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STABILITY AND ROBUST REGULATION OF PASSIVE LINEAR
SYSTEMS∗

LASSI PAUNONEN†

Abstract. We study the stability of coupled impedance passive regular linear systems under
power-preserving interconnections. We present new conditions for strong, exponential, and non-
uniform stability of the closed-loop system. We apply the stability results to the construction of
passive error feedback controllers for robust output tracking and disturbance rejection for strongly
stabilizable passive systems. In the case of nonsmooth reference and disturbance signals we present
conditions for nonuniform rational and logarithmic rates of convergence of the output. The results
are illustrated with examples on designing controllers for linear wave and heat equations, and on
studying the stability of a system of coupled partial differential equations.
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1. Introduction. In this paper we study the stability properties and control of
regular linear systems [43] of the form1

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X,(1.1a)

y(t) = CΛx(t) +Du(t)(1.1b)

on a Hilbert space X , where u(t) is the input of the system and y(t) is the output.
Our main interest is in systems that are impedance passive [10, 38, 40] (or passive for
short) in the sense that their solutions satisfy

d

dt
‖x(t)‖2 ≤ 2Re〈u(t), y(t)〉, t > 0.

Passive systems are encountered especially in the study of mechanical or electrical
systems modeled with partial differential equations. In particular, (1.1) is impedance
passive if A generates a contraction semigroup, B and C are bounded operators,
C = B∗, and ReD ≥ 0.

The paper consists of two main parts. In the first part we focus on the stability
of the coupled system consisting of (1.1) and another passive regular linear system

ż(t) = Acz(t) +Bcuc(t), z(0) = z0 ∈ Z,(1.2a)

yc(t) = CcΛz(t) +Dcuc(t)(1.2b)

with D∗
c = Dc under a power-preserving interconnection where

u(t) = yc(t), uc(t) = −y(t).
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We study the stability of the resulting closed-loop system

ẋe(t) = Aexe(t), xe(0) = xe0 ∈ Xe(1.3)

on the Hilbert space Xe = X × Z. The notation (Ac, Bc, Cc, Dc) and our results
on the closed-loop stability are motivated by the second part of the paper where we
study robust output tracking and disturbance rejection for the system (1.1). In this
situation (1.2) is an unstable dynamic feedback controller. However, our results are
also applicable when the roles of the systems are reversed, i.e., when (1.2) is a system
to be controlled and (1.1) is the controller, and they can also be used to study the
stability of systems of partial differential equations coupled on the boundary or inside
the domain. Our main interest is in the situation where Ac has a countable number
of spectral points on the imaginary axis.

We study (1.3) in terms of the stability properties of the strongly continuous semi-
group Te(t) generated by Ae : D(Ae) ⊂ Xe → Xe. As our main results we introduce
conditions under which the semigroup Te(t) is exponentially stable, strongly stable, or
nonuniformly stable [7, 36]. Among these, exponential stability is the strongest form
of stability. However, in certain control applications exponential stability is unachiev-
able, and many partial differential equations and coupled systems are known to lack
exponential decay of energy. These situations arise especially in wave equations with
partial damping and in coupled hyperbolic-parabolic systems [49, 6]. Recently many
such coupled systems have been shown to be polynomially stable [25, 7, 8], which
means that the classical solutions of the system decay at rational rates, i.e., for some
constants Me, α, t0 > 0

‖Te(t)xe0‖ ≤ Me

t1/α
‖Aexe0‖, xe0 ∈ D(Ae), t ≥ t0.

In this paper we introduce new results for studying polynomial and the more general
nonuniform stability for coupled passive abstract linear systems (1.1) and (1.2).

Strong and exponential closed-loop stabilities of infinite-dimensional systems have
been studied in the literature for passive one-dimensional boundary control sys-
tems [41, 33], coupled systems with collocated inputs and outputs [16], and passive
systems coupled with finite-dimensional systems [50]. Polynomial stability of cou-
pled systems has been studied extensively in the context of coupled linear partial
differential equations [3, 1, 6, 2] and for abstract hyperbolic-parabolic systems [22].

In the second part of the paper we study the robust output regulation problem
where the aim is to design a controller in such a way that the output y(t) of the sys-
tem (1.1) converges to a given reference signal yref (t) asymptotically in the sense that

‖y(t)− yref (t)‖ → 0, t → ∞,

despite possible external disturbance signals wdist (t). In addition, the controller is
required to be robust in the sense that it should achieve output tracking even if the
parameters (A,B,CΛ, D) experience small changes or contain uncertainties. This con-
trol problem has been studied actively in the literature for various classes of infinite-
dimensional linear systems [48, 26, 19, 35, 23, 20, 31, 42] including regular linear
systems [45, 9, 32, 47, 29, 30] and passive systems [35].

The robust output regulation problem can be solved with a dynamical error feed-
back controller of the form

ż(t) = Acz(t) +Bc(yref (t)− y(t)), z(0) = z0 ∈ Z,(1.4a)

u(t) = CcΛz(t) +Dc(yref (t)− y(t)).(1.4b)
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One of the fundamental results of the theory, the internal model principle [17, 15,
31, 32], implies that robust output tracking can be achieved by including a suitable
number of copies of the frequencies {ωk}k∈I of yref (t) and wdist (t) into the dynamics of
the controller and using the remaining parameters of (1.4) to stabilize the closed-loop
system. While the inclusion of the internal model is both necessary and sufficient for
robustness, the resulting closed-loop can be stabilized in various ways. Under fairly
general assumptions the closed-loop stability can be achieved with observer-based
design methods [20, 29] leading to infinite-dimensional controllers. If the system (1.1)
can be stabilized exponentially with output feedback and if yref (t) and wdist (t) contain
a finite number of frequencies, then Ac can be chosen to be minimal in the sense that
it contains only the internal model, and the closed-loop system can be stabilized with
suitable choices of Bc and Cc [26, 19, 35]. It was shown in [35, Thm. 1.2] that if (1.1) is
passive and exponentially stabilizable, then robust output regulation can be achieved
in a natural way using a minimal passive controller (1.4).

In this paper we extend the passive controller design presented in [35]. We present
a robust passive controller for systems (1.1) that are not exponentially stablizable, but
only strongly stabilizable. Such systems are encountered, for example, in control of
wave equations, as illustrated in section 6. Moreover, our design methods allow con-
sidering nonsmooth periodic reference and disturbance signals with infinite numbers
of frequencies. In earlier references, the robust output regulation of nonsmooth sig-
nals has only been achieved using an observer in the controller [20, 30]. We solve this
problem with two new robust controllers having the property that Ac contains only
the internal model of the reference and disturbance signals. These controllers achieve
either exponential, polynomial, or nonuniform closed-loop stability depending on the
properties of the system (1.1) and the choices of the controller’s parameters. In the
case of nonuniform closed-loop stability we present nonuniform rates of convergence
for the output y(t) for sufficiently smooth yref (·) and wdist (·).

One of the passive controllers presented in this paper is based on a transport
equation with boundary control and observation, and under suitable assumptions on
the system (1.1) (in general requiring D �= 0) the controller achieves robust output
regulation of all τ -periodic reference and disturbance signals with exponential conver-
gence rate of the output. This structure is related to the controllers used in repetitive
control [21, 45] and in [23].

The paper is organized as follows. In section 2 we state the main standing assump-
tions. The results on stability of the closed-loop system are presented in section 3.
In section 4 we formulate the robust output regulation problem, and the results on
construction of robust controllers are presented in section 5. In section 6 we illustrate
the controller construction for concrete partial differential equations, including two
one-dimensional wave equations and a two-dimensional heat equation. Appendix A
collects helpful lemmata that are used throughout the paper.

2. Notation and definitions. If X and Y are Banach spaces and A : X → Y is
a linear operator, we denote by D(A), N (A) and R(A) the domain, kernel, and range
of A, respectively. The space of bounded linear operators from X to Y is denoted by
L(X,Y ). If A : X → X , then σ(A) and ρ(A) denote the spectrum and the resolvent set
of A, respectively. For λ ∈ ρ(A) the resolvent operator is R(λ,A) = (λ −A)−1. The
inner product on a Hilbert space is denoted by 〈·, ·〉. For T ∈ L(X) on a Hilbert space
X we define ReT = 1

2 (T + T ∗). The Moore–Penrose pseudoinverse of T ∈ L(X,Y )
is denoted by T †. For two functions f : I ⊂ R → X and g : R+ → R+ we write
‖f(t)‖ = O(g(|t|)) if there exist Mg, Tg > 0 such that ‖f(t)‖ ≤ Mgg(|t|) whenever
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|t| ≥ Tg. We denote f(t) � g(t) and fk � gk if there exist M1,M2 > 0 such that
f(t) ≤ M1g(t) and fk ≤ M2gk for all values of the parameters t and k.

In sections 4 and 5 we also consider the system (1.1) on a Hilbert space X with
an additional disturbance signal input wdist (t), i.e.,

ẋ(t) = Ax(t) +Bu(t) +Bdwdist (t), x(0) = x0 ∈ X,(2.1a)

y(t) = CΛx(t) +Du(t).(2.1b)

Throughout the paper the operators B ∈ L(U,X−1), Bd ∈ L(Ud, X−1), and C ∈
L(X1, Y ) are admissible [39, sec. 4] with respect to the semigroup T (t) generated by
A : D(A) ⊂ X → X . Here U , Ud, and Y are Hilbert spaces, the space X1 = D(A)
is equipped with the graph norm of A, and X−1 is the completion of X with respect
to the norm ‖x‖−1 = ‖R(λ0, A)x‖, where λ0 ∈ ρ(A) is arbitrary and fixed. We
assume that the system (A, [B,Bd], CΛ, D) in (2.1) with input (u(t), wdist (t)) ∈ U ×
Ud and output y(t) ∈ Y is a regular linear system [43, sec. 5]. We denote XB =
D(A) + R(R(λ0, A)B) and XB,Bd

= D(A) + R(R(λ0, A)[B,Bd]). The Λ-extension
of C is CΛx = limλ→∞ λCR(λ,A)x, where D(CΛ) consists of those x ∈ X for which
the limit exists. The regularity of (2.1) implies that R(R(λ,A)B) ⊂ D(CΛ) and
R(R(λ,A)Bd) ⊂ D(CΛ) for all λ ∈ ρ(A) and that the transfer functions P (·) : û �→ ŷ
and Pd(·) : ŵdist �→ ŷ have the formulas

P (λ) = CΛR(λ,A)B +D, Pd(λ) = CΛR(λ,A)Bd.

