumptions on
the system, the exosystem, and the controller. In Section III
we formulate the output regulation problem and present our
main results concerning its solvability. Section IV is devoted
to the question of solvability of (3a). Section V contains
concluding remarks.

II. MATHEMATICAL PRELIMINARIES AND STANDING
ASSUMPTIONS

A. Notation

If X and Y are Banach spaces and A : X → Y is a linear
operator, we denote by D(A) and R(A) the domain and
range of A, respectively. The space of bounded linear oper-
ators from X to Y is denoted by L(X,Y ). If A : X → X ,



then σ(A) and ρ(A) denote the spectrum and the resolvent
set of A, respectively. For λ ∈ ρ(A) the resolvent operator is
R(λ,A) = (λ−A)−1. The inner product on a Hilbert space
and the dual pairing of a Banach space are denoted by 〈·, ·〉.
For an ordered set of operators (T0, . . . , Tr) we denote

T (λ) =

r∑
j=0

e−λτjTj .

B. The Plant

We assume the plant (1) is a time-delay system on a
Banach space X , A0 : D(A0) ⊂ X → X generates a
strongly continuous semigroup T0(t) on X , and Aj ∈ L(X)
for j ∈ {1, . . . , r}. The input and output operators are
assumed to be bounded in such a way that (Bj) ⊂ L(U,X),
Bd ∈ L(Ud, X), (Cj) ⊂ L(X,Y ), and (Dj) ⊂ L(U, Y )
where U , Ud, and Y are Banach spaces. Under these as-
sumptions the plant (1) has a well-defined mild solution [12,
Ch. II], [13].

The transfer function P (λ) (from û to ŷ) of the plant (1)
is given by

P (λ) = C(λ)R(λ,A(λ))B(λ) +D(λ),

for all λ ∈ C such that 0 ∈ ρ(λ−A(λ)).

C. The Exosystem

We assume the exosystem (2) on a Hilbert space W is
such that S generates a strongly continuous group TS(t) on
W , E ∈ L(W,Ud), and F ∈ L(W,Y ). We assume the
exosystem satisfies a “nondecay condition” which requires
that for any Q ∈ L(W,C)

lim
t→∞

QTS(t)v0 = 0 ∀v0 ∈W ⇔ Q = 0. (4)

In particular, any finite-dimensional exosystem with σ(S) ⊂
C+ has the property (4).

D. The Controller

The controller we consider is of the form

ż(t) =

r∑
j=0

Gj1z(t− τj) + G2e(t)

u(t) = Kz(t),

with z(0) = z0 ∈ Z and z(·) = zh ∈ L2(−τr, 0;Z) on a
Banach space Z. Here e(t) = y(t)− yref (t) is the regulation
error. We assume G01 generates a strongly continuous semi-
group on Z, Gj1 ∈ L(Z) for j ∈ {1, . . . , r}, G2 ∈ L(Y,Z),
and K ∈ L(Z,U).

Remark 2.1: We assume that the delays {τj}j are the
same for the state, the inputs, and the outputs of the system,
and for the controller state. This does not result in any loss
of generality since any of the operators Aj , Bj , Cj , Dj , and
Gj1 for j ∈ {1, . . . , r} may be chosen to be zero operators.

E. The Closed-Loop System

The closed-loop system with state xe(t) = (x(t), z(t))T

on Xe = X × Z is a system with only state and output
delays,

ẋe(t) =

r∑
j=0

Aejx(t− τj) +Bev(t), (5a)

e(t) =

r∑
j=0

Cejxe(t− τj) +Dev(t) (5b)

with xe(0) = xe0 = (x0, z0)T ∈ Xe, xe(·) = xeh =
(xh, zh)T ∈ L2(−τr, 0;Xe), and for j ∈ {0, . . . , r}

Aej =

[
Aj BjK

G2Cj Gj1 + G2DjK

]
, Cej =

[
Cj DjK

]
Be =

[
BdE
G2F

]
, De = F.

The operator Ae0 generates a strongly continuous semigroup
Te0(t) on Xe, and the rest of the operators are bounded.
Furthermore, we have Ce(λ) =

[
C(λ) D(λ)K

]
and

Ae(λ) =

[
A(λ) B(λ)K
G2C(λ) G1(λ) + G2D(λ)K

]
.

III. THE OUTPUT REGULATION PROBLEM

In this section we formulate the output regulation problem
and characterize its solvability in terms of the regulator
equations. In the study of output regulation with infinite-
dimensional exosystems, exponential closed-loop stability
may sometimes be unachievable. Because of this, we formu-
late the output regulation problem assuming strong stability
of the closed-loop, meaning that if v(t) ≡ 0, then for all
xe0 ∈ Xe, xeh ∈ L2(−τr, 0;Xe) the state xe(t) of the
closed-loop system (5) satisfies ‖xe(t)‖ → 0 as t → ∞. If
the closed-loop system is exponentially stable, i.e., if there
exist M,α > 0 such that for v(t) ≡ 0 we have

‖xe(t)‖ ≤Me−αt (‖xe0‖+ ‖xeh‖L2) ,

the proofs of the results show that also the convergence of the
regulation error happens at an exponential rate. In particular,
in this situation there exists M ′ > 0 such that

‖e(t)‖ ≤M ′e−αt (‖xe0‖+ ‖xeh‖L2 + ‖v0‖) .

The Output Regulation Problem: Choose the parameters of
the controller in such a way that the following are satisfied:

(a) The closed-loop system is strongly stable.

(b) For all xe0 ∈ Xe, xeh ∈ L2(−τr, 0;Xe), and v0 ∈ W
the regulation error decays to zero asymptotically, i.e.,
‖e(t)‖ → 0 as t→∞.

Theorem 3.1 below characterizes the solvability of the
output regulation problem in terms of the solvability of the



regulator equations

ΣS =

r∑
j=0

AejΣTS(−τj) +Be (6a)

0 =

r∑
j=0

CejΣTS(−τj) +De. (6b)

The theorem generalizes results in [3], [2], [11] for infinite-
dimensional systems with delays. Theorem 3.1 assumes the
solvability of the operator equation (6a). Later in Section IV
we present conditions for this assumption to be satisfied. In
particular, Theorem 3.1 is applicable whenever the closed-
loop system is exponentially stable and the exosystem (2) is
finite-dimensional.

Theorem 3.1: Assume that the closed-loop system is
strongly stable, (6a) has a solution Σ ∈ L(W,Xe) satis-
fying Σ(D(S)) ⊂ D(Ae0), and the exosystem satisfies the
nondecay condition (4). Then the following are equivalent.

(a) The controller solves the output regulation problem.

(b) The equations (6) have a solution Σ ∈ L(W,Xe)
satisfying Σ(D(S)) ⊂ D(Ae0).

Remark 3.2: Part (b) implies part (a) even if the exosys-
tem does not satisfy the nondecay condition (4).

The proof of Theorem 3.1 is based on the following
lemma.

Lemma 3.3: Assume the closed-loop system is strongly
stable, and assume (6a) has a solution Σ ∈ L(W,Xe)
satisfying Σ(D(S)) ⊂ D(Ae0). Then for all xe0 ∈ Xe,
xeh ∈ L2(−τr, 0;Xe) and v0 ∈ W the mild state of the
closed-loop system and the regulation error satisfy

‖xe(t)− Σv(t)‖ → 0 as t→∞,

‖e(t)− (

r∑
j=0

CejΣTS(−τj) +De)v(t)‖ → 0 as t→∞.

If the closed-loop system is exponentially stable, then the
above convergences happen at uniform exponential rates with
respect to ‖xe0‖, ‖xeh‖L2 , and ‖v0‖.