Throughout the paper we assume that Y = U and that (A,B,CΛ, D) is imped-
ance passive [10, 38, 40], which is equivalent to the property that Re〈Ax +Bu, x〉 ≤
Re〈CΛx +Du, u〉 for all x ∈ X and u ∈ U satisfying Ax + Bu ∈ X [38, Thm. 4.2].
Under this assumption the semigroup T (t) generated by A is contractive, ReD ≥ 0,
and ReP (λ) ≥ 0 for all λ ∈ C+. (Such transfer functions are called positive.)

We frequently use the following operator identity (see, e.g., [46, Proof of Thm. 1.2]).
For completeness, we give a proof of the lemma in Appendix A.

Lemma 2.1. Let (A,B,CΛ, D) be a regular linear system and let Q ∈ L(Y, U)
be invertible. If λ ∈ ρ(A) and if Q−1 + CΛR(λ,A)B is boundedly invertible, then
λ ∈ ρ(A−BQCΛ) and

R(λ,A−BQCΛ) = R(λ,A) −R(λ,A)B(Q−1 + CΛR(λ,A)B)−1CΛR(λ,A),

where D(A− BQCΛ) = { x ∈ D(CΛ) | (A−BQCΛ)x ∈ X }.
The system (1.2) is assumed to be another impedance passive regular linear system

on a Hilbert space Z with D∗
c = Dc. The scale spaces Z1 and Z−1 are defined

analogously as X1 and X−1. We define ZBc = D(Ac) + R(R(λ0, Ac)Bc) for some
λ0 ∈ ρ(Ac) and denote the Λ-extension of Cc by CcΛ. The passivity implies that
Re〈Acz+Bcy, z〉 ≤ Re〈Ccz+Dcy, y〉 for all z ∈ Z and y ∈ Y satisfying Acz+Bcy ∈ Z,
and we have Dc ≥ 0. We denote the transfer function of (Ac, Bc, Cc, Dc) with

G(λ) = CcΛR(λ,Ac)Bc +Dc, λ ∈ ρ(Ac).

Our assumption Dc ≥ 0 simplies the analysis of the admissibility of output feedbacks
of the two passive systems (1.1) and (1.2). However, many of the results also hold in
the situation where ReDc ≥ 0 as long as the appropriate feedback operators remain
admissible, which is the case, e.g., if ‖Dc −D∗

c‖ is sufficently small.
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3. Stability of coupled passive systems. In this section we present our main
results on the stability of the closed-loop system associated to the power-preserving
interconnection of (1.1) and (1.2). Lemma 4.2 in section 4 shows that the system
operator Ae of the closed-loop system

ẋe(t) = Aexe(t), xe(0) = xe0 = (x0, z0)
T ∈ Xe

is given by

Ae =

[
A−BDcQ1CΛ BQ2CcΛ

−BcQ1CΛ Ac −BcQ1DCcΛ

]
,(3.1a)

D(Ae) =

{[
x
z

]
∈ XB × ZBc

∣∣∣∣ (A−BDcQ1CΛ)x+BQ2CcΛz ∈ X
−BcQ1CΛx+ (Ac −BcQ1DCcΛ)z ∈ Z

}
,(3.1b)

where Q1 = (I +DDc)
−1 and Q2 = (I +DcD)−1, and that Ae generates a strongly

continuous contraction semigroup Te(t) on Xe.

Remark 3.1. Our results assume that (1.1) is stable and its transfer function
P (λ) satisfies certain additional conditions. However, the results are also immedi-
ately applicable when (1.1) is unstable but can be stabilized with a suitable out-
put feedback. Indeed, if Dc > 0, we can write Dc = Dc1 + Dc2 with Dc1 ≥ 0
and Dc2 > 0. Lemma A.1(d) implies that u(t) = −Dc2y(t) with Dc2 > 0 is an
admissible feedback for (A,B,CΛ, D) and the resulting system (AS , BS , CS

Λ , D
S) =

(A−BDc2Q
S
1CΛ, BQS

2 , Q
S
1CΛ, Q

S
1D) withQS

1 = (I+DDc2)
−1 andQS

2 = (I+Dc2D)−1

is regular [43]. A direct computation shows that

Ae =

[
AS −BSDc1Q3C

S
Λ BSQ4CcΛ

−BcQ3C
S
Λ Ac −BcQ3D

SCcΛ

]
.

Since this operator has exactly the same form as the original Ae, in each of our results
it is possible to replace (A,B,CΛ, D) with the stabilized system (AS , BS , CS

Λ , D
S),

the transfer function P (λ) with PS(λ) = CS
ΛR(λ,AS)BS +DS , and the feedthrough

operator Dc ≥ 0 with Dc1 ≥ 0. It is important to note that if P (λ) is invertible and
ReP (λ) ≥ 0 for some λ ∈ ρ(A), then for any Dc2 > 0 we have RePS(λ) > 0.

3.1. Strong stability. The following theorem presents sufficient conditions for
the strong stability of the closed-loop system.

Theorem 3.2. Assume (A,B,CΛ, D) is passive and strongly stable in such a way
that iR ⊂ ρ(A). Moreover, assume (Ac, Bc, CcΛ, Dc) is passive, Dc ≥ 0, and the
following hold for some I ⊂ Z:

(1) σ(Ac) ∩ iR = {iωk}k∈I and ReP (iωk) > 0 for all k ∈ I.
(2) I + P (iω)G(iω) has a bounded inverse for every ω ∈ R \ {ωk}k∈I for which

ReG(iω) is not boundedly invertible.

(3) {iωk}k∈I ⊂ ρ(Ac −BcD0(I +DcD0)
−1CcΛ) whenever ReD0 > 0.

Then iR ⊂ ρ(Ae) and the closed-loop system is strongly stable.
Assume in addition that I ⊂ Z is finite, (A,B,CΛ, D) is exponentially stable, and

sup|ω|≥R‖R(iω,Ac)‖ < ∞ for some R > 0. If either lim sup|ω|→∞‖G(iω)P (iω)‖ < 1
or ReP (iω) ≥ η(ω) ≥ 0 and ReG(iω) ≥ dc(ω) ≥ 0 such that η(ω) + dc(ω) ≥ η0 > 0
for some constant η0 > 0 and for all sufficiently large |ω|, then the closed-loop system
is exponentially stable.



3832 LASSI PAUNONEN

Proof. We begin by showing that iR ⊂ ρ(Ae). Since the semigroup generated by
Ae is uniformly bounded by Lemma 4.2, the strong stability of Te(t) then follows from
the Arendt–Batty–Lyubich–Vũ Theorem [4, 27].

Lemma A.1(d) implies that u(t) = −Dcy(t) is an admissible output feedback for
(A,B,CΛ, D), and by [43] the resulting system (Acl, Bcl, Ccl

Λ , Dcl) = (A−BDcQ1CΛ,
BQ2, Q1CΛ, Q1D) is regular. The assumption iR ⊂ ρ(A) and Lemma A.3 imply
iR ⊂ ρ(Acl), and by Lemma A.1(d) the transfer function Pcl(λ) is given by Pcl(iω) =
P (iω)(I + DcP (iω))−1 for all ω ∈ R. If ω ∈ R and if we denote Riω = R(iω,Acl),
then iω −Ae has a bounded inverse given by

R(iω,Ae) =

[
Riω −RiωB

clCcΛSA(iω)
−1BcC

cl
ΛRiω RiωB

clCcΛSA(iω)
−1

−SA(iω)
−1BcC

cl
ΛRiω SA(iω)

−1

]

provided that the Schur complement

SA(iω) = iω −Ac +BcD
clCcΛ +BcC

cl
ΛR(iω,Acl)BclCcΛ

= iω −Ac +BcP (iω)(I +DcP (iω))−1CcΛ

with domain D(SA(iω)) = { z ∈ D(CcΛ) | SA(iω)z ∈ Z } has a bounded inverse. If
ω = ωn for some n ∈ I, then ReP (iωn) > 0 and assumption (3) imply that SA(iωn)
is boundedly invertible. Thus {iωk}k∈I ⊂ ρ(Ae).

Now let ω ∈ R \ {ωk}k∈I . If ReG(iω) �> 0, then I +G(iω)P (iω) is invertible by
condition (2) of the theorem. By Lemma A.1(a) the same is also true if ReG(iω) > 0,
since I +G(iω)P (iω) = G(iω)(G(iω)−1 + P (iω)). Because

I +DcP (iω) + CcΛR(iω,Ac)BcP (iω) = I +G(iω)P (iω),

Lemma 2.1 implies that SA(iω) has a bounded inverse

SA(iω)
−1 = R(iω,Ac)

[
I−BcP (iω)(I+G(iω)P (iω))−1CcΛR(iω,Ac)

]
.(3.2)

Thus iω ∈ ρ(Ae) also for all ω ∈ R\{ωk}k∈I . Since the semigroup Te(t) is contractive,
the closed-loop system is strongly stable.

Finally, assume that I ⊂ Z is finite, (A,B,CΛ, D) is exponentially stable, and
sup|ω|≥R‖R(iω,Ac)‖ < ∞ for some R > 0. The stability and regularity of
(A,B,CΛ, D) imply that the norms ‖R(·, A)‖, ‖R(·, A)B‖, ‖CΛR(·, A)‖, and ‖P (·)‖
are uniformly bounded on iR. Similarly the regularity of the controller implies that
‖R(iω,Ac)‖, ‖R(iω,Ac)Bc‖, ‖CcΛR(iω,Ac)‖, and ‖CcΛR(iω,Ac)Bc‖ are uniformly
bounded with respect to ω ∈ R with |ω| ≥ R. If lim sup|ω|→∞‖G(iω)P (iω)‖ < 1

the norms ‖P (iω)(I + G(iω)P (iω))−1‖ are uniformly bounded for large |ω|. On
the other hand, if η(ω) + dc(ω) ≥ η0 > 0, then Lemma A.1(b) implies ‖P (iω)(I +
G(iω)P (iω))−1‖ � η−1

0 . Thus (3.2) implies that ‖R(iω,Ae)‖ is uniformly bounded
for large |ω|. Since iR ⊂ ρ(Ae) and Te(t) is contractive, the closed-loop system is
exponentially stable.

Remark 3.3. Condition (2) is in particular satisfied if ReG(iω) > 0 for all ω ∈
R \ {ωk}k∈I . Moreover, if ReG(iω) ≥ dc > 0 for some constant dc > 0 and for all
ω ∈ R \ {ωk}k∈I , then ‖P (iω)(I +G(iω)P (iω))−1‖ ≤ d−1

c for all ω ∈ R \ {ωk}k∈I by
Lemma A.1(b).

The proof of Theorem 3.2 can also be adapted to show that if ReP (iω) > 0 for
all ω ∈ R, then Te(t) is strongly stable and iR ⊂ ρ(Ae) even without assumption (2).
Indeed, if ω ∈ R \ {ωk}k∈I and ReP (iω) > 0, then Lemma A.1(a) implies that P (iω)
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and I +G(iω)P (iω) = (P (iω)−1+G(iω))P (iω) are boundedly invertible, and SA(iω)
has the bounded inverse given by the formula (3.2). Thus we again have iω ∈ ρ(Ae).
Lemma A.1(b) also shows that if η(ω) > 0 is such that ReP (iω) ≥ η(ω) > 0, then
‖P (iω)(I +G(iω)P (iω))−1‖ ≤ η(ω)−1‖P (iω)‖2.

The following lemma provides a sufficient condition for the assumption (3) in
Theorem 3.2 for isolated spectral points under a suitable observability property.

Lemma 3.4. Assume (Ac, Bc, CcΛ, Dc) is passive with Dc ≥ 0. Assume further
that iωk ∈ σ(Ac) is an isolated spectral point and Ac has a spectral decomposition
Ac = A0

c + Ac
c according to Z = N (iωk − Ac) ⊕ N (iωk − Ac)

⊥ so that iωk ∈ ρ(Ac
c),

and there exists γ > 0 such that ‖CcΛz‖ ≥ γ‖z‖ for all z ∈ N (iωk − Ac). Then
iωk ∈ ρ(Ac −BcD0(I +DcD0)

−1CcΛ) for any D0 ∈ L(U) with ReD0 > 0.

Proof. Let D0 ∈ L(U) be such that ReD0 ≥ d0 > 0 and denote D1 = D0(I +
DcD0)

−1. Due to the passivity of (Ac, Bc, CcΛ, Dc) and [5, Cor. 4.3.2] we have iωk ∈
σ(Ac −BcD1CcΛ) provided that ‖(iωk −Ac +BcD1CcΛ)z‖ ≥ c‖z‖ for some constant
c > 0 and for all z ∈ D(Ac−BcD1CcΛ) ⊂ ZBc . Let z ∈ D(Ac−BcD1CcΛ) and denote
y = (iωk −Ac +BcD1CcΛ)z. The passivity of (Ac, Bc, CcΛ, Dc) implies

Re〈y, z〉 = −Re〈Acz +Bc(−D1CcΛz), z〉 ≥ Re〈CcΛz −DcD1CcΛz,D1CcΛz〉
= Re〈(I+DcD0)

−1CcΛz,D0(I+DcD0)
−1CcΛz〉≥ d0‖I +DcD0‖−2‖CcΛz‖2.

Thus ‖CcΛz‖2 � ‖z‖‖y‖. Write z = zk + zc according to the decomposition Z =
N (iωk − Ac) ⊕ N (iωk − Ac)

⊥. If we apply R1 = R(iωk + 1, Ac) to both sides of
y = (iωk −Ac +BcD1CcΛ)z and use R1z

k ∈ N (iωk −Ac) we obtain

(iωk −Ac
c)R1z

c = R1y −R1BcD1CcΛz.(3.3)

Since R1Bc ∈ L(U,Z) and iωk − Ac
c is boundedly invertible by assumption, we have

‖R1z
c‖2 � ‖(iωk −Ac

c)R1z
c‖2 � ‖y‖2 + ‖CcΛz‖2 � ‖y‖2 + ‖z‖‖y‖. Moreover, (iωk −

Ac)R1z
c = zc −R1z

c and ‖zc‖ ≤ ‖z‖ together with (3.3) further imply

‖zc‖2 = ‖R1z
c +R1y −R1BcD1CcΛz‖2

� ‖R1z
c‖2 + ‖y‖2 + ‖CcΛz‖2 � ‖y‖2 + ‖z‖‖y‖

‖CcΛz
c‖2 = ‖CcΛR1(z

c + y)− CcΛR1BcD1CcΛz‖2

� ‖zc‖2 + ‖y‖2 + ‖CcΛz‖2 � ‖y‖2 + ‖z‖‖y‖.

Finally, since ‖zk‖2 ≤ γ−2‖CcΛz
k‖2 � γ−2(‖CcΛz‖2 + ‖CcΛz

c‖2) � ‖y‖2 + ‖z‖‖y‖,
we have ‖z‖2 = ‖zk‖2 + ‖zc‖2 � ‖y‖2 + ‖z‖‖y‖, and thus also ‖z‖ � ‖y‖.

3.2. Exponential stability. The following theorem presents sufficient condi-
tions for exponential stability of the closed-loop system. The transfer function P (iω)
is allowed to be noninvertible for some values ω ∈ R (i.e., the system (A,B,CΛ, D)
may have “transmission zeros” on iR), but such points must be uniformly disjoint
from the spectrum of Ac. It should be noted that the result also remains valid if
the conditions are satisfied for Ω = R. Condition (2) is in particular satisfied if
ReG(iω) ≥ dc > 0 for some constant dc > 0 and for all ω ∈ R \ Ω. Here exponential
stabilizability and exponential detectability of a regular linear system are defined as
in [34, Defs. 1.4–1.5] and [44, sec. III].

Theorem 3.5. Assume (A,B,CΛ, D) is passive and exponentially stable, ReD >
0, and there exist Ω ⊂ R and η0 > 0 such that ReP (iω) ≥ η0 > 0 for all ω ∈ Ω.
Moreover, assume (Ac, Bc, CcΛ, Dc) is passive, Dc ≥ 0, and the following hold:
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(1) σ(Ac) ∩ iR ⊂ iΩ and supω∈R\Ω‖R(iω,Ac)‖ < ∞.

(2) Let η(·), dc(·) : R \ Ω → [0, 1] be such that ReP (iω) ≥ η(ω) ≥ 0 and
ReG(iω) ≥ dc(ω) ≥ 0 for all ω ∈ R \ Ω. Assume there exist 0 < δ < 1
and η1 > 0 such that for each ω ∈ R \ Ω either ‖G(iω)P (iω)‖ ≤ δ < 1 or
η(ω) + dc(ω) ≥ η1 > 0.

(3) The system (Ac, Bc, CcΛ, Dc) is exponentially stabilizable and detectable.
Then the closed-loop system is exponentially stable.

Proof. Our aim is to show iR ⊂ ρ(Ae) and supω∈R‖R(iω,Ae)‖ < ∞. First let
ω ∈ R \Ω. The proof of Theorem 3.2 shows that SA(iω) has an inverse

SA(iω)
−1 = R(iω,Ac)

[
I −BcP (iω)(I +G(iω)P (iω))−1CcΛR(iω,Ac)

]
.

If ‖G(iω)P (iω)‖ ≤ δ < 1, then ‖P (iω)(I +G(iω)P (iω))−1‖ ≤ ‖P (iω)‖/(1− δ), and
if η(ω) + dc(ω) ≥ η1 > 0, Lemma A.1(b) implies ‖P (iω)(I + G(iω)P (iω))−1‖ ≤
η−1
1 max{1, ‖P (iω)‖}. Assumption (1) and the admissiblity of Bc and Cc imply iR \
iΩ ⊂ ρ(Ae) and supω∈R\Ω‖R(iω,Ae)‖ < ∞.