Proof: Denote ∆(t) = xe(t)− Σv(t) for all t ≥ −τr.
Then

∆(t) = Te0(t)xe0 +

r∑
j=1

∫ t

0

Te0(t− s)Ae1xe(s− τj)ds

+

∫ t

0

Te0(t− s)BeTS(s)v0ds− ΣTS(t)v0.

Similarly as in [8], [9] we can show that since Σ is the

solution of (6a), for every v0 ∈ D(S) we have∫ t

0

Te0(t− s)BeTS(s)v0ds

=

∫ t

0

Te0(t− s)(ΣS −Ae0Σ)TS(s)v0ds

−
r∑
j=1

∫ t

0

Te0(t− s)AejΣTS(s− τj)v0ds

= ΣTS(t)v0 − Te0(t)Σv0

−
r∑
j=1

∫ t

0

Te0(t− s)AejΣTS(s− τj)v0ds.

Since the operators on both sides of the equation are bounded
and since D(S) is dense in W , the formula also holds for all
v0 ∈W . Substituting the above expression into the formula
for ∆(t) we obtain

∆(t) = Te0(t)∆(0) +

r∑
j=1

∫ t

0

Te0(t− s)Aej∆(s− τj)ds.

Thus ∆(·) is the mild solution of the delay equation

∆̇(t) =

r∑
j=0

Aej∆(t− τj)

with ∆(0) ∈ Xe and ∆(·) ∈ L2(−τr, 0;Xe). Since the
closed-loop was assumed to be stable, we have ‖xe(t) −
Σv(t)‖ = ‖∆(t)‖ → 0 as t→∞ for all xe0, xeh and v0. A
direct computation shows that the corresponding regulation
error satisfies

e(t)−
( r∑
j=0

CejΣTS(−τj) +De

)
v(t) =

r∑
j=0

Cej∆(t− τj)

which immediately implies the second claim.
Proof of Theorem 3.1: If the equations (6) have a solu-

tion Σ ∈ L(W,Xe) satisfying Σ(D(S)) ⊂ D(Ae0), then
‖e(t)‖ → 0 as t→∞ follows immediately from Lemma 3.3
and (6b).

On the other hand, assume the controller solves the output
regulation problem and the exosystem satisfies the nondecay
condition (4). Let Σ ∈ L(W,Xe) satisfying Σ(D(S)) ⊂
D(Ae0) be a solution of (6a) and let Q0 ∈ L(Y,C), xe0,
and xeh be arbitrary. Lemma 3.3 implies that for all v0 ∈W

‖Q0(

r∑
j=0

CejΣTS(−τj) +De)v(t)‖

≤ ‖Q0‖‖e(t)‖

+ ‖Q0‖‖e(t)−
( r∑
j=0

CejΣTS(−τj) +De

)
v(t)‖ → 0

as t→∞. The nondecay condition (4) implies

Q0

( r∑
j=0

CejΣTS(−τj) +De

)
= 0,

and since Q0 ∈ L(Y,C) was arbitrary, we have that (6b)
holds. �



IV. SOLVABILITY OF THE EQUATION (6a)

In this section we present sufficient conditions for the
solvability of the equation

ΣS =

r∑
j=0

AejΣTS(−τj) +Be (7)

for different types of stability of the closed-loop system and
for different types of exosystems. Our first result shows that
the solution of (7) is unique whenever the closed-loop system
is weakly stable, i.e., when for v(t) ≡ 0 the state xe(t) of
the closed-loop system satisfies |Q0xe(t)| → 0 as t→∞ for
all xe0 ∈ Xe, xeh ∈ L2(−τr, 0;Xe), and Q0 ∈ L(Xe,C).

Lemma 4.1: It the closed-loop system is weakly stable
and the exosystem satisfies the nondecay condition (4),
then (7) can have at most one solution.

Proof: Let Σ1,Σ2 ∈ L(W,Xe) be two solutions of (7).
The difference ∆ = Σ1 − Σ2 satisfies

∆S =
r∑
j=0

Aej∆TS(−τj).