It remains to consider ω ∈ Ω. We decompose D into two parts D = μD+νD with
μ ∈ (0, 1) and ν = 1− μ in such a way that the first part stabilizes (Ac, Bc, CcΛ, Dc)
exponentially and the second part can be used to show closed-loop stability. Indeed,
for any μ ∈ (0, 1) the transfer function of the system (Aμ

c , B
μ
c , C

μ
cΛ, D

μ
c ) obtained from

(Ac, Bc, CcΛ, Dc) with the admissible output feedback uc(t) = −μDyc(t) is given by
G(λ)(I+μDG(λ))−1. Since ReD > 0, this transfer function is uniformly bounded on
C+ by Lemma A.1(b), and since (Aμ

c , B
μ
c , C

μ
cΛ, D

μ
c ) is exponentially stabilizable and

detectable due to assumption (3), the semigroup generated by Aμ
c is exponentially

stable [34, Cor. 1.8].
For all sufficiently small μ ∈ (0, 1) the transfer function Pν(λ) of (A,B,CΛ, νD)

satisfies RePν(iω) ≥ η̃0 > 0 for some constant η̃0 > 0 and for all ω ∈ Ω. Since
Dμ

c = Dc(I + μDDc)
−1, Lemmas A.1 and A.2 imply that we can choose μ ∈ (0, 1)

so that I + νDDμ
c and I + Pν(iω)D

μ
c for all ω ∈ Ω are invertible, and supω∈Ω‖(I +

Pν(iω)D
μ
c )

−1‖ < ∞. Thus u(t) = −Dμ
c y(t) is an admissible output feedback for

(A,B,CΛ, νD). Denoting the resulting regular linear system with (Aμ, Bμ, Cμ
Λ, D

μ) =
(A − BDμ

cQ
μ
5CΛ, BQμ

6 , Q
μ
5CΛ, νQ

μ
5D), where Qμ

5 = (I + νDDμ
c )

−1 and Qμ
6 = (I +

νDμ
cD)−1, we can write

Ae =

[
A−BDμ

cQ
μ
5CΛ BQμ

6C
μ
cΛ

−Bμ
c Q

μ
5CΛ Aμ

c − νBμ
c Q

μ
5DCμ

cΛ

]
=

[
Aμ BμCμ

cΛ

−Bμ
c C

μ
Λ Aμ

c −Bμ
c D

μCμ
cΛ

]
.

Similarly as in Lemma A.3 we can show that supω∈Ω‖R(iω,Aμ)‖ < ∞ and the transfer
function of (Aμ, Bμ, Cμ

Λ, D
μ) satisfies Pμ(iω) = Pν(iω)(I+Dμ

c Pν(iω))
−1 for all ω ∈ Ω.

The transfer function of (Aμ
c , B

μ
c , C

μ
cΛ, D

μ
c ) is denoted by Gμ(λ).

Let ω ∈ Ω. If we denote Rμ
iω = R(iω,Aμ), then iω −Ae has a bounded inverse

R(iω,Ae) =

[
Rμ

iω −Rμ
iωB

μCμ
cΛS

μ
A(iω)

−1Bμ
c C

μ
ΛR

μ
iω Rμ

iωB
μCμ

cΛS
μ
A(iω)

−1

−Sμ
A(iω)

−1Bμ
c C

μ
ΛR

μ
iω Sμ

A(iω)
−1

]

provided that the Schur complement

Sμ
A(iω) = iω −Aμ

c +Bμ
c D

μCμ
cΛ +Bμ

c C
μ
ΛR(iω,Aμ)BμCμ

cΛ

= iω −Aμ
c +Bμ

c Pν(iω)(I +Dμ
c Pν(iω))

−1Cμ
cΛ

has a bounded inverse. If Sμ
A(iω) is boundedly invertible for all ω ∈ Ω, then the reg-

ularity of (Aμ, Bμ, Cμ
Λ, D

μ) and supω∈Ω‖R(iω,Aμ)‖ < ∞ imply supω∈Ω‖R(iω,Ae)‖ <



STABILITY AND ROBUST REGULATION OF PASSIVE SYSTEMS 3835

∞ provided that ‖Sμ
A(iω)

−1‖, ‖Sμ
A(iω)

−1Bμ
c ‖, ‖C

μ
cΛS

μ
A(iω)

−1‖, and ‖Cμ
cΛS

μ
A(iω)

−1Bμ
c ‖

are uniformly bounded with respect to ω ∈ Ω.
Let ω ∈ Ω be arbitrary. Since RePν(iω) ≥ η̃0 > 0 and ReGμ(iω) ≥ 0, Lemma A.1

implies that Pν(iω) and I+Gμ(iω)Pν(iω) = (Pν(iω)
−1+Gμ(iω))Pν(iω) are boundedly

invertible. Therefore the same is true for

I +Dμ
c Pν(iω) + Cμ

cΛR(iω,Aμ
c )B

μ
c Pν(iω) = I +Gμ(iω)Pν(iω).

Lemma 2.1 implies that Sμ
A(iω) has a bounded inverse

Sμ
A(iω)

−1 = R(iω,Aμ
c )
[
I −Bμ

c Pν(iω)(I +Gμ(iω)Pν(iω))
−1Cμ

cΛR(iω,Aμ
c )
]
,

where ‖Pν(iω)(I + Gμ(iω)Pν(iω))
−1‖ ≤ ‖Pν(iω)‖2/η̃0. Thus iω ∈ ρ(Ae). Since

supω∈R‖Pν(iω)‖ < ∞ and (Aμ
c , B

μ
c , C

μ
cΛ, D

μ
c ) is regular and exponentially stable, the

norms ‖Sμ
A(iω)

−1‖, ‖Sμ
A(iω)

−1Bμ
c ‖, ‖C

μ
cΛS

μ
A(iω)

−1‖, and ‖Cμ
cΛS

μ
A(iω)

−1Bμ
c ‖ are uni-

formly bounded with respect to ω ∈ Ω. This further implies that supω∈Ω‖R(iω,Ae)‖ <
∞, and the closed-loop system is exponentially stable.

Since both (A,B,CΛ, D) and (Ac, Bc, CcΛ, Dc) are exponentially stabilizable in
Theorem 3.5, the exponential closed-loop stability could alternatively be studied us-
ing [44, Prop. 4.6].

3.3. Nonuniform closed-loop stability. In this section we introduce condi-
tions for polynomial and nonuniform stability of the closed-loop system in the case
where Ac is diagonal. In addition, our main result can be used as an alternative
to Theorem 3.5 in showing exponential closed-loop stability. The closed-loop system
is said to be nonuniformly stable when Te(t) is uniformly bounded and iR ⊂ ρ(Ae)
but the norms ‖R(iω,Ae)‖ are not bounded with respect to ω ∈ R. If MR(·) is a
continuous nondecreasing function such that ‖R(iω,Ae)‖ ≤ MR(|ω|), then there exist
Me, c, t0 > 0 such that

‖Te(t)xe0‖ ≤ Me

MT (t)
‖Aexe0‖ ∀xe0 ∈ D(Ae), t ≥ t0,(3.4)

where the continuous nondecreasing function MT (·) : [0,∞) → (0,∞) is determined
by the results in [7, 8, 36]. In particular, if MR(ω) � 1 + ωα for some α > 0, we can
choose MT (t) = t1/α [8], and if MR(ω) � 1+ eαω for some α > 0, then we can choose
MT (t) = log(t)/α [7, Ex. 1.6].

In this section we assume (Ac, Bc, CcΛ, Dc) is regular and passive with Dc ≥ 0
on a Hilbert space Z =

⊗
k∈I Zk with norm ‖(zk)k‖2Z =

∑
k∈I‖zk‖2Zk

, where Zk are
Hilbert and I ⊂ Z is infinite. We assume Ac has the structure

Ac = diag(iωkIZk
)k∈I , D(Ac) =

{
(zk)k ∈ Z

∣∣∣∣∣
∑
k∈I

|ωk|2‖zk‖2Zk
< ∞

}
,(3.5)

where ωk �= ωl for k �= l and {ωk}k has no finite accumulation points. Since Ac is
skew-adjoint, the operators Bc ∈ L(Y, Z−1) and Cc ∈ L(Z1, Y ) are formally adjoint,
i.e., 〈Bcu, z〉−1,1 = 〈u,Ccz〉 for all z ∈ D(Ac) and u ∈ Y , and thus

Bcu = (Bcku)k∈I , and Ccz =
∑
k∈I

B∗
ckzk, z = (zk)k∈I ∈ D(Ac)

for some Bck ∈ L(Y, Zk). Our main result uses wavepackets of Ac [39, sec. 6.9].
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Definition 3.6. Let ω ∈ R and δ > 0. An element z = (zk)k∈I ∈ Z is a
(ω, δ)-wavepacket of Ac if zk = 0 for those k ∈ I for which |ω − ωk| ≥ δ.

The following theorem is the main result of this section. The role of Ωε ⊂ R

is to show that only the behavior of ReP (iω) near σ(Ac) = {iωk}k∈I affects the
asymptotic growth of ‖R(iω,Ae)‖. By [28, Cor. 2.17] δ(·) and γ(·) can be chosen as
constant functions if and only if (Ac, Bc) is exactly controllable. The assumption that
MR(·) : [0,∞) → (0,∞) has “positive increase” means that there exists α, c, ω0 > 0
such that MR(λω) ≥ cλαMR(ω) for all λ > 0 and ω ≥ ω0 [36, sec. 2], and this
condition is in particular satisfied if MR(·) grows polynomially or exponentially. The
estimation of ‖SA(iω)

−1‖ in the proof extends techniques developed in [12].

Theorem 3.7. Assume (A,B,CΛ, D) is passive and exponentially stable and the
system (Ac, Bc, CcΛ, Dc) is passive with Ac of form (3.5) and Dc ≥ 0. Assume further
that condition (2) of Theorem 3.5 is satisfied for Ω = Ωε := {ω ∈ R | ∃k ∈ I :
|ω−ωk| < ε } with some ε > 0 and that there exist continuous nonincreasing functions
η(·), δ(·), γ(·) : R+ → (0, 1] with the following properties:

• ReP (iω) ≥ η(|ω|) for all ω ∈ Ωε.