Let v0 ∈ W and Q0 ∈ L(Xe,C) be arbitrary. A direct
computation shows

∆TS(t)v0 − Te0(t)∆v0

−
r∑
j=1

∫ t

0

Te0(t− s)Aej∆TS(s− τj)v0ds

=

∫ t

0

Te0(t− s)(∆S −
r∑
j=0

Aej∆TS(−τj))TS(s)v0ds = 0,

and thus ∆TS(·)v0 is the mild solution of a delay differential
equation

ẋe(t) =

r∑
j=0

Aejxe(t− τj).

Since the closed-loop system was assumed to be weakly
stable, we have |Q0∆TS(t)v0| → 0 as t → ∞. Since this
is true for all v0 ∈ W , the nondecay condition (4) implies
Q0∆ = 0. Finally, since Q0 ∈ L(Xe,C) was arbitrary, we
must have ∆ = 0, and thus Σ1 = Σ2.

Theorem 4.2: Assume that S ∈ L(W ) and assume the
closed-loop is such that 0 ∈ ρ(λ−Ae(λ)) for all λ ∈ σ(S).
Then (7) has a unique solution Σ ∈ L(W,Xe) satisfying
R(Σ) ⊂ D(Ae0).

Proof: Let γ be a piecewise smooth closed positively
oriented curve (possibly consisting of multiple parts) such
that σ(S) lies inside γ and the points λ ∈ C for which
0 ∈ σ(λ − Ae(λ)) lie outside γ. We will show that the
operator Σ ∈ L(W,Xe) with R(Σ) ⊂ D(Ae0) defined by

Σv =

∫
γ

R(λ,Ae(λ))BeR(λ, S)vdλ, ∀v ∈W

is a solution of (7). Let v ∈ W and let γ′ be a piecewise
smooth closed positively oriented curve such that γ lies
inside γ′ and the points λ ∈ C for which 0 ∈ σ(λ−Ae(λ))
lie outside γ′. Denote Rλ = R(λ,Ae(λ)). For every j ∈

{1, . . . , r} the resolvent identity (λ − µ)R(λ, S)R(µ, S) =
R(µ, S)−R(λ, S) implies∫
γ

R(λ,Ae(λ))Be(e
−λτj − TS(−τj))R(λ, S)vdλ

=

∫
γ

RλBe(e
−λτj −

∫
γ′
e−µτjR(µ, S)dµ)R(λ, S)vdλ

=

∫
γ

RλBe

(
e−λτj −

∫
γ′

e−µτj

µ− λ
dµ

)
R(λ, S)vdλ

+

∫
γ′

∫
γ

e−µτj

µ− λ
RλBeR(µ, S)vdλdµ = 0.

Here the first term vanishes since
∫
γ′

e−µτj

µ−λ dµ = e−λτj , and
the inner integral of the second term is equal to zero since
λ→ e−µτj

µ−λ R(λ,Ae(λ))BeR(µ, S)v is analytic inside γ.
Since R(λ,Ae(λ)) is analytic inside γ and R(λ, S)S =

λR(λ, S)− I , the above equality implies

ΣSv −
r∑
j=0

AejΣTS(−τj)v =

∫
γ

RλBeR(λ, S)Svdλ

−
∫
γ

r∑
j=0

AejRλBeTS(−τj)R(λ, S)vdλ

=

∫
γ

(λ−
r∑
j=0

e−λτjAej)RλBeR(λ, S)vdλ = Bev.

Since v ∈W was arbitrary, Σ is a solution of (7).
To show that the solution is unique, assume Σ is a solution

of (7). Let λ ∈ ρ(S) such that 0 ∈ ρ(λ−Ae(λ)). Then

Σ(λ− S) = (λ−Ae(λ))Σ−Be

+

r∑
j=1

AejΣ(e−iωkτj − TS(−τj))

⇔ ΣR(λ, S) = R(λ,Ae(λ))Σ +R(λ,Ae(λ))BeR(λ, S)

+

r∑
j=1

R(λ,Ae(λ))AejΣ(TS(−τj)− e−iωkτj )R(λ, S).