• ‖Ccz‖ ≥ γ(|ω|)‖z‖ for every ω ∈ R and every (ω, δ(|ω|))-wavepacket z of Ac.
Then Te(t) is strongly stable, iR ⊂ ρ(Ae), and

‖R(iω,Ae)‖ ≤ MR(|ω|), where MR(·) = M0η(·)−1γ(·)−2δ(·)−2

for some M0 > 0. Moreover, the following hold:
(a) If supω>0 MR(ω) < ∞, then Te(t) is exponentially stable.
(b) If MR(·) is strictly increasing and has positive increase, then (3.4) holds with

MT (t) = M−1
R (ct) for some constants Me, c, t0 > 0.

(c) For all other MR(·), (3.4) holds with MT (t) = M−1
log (ct) for some Me, c, t0 > 0,

where Mlog(ω) = MR(ω) (log(1 +MR(ω)) + log(1 + ω)) for ω > 0.

Proof. By Theorem 3.2 and Lemma 3.4 the closed-loop system is strongly stable
and iR ⊂ ρ(Ae). Once we show ‖R(iω,Ae)‖ ≤ MR(|ω|) the stability properties of
the closed-loop system follow from the characterization of exponential stability (part
(a)), from [36, Thm. 1.1] (part (b)), and from [7, Thm. 1.5] (part (c)).

Since (Acl, Bcl, Ccl
Λ , Dcl) is regular and exponentially stable by Lemma A.3, we

have from the proof of Theorem 3.2 that

‖R(iω,Ae)‖ � max{‖SA(iω)
−1‖, ‖SA(iω)

−1Bc‖, ‖CcΛSA(iω)
−1‖, ‖CcΛSA(iω)

−1Bc‖}

for ω ∈ R, where SA(iω) = iω − Ac + BcPcl(iω)CcΛ and Pcl(iω) = P (iω)(I +
DcP (iω))−1. Moreover, (3.2) and our assumptions imply supω∈R\Ωε

‖R(iω,Ae)‖ < ∞
similarly as in the proof of Theorem 3.5. Thus it is sufficient to show that for each
ω ∈ Ωε the norms ‖SA(iω)

−1‖, ‖SA(iω)
−1Bc‖, ‖CcΛSA(iω)

−1‖, ‖CcΛSA(iω)
−1Bc‖

are bounded by MR(|ω|) for some constant M0 > 0.
We begin by showing ‖CcΛSA(iω)

−1Bc‖ ≤ MR(|ω|). Formula (3.2) implies that
for all ω ∈ Ωε \ {ωk}k

CcΛSA(iω)
−1Bc = CcΛR(iω,Ac)Bc

[
I − (I + P (iω)G(iω))−1P (iω)CcΛR(iω,Ac)Bc

]
= (G(iω)−Dc)(I + P (iω)G(iω))−1(I + P (iω)Dc).

Since ReP (iω) > 0 and ReG(iω) ≥ 0, I + P (iω)G(iω) = P (iω)(P (iω)−1 +G(iω)) is
boundedly invertible by Lemma A.1(a). If we denote Q(iω) = (I + P (iω)G(iω))−1,
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the above formula and stability of (A,B,CΛ, D) implies

‖CcΛSA(iω)
−1Bc‖ = ‖(G(iω)−Dc)Q(iω)(I+P (iω)Dc)‖� ‖G(iω)Q(iω)‖+‖Q(iω)‖.

Here ‖G(iω)Q(iω)‖ ≤ η(|ω|)−1 by Lemma A.1(b). We claim that ‖Q(iω)‖ � η(|ω|)−1

for ω ∈ Ωε \ {ωk}k∈I . If this is not true, then (considering Q(iω)∗) there exist
sequences (sn)n ⊂ Ωε \ {ωk}k and (un)n ⊂ Y with ‖un‖ = 1 such that η(|sn|)−1‖(I +
G(isn)

∗P (isn)
∗)un‖ → 0 as n → ∞. Since supω∈R‖P (iω)‖ < ∞, we have that also

0 ← 1

η(|sn|)
Re〈(I +G(isn)

∗P (isn)
∗)un, P (isn)

∗un〉 ≥
Re〈P (isn)un, un〉

η(|sn|)

as n → ∞, which is impossible since η(|sn|)−1 Re〈P (isn)un, un〉 ≥ 1 by assumption.
This contradiction shows that the claim holds. Thus ‖CcΛSA(iω)

−1Bc‖ � η(|ω|)−1 ≤
MR(|ω|) for some M0 > 0 and for all ω ∈ Ωε \ {ωk}k, and by continuity the same
estimate holds for every ω ∈ Ωε.

To estimate the norms ‖SA(iω)
−1‖, ‖SA(iω)

−1Bc‖, ‖CcΛSA(iω)
−1‖, let ω ∈ Ωε

with |ω| ≥ 1 and define Pω,δ = diag(βkIZk
)k∈I ∈ L(Z), where βk = 1 for those

k ∈ I for which |ω − ωk| < δ(|ω|) and βk = 0 otherwise. The operator Pω,δ is a
spectral projection of Ac associated to the part {iωk}k ∩ (iω − iδ(|ω|), iω + iδ(|ω|))
of its spectrum and Pω,δz is a (ω, δ(|ω|))-wavepacket of Ac for every z ∈ Z. Let
u ∈ Y and y ∈ Z be arbitrary and define z = SA(iω)

−1(Bcu + y) ∈ ZBc , i.e.,
(iω −Ac +BcPcl(iω)CcΛ)z = Bcu+ y.

Define z0 = Pω,δz, zc = z − z0, yc = Pω,δy, yc = y − y0. Similarly decompose
Ac = A0

c +Ac
c, Bc = B0

c +Bc
c , and CcΛ = C0

c +Cc
cΛ, where A

0
c = AcPω,δ, B

0
c = Pω,δBc

and C0
c = CcPω,δ. The diagonal structure of Ac and the decompositions imply

(iω −Ac
c)zc = yc +Bc

c(u− Pcl(iω)CcΛz)

⇒ zc = R(iω,Ac
c)yc +R(iω,Ac

c)B
c
c(u − Pcl(iω)CcΛz)

⇒ CcΛzc = CcΛR(iω,Ac
c)yc +G0c(iω)(u− Pcl(iω)CcΛz),

where we have denoted G0c(iω) = Cc
cΛR(iω,Ac

c)B
c
c . The system (Ac

c, B
c
c , C

c
cΛ) is

regular and due to the diagonal structure of Ac we have ‖R(iω,Ac
c)‖ � δ(|ω|)−1.

The resolvent identity R(iω,Ac
c) = R(iω + 1, Ac

c) + R(iω,Ac
c)R(iω + 1, Ac

c) and the
admissibility of Bc

c and Cc
c further imply

‖R(iω,Ac
c)B

c
c‖ � δ(|ω|)−1, ‖CcΛR(iω,Ac

c)‖ � δ(|ω|)−1, ‖G0c(iω)‖ � δ(|ω|)−1.

Since z0 is a (ω, δ(|ω|))-wavepacket, we have also ‖z0‖ ≤ γ(|ω|)−1‖Ccz0‖. The above
expressions for zc and CcΛzc together with Ccz0 = CcΛz−CcΛzc and sups∈R‖Pcl(is)‖ <
∞ (Lemma A.2) therefore imply

‖z‖2 = ‖zc‖2 + ‖z0‖2 ≤ ‖zc‖2 + γ(|ω|)−2‖Ccz0‖2

� ‖zc‖2 + γ(|ω|)−2‖CcΛz‖2 + γ(|ω|)−2‖Cc
cΛzc‖2

�
(
‖R(iω,Ac

c)‖2 + γ(|ω|)−2‖CcΛR(iω,Ac
c)‖2

)
‖yc‖2 + γ(|ω|)−2‖CcΛz‖2

+
(
‖R(iω,Ac

c)B
c
c‖2 + γ(|ω|)−2‖G0c(iω)‖2

)(
‖u‖2 + ‖Pcl(iω)‖2‖CcΛz‖2

)
� γ(|ω|)−2δ(|ω|)−2

(
‖y‖2 + ‖u‖2 + ‖CcΛz‖2

)
.
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First let u = 0 to estimate ‖SA(iω)
−1‖ and ‖CcΛSA(iω)

−1‖. Then z = SA(iω)y ∈
D(SA(iω)). The passivity of (Ac, Bc, CcΛ, Dc) implies

Re〈y, x〉 = −Re〈Acz +Bc(−Pcl(iω)CcΛz), z〉
≥ Re〈CcΛz −DcPcl(iω)CcΛz, Pcl(iω)CcΛz〉
= Re〈(I +DcP (iω))−1CcΛz, P (iω)(I +DcP (iω))−1CcΛz〉

≥ η(|ω|)‖I +DcP (iω)‖−2‖CcΛz‖2 ≥
η(|ω|)
M2

P

‖CcΛz‖2,

where MP = 1 + ‖Dc‖ supω∈R‖P (iω)‖ < ∞, and thus ‖CcΛz‖2 � η(|ω|)−1‖z‖‖y‖.
The above estimate for ‖z‖2 (again with u = 0) together with the scalar inequality
2ab ≤ εa2 + b2/ε for ε > 0 implies

‖z‖2 � γ(|ω|)−2δ(|ω|)−2
(
‖y‖2 + ‖CcΛz‖2

)
� γ(|ω|)−2δ(|ω|)−2‖y‖2 + η(|ω|)−1γ(|ω|)−2δ(|ω|)−2‖z‖‖y‖

≤ γ(|ω|)−2δ(|ω|)−2‖y‖2 + ε

2
‖z‖2 + 1

2ε
η(|ω|)−2γ(|ω|)−4δ(|ω|)−4‖y‖2.

Letting ε > 0 be small shows that ‖z‖ � η(|ω|)−1γ(|ω|)−2δ(|ω|)−2‖y‖. Since y ∈ Z
was arbitrary, we have that ‖SA(iω)

−1‖ ≤ MR(|ω|) for some M0 > 0. Moreover, our
earlier estimate ‖CcΛz‖2 � η(|ω|)−1‖z‖‖y‖ further implies

‖CcΛSA(iω)
−1y‖2 = ‖CcΛz‖2 � η(|ω|)−1‖z‖‖y‖ � η(|ω|)−2γ(|ω|)−2δ(|ω|)−2‖y‖2,

and thus ‖CcΛSA(iω)
−1‖ � η(|ω|)−1γ(|ω|)−1δ(|ω|)−1 ≤ MR(|ω|) for some M0 > 0.

Finally, to estimate ‖SA(iω)
−1Bc‖, let y = 0 and let u ∈ Y be arbitrary. Now we

have z = SA(iω)
−1Bcu, and thus ‖CcΛz‖ = ‖CcΛSA(iω)Bcu‖ � η(|ω|)−1‖u‖ due to

our earlier estimate. Because of this, we also have

‖SA(iω)
−1Bcu‖2 = ‖z‖2 � γ(|ω|)−2δ(|ω|)−2

(
‖u‖2 + ‖CcΛz‖2

)
� γ(|ω|)−2δ(|ω|)−2(1 + η(|ω|)−2)‖u‖2

and thus ‖SA(iω)
−1Bc‖ � η(|ω|)−1γ(|ω|)−1δ(|ω|)−1 ≤ MR(|ω|) for some M0 > 0.

In the case where X = {0}, A = 0 ∈ L(X), B = 0 ∈ L(U,X), C = 0 ∈ L(X,U),
and D = I ∈ L(U) the operator SA(iω) reduces to iω−Ac +Bc(I +Dc)

−1CcΛ. This
way Theorem 3.7 can also be used to study the nonuniform stability of semigroups
generated by operators of the form Ac−BcB

∗
c and Ac−Bc(I+Dc)

−1CcΛ. This topic
is considered in detail in [12].

Remark 3.8. Assume {ωk}k∈I has a uniform gap, i.e., infk 	=l|ωk−ωl| > 0, and γ̃ :
R+ → (0, 1] is a continuous nonincreasing function such that infω>0 γ̃(ω+δ0)/γ̃(ω) > 0
for some 0 < δ0 < min{1, 12 infk 	=l|ωk − ωl|} (so that γ̃(·) does not decrease too
rapidly). If ‖B∗

ckzk‖ ≥ γ̃(|ωk|)‖zk‖ for all k ∈ I and zk ∈ Zk, then there exists a
constant 0 < c ≤ 1 for which the functions γ(·) = cγ̃(·) and δ(·) ≡ δ0 > 0 are such
that ‖Ccz‖ ≥ γ(|ω|)‖z‖ for every ω ∈ R and every (ω, δ(|ω|))-wavepacket z of Ac.

4. The robust output regulation problem. We will now turn our attention
to constructing passive controllers of the form (1.4) to achieve robust output tracking
and disturbance rejection for a passive regular linear system (2.1). We assume the
reference signal yref (t) and the disturbance signal wdist (t) are of the form

yref (t) =
∑
k∈I

ykref e
iωkt and wdist (t) =

∑
k∈I

wk
diste

iωkt(4.1)
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with a given set {ωk}k∈I ⊂ R of distinct frequencies with no finite accumulation
points, and {ykref }k∈I ⊂ Y and {wk

dist}k∈I ⊂ Ud. We use the notation wext (t) =

(wdist (t), yref (t))
T and wk

ext = (wk
dist , y

k
ref )

T . We consider yref (t) and wdist (t) with
both finite and infinite number of frequency components, and these two classes of sig-
nals are treated separately. The latter situation is encountered in tracking and rejec-
tion of nonsmooth periodic signals [24]. If I is infinite, we assume (ykref )k∈I ∈ �1(I;Y )

and (wk
dist )k∈I ∈ �1(I;Ud), which imply that yref (t) and wdist (t) are uniformly con-

tinuous almost periodic functions [5, Def. 4.5.6]. In the case of real-valued yref (t) and
wdist (t) we have ±ωn ∈ {ωk}k∈I for all n ∈ I.

We make the following standing assumption on the system (2.1). Here PS(λ)
is the transfer function of the system (AS , BS , CS

Λ , D
S) obtained from (2.1) with

admissible output feedback u(t) = −Dc2y(t) with Dc2 ≥ 0. It should be noted that
Assumption 4.1 is satisfied for some Dc2 ≥ 0 for which {iωk}k ⊂ ρ(AS) if and only if
it is satisfied for all Dc2 ≥ 0 with this property. In particular, if iωk ∈ ρ(A) for some
k ∈ I, then PS(iωk) is invertible if and only if P (iωk) is invertible.

Assumption 4.1. There exists Dc2 ≥ 0 such that iωk ∈ ρ(AS) and PS(iωk) is
boundedly invertible for all k ∈ I.

We define the regulation error as e(t) = yref (t) − y(t). Our aim is to choose
(Ac, Bc, CcΛ, Dc) in such a way that e(t) converges to zero in a suitable sense as
t → ∞. The closed-loop system consisting of (2.1) and the controller (1.4) with state
xe(t) = (x(t), z(t))T on Xe = X × Z is of the form

ẋe(t) = Aexe(t) + Bewext (t), xe(0) = xe0 = (x0, z0)
T ∈ Xe,(4.2a)

e(t) = Cexe(t) +Dewext(t),(4.2b)

where wext(t) = (wdist (t), yref (t))
T . If we denote Q1 = (I + DDc)

−1 and Q2 =
(I +DcD)−1, then Ae and D(Ae) are as in (3.1) and

Be =

[
Bd BDcQ1

0 BcQ1

]
, Ce =

[
−Q1CΛ −Q1DCcΛ

]
, De =

[
0 Q1

]
.

The following result shows that the closed-loop system is a regular linear system.
The result also holds whenever ReDc ≥ 0 and I +DDc is invertible.

Lemma 4.2. The closed-loop system (4.2) is regular and Ae in (3.1) generates a
contraction semigroup.

Proof. Consider the regular linear system

([
A 0
0 Ac

]
,

[
B Bd 0
0 0 Bc

]
,

[
CΛ 0
0 CcΛ

]
,

[
D 0 0
0 0 Dc

])
.

The closed-loop system (4.2) is obtained from the above system with output feedback

with K̂ =
[

0 I
0 0
−I 0

]
, which is an admissible feedback operator since I+DDc is boundedly

invertible by Lemma A.1(d). Thus (4.2) is regular [43].
Since Ae generates a semigroup Te(t) on Xe, the Lumer–Phillips Theorem implies

that Te(t) is contactive if Ae is dissipative. The estimates Re〈Ax+Bu, x〉 ≤ Re〈CΛx+
Du, u〉 and Re〈Acz + Bcy, z〉 ≤ Re〈CcΛz + Dcy, y〉 and a direct computation show
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that for any xe = (x, z)T ∈ D(Ae) we have

Re〈Aexe, xe〉 = Re〈Ax +BQ2(−DcCΛx+ CcΛz), x〉
+Re〈Acz +BcQ1(−CΛx−DCcΛz), z〉

≤ Re〈CΛx+DQ2(−DcCΛx+ CcΛz), Q2(−DcCΛx+ CcΛz)〉
+Re〈CcΛz +DcQ1(−CΛx−DCcΛz), Q1(−CΛx−DCcΛz)〉 = 0,

and thus Ae is dissipative.

In the following we define the robust output regulation problem for the regular
linear system (2.1). In the problem we consider perturbations for which the perturbed
system (Ã, [B̃, B̃d], C̃Λ, D̃) and the perturbed closed-loop system remain regular. The
robustness of the controller also implies that output tracking and disturbance rejection
are achieved even if the operators Bc, Cc, and Dc of the controller are perturbed
or approximated in such a way that the closed-loop stability is preserved and the
additional conditions on the perturbations stated in section 5 are satisfied.

The robust output regulation problem. Choose (Ac, Bc, CcΛ, Dc) in such a
way that the following are satisfied:

(a) The semigroup Te(t) generated by Ae is strongly stable.

(b) For the reference and disturbance signals of the form (4.1) and for all initial
states xe0 ∈ Xe the regulation error satisfies∫ t+1

t

‖e(s)‖ds → 0 as t → ∞.(4.3)

(c) If (A,B,Bd, CΛ, D) are perturbed to (Ã, B̃, B̃d, C̃Λ, D̃) in such a way that the
perturbed closed-loop system is strongly stable, then for the signals (4.1) and
for all initial states xe0 ∈ Xe the regulation error satisfies (4.3).

It follows from the results in [30, sec. 3] that if the closed-loop system is expo-
nentially stable, then convergence in (4.3) is uniformly exponentially fast, i.e., there

exist Me, α > 0 such that
∫ t+1

t ‖e(s)‖ds ≤ Mee
−αt(‖xe0‖ + 1) for all xe0 ∈ Xe. If

the input and output operators of the system and the controller are bounded, then
the error convergences pointwise, i.e., ‖y(t)− yref (t)‖ → 0 as t → ∞, and the rate is
exponential if Te(t) is exponentially stable.

5. Passive controllers for robust output regulation. The controller con-
structions in this section are based on the internal model principle [17, 31, 32], which
implies that a controller solves the robust output regulation problem provided that its
dynamics contain a suitable number of copies of the frequencies {ωk}k∈I of the sig-
nals (4.1) and the closed-loop system is stable. If dimY < ∞, then (Ac, Bc, CcΛ, Dc)
contains an internal model of the signals (4.1) if [30, Thm. 13]

dimN (iωk −Ac) ≥ dim Y ∀k ∈ I.