Applying both sides of the above equation to v ∈ W and
integrating over γ yields

Σv =

∫
γ

RλBeR(λ, S)vdλ

+

r∑
j=1

∫
γ

RλAejΣ(TS(−τj)− e−iωkτj )R(λ, S)vdλ

=

∫
γ

RλBeR(λ, S)vdλ,

since the integrals in the sum vanish similarly as above.
Corollary 4.3: Assume the exosystem is finite-

dimensional and the closed-loop is exponentially stable.
Then (7) has a unique solution Σ ∈ L(W,Xe) satisfying
R(Σ) ⊂ D(Ae0).

Corollary 4.4: Assume S = diag(iω1, . . . , iωq), and 0 ∈
ρ(iωk − Ae(iωk)) for all k ∈ {1, . . . , q}. Then (7) has a



unique solution given by

Σv =

q∑
k=1

〈v, φk〉R(iωk, Ae(iωk))Beφk, v ∈W

where {φk}qk=1 is the Euclidean basis of W = Cq .
In the following theorem we assume the system operator

S of the infinite exosystem on W = `2(C) is of the form

Sv =
∑
k∈Z

iωk〈v, φk〉φk, (8a)

D(S) =
{
v ∈W

∣∣ (ωk〈v, φk〉)k ∈ `2(C)
}

(8b)

where (φk)k∈Z is an orthonormal basis of W .
Theorem 4.5: Assume W = `2(C), S is as in (8), and

the closed-loop is strongly stable in such a way that 0 ∈
ρ(iωk − A(iωk)) for all k ∈ Z. Then (7) has a solution
Σ ∈ L(W,Xe) satisfying R(Σ) ⊂ D(Ae0) if and only if

sup
‖x′e‖≤1

∑
k∈Z
|〈R(iωk, Ae(iωk))Beφk, x

′
e〉|

2
<∞. (9)

If the solution exists, then it is unique and given by

Σv =
∑
k∈Z
〈v, φk〉R(iωk, Ae(iωk))Beφk, v ∈W. (10)

Proof: Similarly as in [8, Lem. 6] the operator Σ :
W → Xe in (10) is bounded if and only if the condition (9)
is satisfied. Let λ ∈ ρ(Ae0) and denote Rλ = R(λ,Ae0)
and Rk = R(iωk, Ae(iωk)). For any v ∈ D(S) the identity
TS(−τj)∗φk = eiωkτjφk implies that Σ in (9) satisfies

R(λ,Ae0)Σ(S − λ)v =
∑
k∈Z
〈v, φk〉Rλ(iωk − λ)RkBeφk

=
∑
k∈Z
〈v, φk〉

[
−Rk +Rλ

r∑
j=0

e−iωkτjAejRk +Rλ

]
Beφk

= −Σv +Rλ

r∑
j=1

AejΣTS(−τj)v +RλBev.

Since v ∈ D(S) was arbitrary, we have Σ(D(S)) ⊂ D(Ae0)
and Σ is a solution of (7). Finally, by Lemma 4.1 the solution
is unique.

Corollary 4.6: Consider the infinite-dimensional exosys-
tem (8), and assume (Eφk)k∈Z ∈ `2(X), (Fφk)k∈Z ∈
`2(Y ), and supk∈Z‖R(iωk, Ae(iωk))‖ < ∞. Then (7) has
a unique solution Σ ∈ L(W,Xe) satisfying Σ(D(S)) ⊂
D(Ae0) and given by the formula (10).

V. CONCLUSIONS

In this paper we have studied the output regulation prob-
lem for a infinite-dimensional time-delay systems. Our main
interest has been in characterizing the solvability of the con-
trol problem using a dynamic error feedback controller with
state delays. The most important topic for future research
is the construction of controllers for output tracking and
disturbance rejection.
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