In the case of an infinite-dimensional output space, the controller contains an internal
model if [30, Thm. 13]

R(iωk −Ac) ∩R(Bc) = {0} ∀k ∈ I,(5.1a)

N (Bc) = {0}.(5.1b)

We consider three different situations: In section 5.1 we construct a finite-di-
mensional robust controller for a strongly stabilizable system (2.1). If (A,B,CΛ, D)
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is exponentially stabilizable, then the convergence of the error is exponentially fast.
In section 5.2 we design a robust controller to track and reject nonsmooth τ -periodic
reference signals. The controller is based on a periodic transport equation and achieves
exponential closed-loop stability if the system (2.1) is exponentially stabilizable and
satisfies ReP (iω) ≥ η > 0 for some constant η > 0 near the points ωk = 2πk

τ
for k ∈ Z. In section 5.3 we design an infinite-dimensional robust controller for
nonsmooth signals (4.1) with a general set of frequencies {ωk}k∈I . In general, the
closed-loop system cannot be stabilized exponentially, and we introduce conditions
for nonuniform subexponential rates of convergence of the output.

In the constructions we choose the feedthrough of the controller to have the form
Dc = Dc1 +Dc2, where Dc2 ≥ 0 is used to prestabilize the system (A,B,CΛ, D). We
assume that the system (AS , BS , CS

Λ , D
S) = (A − BDc2Q

S
1CΛ, BQS

2 , Q
S
1CΛ, Q

S
1D),

where QS
1 = (I + DDc2)

−1 and QS
2 = (I + Dc2D)−1 obtained from (2.1) with the

output feedback u(t) = −Dc2y(t), is either strongly or exponentially stable. Its
transfer function is denoted by PS(λ). The passivity of (A,B,CΛ, D) implies that
also (AS , BS , CS

Λ , D
S) is passive.

5.1. A robust finite-dimensional controller. In this section we assume the
signals (4.1) contain a finite number of frequencies {ωk}qk=1, i.e., I = {1, . . . , q}. The
controller parameters are chosen in the following way.

Definition 5.1. Choose Z = Y q and

Ac = diag (iω1IY , . . . , iωqIY ) ∈ L(Z),

where IY is the identity operator on Y . Choose Cc ∈ L(Z, Y ) of the form Ccz =∑q
k=1 Cckzk for z = (zk)

q
k=1 ∈ Z so that Cck ∈ L(Y ) are boundedly invertible for all

k, choose Bc = C∗
c , and choose Dc = Dc1+Dc2 with Dc1 > 0. Finally, choose Dc2 ≥ 0

in such a way that (AS , BS , CS
Λ , D

S) is passive and strongly stable with iR ⊂ ρ(AS).

In the case where Y and Ud are real spaces and wdist (·) and yref (·) real-valued
functions we have {ωk}qk=1 = {0,±ω1, . . . ,±ωq′} or {ωk}qk=1 = {±ω1, . . . ,±ωq′} for
some ω1, . . . , ωq′ > 0. In this case the controller can be chosen to be real by choosing
(J0 is omitted if 0 /∈ {ωk}qk=1)

Ac = diag (J0, J1, . . . , Jq′) , J0 = 0 ∈ L(Y ), Jk =

[
0 ωkIY

−ωkIY 0

]
,

and Cc = Cc0z0 +
∑q′

k=1 Cckz
1
k for z = (z0, z

1
1 , z

2
1 , . . . , z

1
q′ , z

2
q′) ∈ Z = Y 2q′+1, where

Cck ∈ L(Y ) are boundedly invertible for 0 ≤ k ≤ q′, Bc = C∗
c , and Dc > 0 is as in

Definition 5.1. This controller is passive and it will achieve robust output regulation
by Theorem 5.2 due to the fact that under the similarity transform

V = diag(IY , V1, . . . , Vq′), Vk =
1√
2

[
IY IY
iIY −iIY

]

the system (V ∗AcV, V
∗Bc, CcV,Dc) is of the form given in Definition 5.1.

Theorem 5.2. The controller in Definition 5.1 solves the robust output regulation
problem. The closed-loop system is strongly stable and iR ⊂ ρ(Ae).

If (AS , BS , CS
Λ , D

S) is exponentially stable, then also the closed-loop system is
exponentially stable and for any yref(t) and wdist(t) there exist Me, α > 0 such that∫ t+1

t

‖e(s)‖ds ≤ Mee
−αt(‖xe0‖+ 1) ∀xe0 ∈ Xe.
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In both cases the controller is robust with respect to all perturbations that preserve
the stability of the closed-loop system and for which iR ⊂ ρ(Ãe).

Proof. The controller (Ac, Bc, Cc, Dc1) is passive and its transfer function G(λ)
satisfies ReG(iω) = Dc1 > 0 for all ω ∈ R \ {ωk}qk=1. The operators (Ac, Bc) sat-
isfy (5.1). Indeed, the injectivity of Bc in (5.1b) follows directly from the fact that
the components C∗

ck of Bc are boundedly invertible by assumption. Condition (5.1a)
can be verified using the diagonal structure of Ac and the invertibility of C∗

ck.
To prove closed-loop stability, we apply Theorem 3.2 to (AS , BS , CS

Λ , D
S) and

(Ac, Bc, Cc, Dc1). Condition (2) of the theorem is satisfied since for any ω ∈ R \
{ωk}qk=1 we have ReG(iω) = Re(CcR(iω,Ac)Bc +Dc1) = Dc1 > 0, and condition (3)
is satisfied by Lemma 3.4 since Cck are invertible. Thus the strong and exponential
closed-loop stabilities follow from Theorem 3.2. Finally, the conclusion that the con-
troller solves the robust output regulation problem follows from [30, Thm. 13]. The
results in [30] are presented for controllers with Dc = 0, but they are applicable since
Dc ≥ 0 can be written as an output feedback for the system (2.1) without changing
the properties of the closed-loop system. Moreover, the results are presented for an
infinite set {ωk}k∈I , but they also apply trivially when I is finite.

Proposition 5.3. The regulation error in Theorem 5.2 converges pointwise, i.e.,
‖e(t)‖ → 0 as t → ∞ for all initial states xe0 ∈ Xe satisfying Aexe0+Bewext(0) ∈ Xe.
If the closed-loop system is exponentially stable, then for all yref(t) and wdist(t) there
exist Me, α > 0 such that

‖e(t)‖ ≤ Mee
−αt(‖Aexe0 +Bewext(0)‖+ 1)

for all xe0 ∈ Xe satisfying Aexe0 +Bewext(0) ∈ Xe.

The proof of Proposition 5.3 is based on the following technical lemma, which is
also used later in the following sections. The assumptions on H are automatically
satisfied if I is finite, or if the closed-loop system is exponentially stable. In the
latter case the property Hv ∈ D(CeΛ) can be verified similarly as in the proof of
Theorem 5.11.

Lemma 5.4. Assume the controller solves the robust output regulation problem
and yref(t) and wdist(t) are such that for some fixed (fk)k ∈ �2(C) the operator H :
D(H) ⊂ �2(C) → Xe defined by Hv =

∑
k∈I f−1

k R(iωk, Ae)Bew
k
extvk for v = (vk)k

satisfies H ∈ L(�2(C), Xe) and Hv ∈ D(CeΛ) for all v ∈ �2(C). If yref(t) and wdist(t)
are such that the series

qext =
∑
k∈I

iωkR(iωk, Ae)Bew
k
ext(5.2)

converges in Xe, then for all xe0 ∈ Xe satisfying Aexe0 + Bewext(0) ∈ Xe and for
almost all t > 0 we have

e(t) = CeΛTe(t)A
−1
e (Aexe0 +Bewext(0)− qext).

Proof. It follows from the properties of H and the results in [30] that for every
xe0 ∈ Xe and almost all t > 0 the regulation error is given by

e(t) = CeΛTe(t)

(
xe0 −

∑
k∈I

R(iωk, Ae)Bew
k
ext

)
.
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If Aexe0 +Bewext (0) ∈ Xe, then a direct computation and qext ∈ Xe show

Ae

∑
k∈I

R(iωk, Ae)Bew
k
ext =

∑
k∈I

iωkR(iωk, Ae)Bew
k
ext −Bewext(0),

which implies the claim.

Proof of Proposition 5.3. Since I is finite, the conditions of Lemma 5.4 are sat-
isfied. If xe0 ∈ Xe is such that Aexe0 + Bewext(0) ∈ Xe, then the estimate ‖e(t)‖ ≤
‖CeΛA

−1
e ‖‖Te(t)‖‖Aexe0+Bewext (0)−qext‖ implies both claims of the proposition.

The following sufficient condition for Aexe0 + Bewext(0) ∈ Xe follows directly
from the structures of Ae and Be. Later in section 5.4 the same condition implies a
nonuniform decay rate for the regulation error.

Lemma 5.5. If Bc ∈ L(U,X), Cc ∈ L(X,Y ), and wdist(0) = 0, then Aexe0 +
Bewext(0) ∈ Xe is satisfied for xe0 = (x0, z0)

T ∈ D(A) ×D(Ac) if Ccz0 = Dc(Cx0 −
yref(0)).

5.2. A robust controller for τ -periodic signals. In this section we will con-
struct a regular linear controller that achieves exponentially fast output regulation of
τ -periodic reference and disturbance signals. The controller structure is based on a
shift semigroup with periodic boundary conditions and is related to controllers con-
structed in [21, 45, 23]. We assume that dimY = p < ∞ and that yref (t) and wdist (t)
are τ -periodic functions, i.e., I = Z and {ωk}k∈Z = { 2πk

τ }k∈Z.

Definition 5.6. Choose the controller as

zt(ξ, t) = zξ(ξ, t), ξ ∈ (0, τ), t ≥ 0,(5.3a)

z(·, 0) = z0(·) ∈ L2(0, τ ;Cp),(5.3b)

e(t) = 2−1/2(z(τ, t)− z(0, t)),(5.3c)

u(t) = 2−1/2(z(τ, t) + z(0, t)) + (Dc1 +Dc2)e(t),(5.3d)

where z(ξ, t) = (z1(ξ, t), . . . , zp(ξ, t))
T and Dc1 > 0. Choose Dc2 ≥ 0 in such a way

that (AS , BS , CS
Λ , D

S) is passive and exponentially stable.

To achieve closed-loop stability, we also assume that RePS(iωk) ≥ η > 0 for some
constant η > 0 and for all k ∈ Z. If this condition is not satisfied, then exponential
closed-loop stability is unachievable, but strong closed-loop stability can be studied
using Theorem 5.11 in the next section.

Theorem 5.7. Let yref(t) and wdist(t) be as in (4.1) with ωk = 2πk
τ for some

τ > 0. Assume there exist η, ε > 0 such that RePS(iω) ≥ η > 0 for ω ∈ Ωε = {ω ∈
R | ∃k ∈ Z : |ω − ωk| < ε }, and ReD > 0. Then the controller in Definition 5.6
solves the robust output regulation problem in such a way that the closed-loop system
is exponentially stable, and there exist Me, α > 0 such that

∫ t+1

t

‖e(s)‖ds ≤ Mee
−αt(‖xe0‖+ 1) ∀xe0 ∈ Xe.

The controller is robust with respect to all perturbations that preserve the exponential
closed-loop stability, and for which u(t) = −Dc2y(t) remains an admissible output
feedback and {iωk}k∈Z ⊂ ρ(ÃS).
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Proof. The controller in Definition 5.6 consists of p = dimY independent one-
dimensional periodic transport equations with boundary control and observation and
an additional feedthrough (Dc1 +Dc2)e(t). The system (5.3) defines a regular linear
system with state z(t) = z(·, t) on Z = L2(0, τ ;Cp) [51, Thm. 2.4], and a direct
computation shows that its transfer function from e(t) to u(t) is

G0(λ) =
1 + e−λτ

1− e−λτ
I +Dc1 +Dc2, λ /∈

{
i
2πk

τ

}
k∈Z

.

Thus the controller can be written as a system (Ac, Bc, CcΛ, Dc) on Z, where Ac

satisfying Acf = f ′ for f ∈ D(Ac) = { f ∈ H1(0, τ ;Cp) | f(0) = f(τ) } generates a
unitary group with spectrum σ(Ac) = {i 2πkτ }k∈Z. We also have dimN (iωk − Ac) =
dimY for every k ∈ Z, and thus Ac contains an internal model of the signals (4.1).
By [30, Thm. 13] the controller solves the robust output regulation problem if the
closed-loop system is exponentially stable.

To show closed-loop stability, we will verify the conditions of Theorem 3.5 for
the systems (AS , BS , CS

Λ , D
S) and (Ac, Bc, CcΛ, Dc1) with Ω = Ωε. For this we will

consider the controller with inputs and outputs

uc(t) = 2−1/2(z(τ, t)− z(0, t)),

yc(t) = 2−1/2(z(τ, t) + z(0, t)) + (Dc1 +Dc2)uc(t).

The feedthrough operator of the controller is given by Dc = limλ→∞ G0(λ) = I +
Dc1+Dc2. Without the component (Dc1+Dc2)uc(t) of the feedthrough the solutions
of (5.3) satisfy d

dt‖z(t)‖2L2 = 2Re〈uc(t), yc(t)〉, and thus the controller is passive by [38,
Thm. 4.2]. Let dc > 0 be such that Dc1 ≥ dc > 0. The transfer function G(λ) of
(Ac, Bc, CcΛ, I + Dc1) satisfies ReG(iω) = Dc1 ≥ dc > 0 for all ω ∈ R \ {ωk}k∈Z,
and thus condition (2) of Theorem 3.5 is satisfied. To show that condition (3) of
Theorem 3.5 is satisfied, it is sufficient to show that for anyD0 ∈ L(U) with ReD0 > 0
the system (Ac, Bc, CcΛ, I + Dc1) is stabilized exponentially with feedback uc(t) =
−D0yc(t). The feedback leads to a partial differential equation

zt(ξ, t) = zξ(ξ, t), ξ ∈ (0, τ), t ≥ 0,

(I +Dtot)z(τ, t) = (I −Dtot)z(0, t),

where Dtot = D0(I+Dc1D0)
−1. The exponential stability of this system follows from

a straightforward application of [41, Thm. III.2], since ReDtot > 0 by Lemma A.1(c).
Thus Theorem 3.5 shows that the closed-loop system is exponentially stable.

Remark 5.8. The results in [30] also show that if (ykref )k = (akyk)k and (wk
dist )k =

(akwk)k, where (yk)k ∈ �2(Y ), (wk)k ∈ �2(Ud) are fixed, and (ak)k ∈ �2(C), then there

exist Me, α > 0 such that
∫ t+1

t
‖e(s)‖ds ≤ Mee

−αt(‖xe0‖+ ‖(ak)k‖�2) for all xe0 ∈ Xe

and (ak)k ∈ �2(C).

Lemma 5.4 implies the following result on the pointwise convergence of ‖e(t)‖.
The conditions require that yref (t) and wdist (t) have a sufficient levels of smoothness.

Corollary 5.9. If the signals (4.1) are such that (kykref)k ∈ �1(Y ) and (kwk
dist)k ∈

�1(Ud), then in Theorem 5.7 there exist Me, α > 0 such that for all xe0 ∈ Xe satisfying
Aexe0 +Bewext(0) ∈ Xe we have

‖e(t)‖ ≤ Mee
−αt(‖Aexe0 +Bewext(0)‖+ 1).
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If P (iμj) is not invertible for some {iμj}Nj=1 ⊂ {i 2πkτ }k∈Z, for example, for μj = 0,
then the robust output regulation problem is not solvable for signals yref (t) and
wdist (t) containing these frequencies. In this situation we can modify the controller
in Definition 5.6 by replacing (5.3a) with

zt(ξ, t) = zξ(ξ, t)−
1

τ

N∑
j=1

p∑
k=1

ek · eiμjξ

∫ τ

0

zk(s, t)e
−iμjsds, ξ ∈ (0, τ),

where {ek}pk=1 are the Euclidean basis vectors of Cp. This corresponds to stabilizing
the eigenvalues {iμj}Nj=1 of the transport system (5.3), and the resulting controller has

the property σ(Ac) ∩ iR = {i 2πkτ }k∈Z \ {iμj}Nj=1. With this modification the system

operator of the controller is of the form Ac = A0
c − B0B

∗
0 with B0 ∈ L(CNp, Z).

The controller is again passive and is stabilized exponentially with feedback uc(t) =
−D0yc(t) with ReD0 > 0, and the exponential closed-loop stability follows from
Theorem 3.5.

5.3. A robust controller for nonsmooth signals. In this section we con-
struct an infinite-dimensional diagonal controller for signals (4.1) with a general set
{ωk}k∈Z of distinct frequencies with no finite accumulation points. The controller can
also be used for systems with an infinite-dimensional output space Y . If yref (t) and
wdist (t) are τ -periodic and dimY < ∞, then the controller is of similar form as in
Definition 5.6.

Definition 5.10. Choose Z = �2(I;Y ) and

Ac = diag(iωkIY )k∈I , D(Ac) =
{
(zk)k ∈ Z

∣∣ (|ωk|‖zk‖)k ∈ �2(C)
}
,

where IY is the identity operator on Y . Let Dc = Dc1 + Dc2 with Dc1 > 0 and
Dc2 ≥ 0. Choose admissible Bc ∈ L(Y, Z−1) and Cc ∈ L(Z1, Y ) as

Bcy = (Bcky)k ∀y ∈ Y, Ccz =
∑
k∈I

B∗
ckzk ∀z ∈ D(Ac)

with boundedly invertible Bck ∈ L(Y ) so that (Ac, Bc, CcΛ, Dc1) is a regular linear
system whose transfer function G(λ) satisfies ReG(iω) ≥ dc > 0 for some constant
dc > 0 and for all ω ∈ R \ {ωk}k∈I. Finally, choose Dc2 ≥ 0 in such a way that
(AS , BS , CS

Λ , D
S) is passive and strongly stable with iR ⊂ ρ(AS).

If dim Y < ∞ and {ωk}k∈I has a uniform gap, i.e., infk 	=l|ωk − ωl| > 0, then [39,
Cor. 5.2.5, Prop. 5.3.5] imply that Bc and Cc are admissible with respect to Ac if
(‖Bck‖)k∈I ∈ �∞(C) and (‖Cck‖)k∈I ∈ �∞(C). For more general conditions for admis-
sibility, see [39, sec. 5.3]. The system (Ac, Bc, CcΛ, Dc1) is regular whenever Bc and Cc

are admissible and there exists ε > 0 such that ((1 + |ωk|)−1/2+ε‖Bck‖)k ∈ �2(C) [14,
Prop. 4.1]. However, there are also regular linear systems, such as the controller in
Definition 5.6, for which neither of these conditions is satisfied. If {ωk}k∈Z has a uni-
form gap, (|ωk|ε‖Bck‖)k ∈ �∞(C) for some ε > 0 and Dc1 > 0, then (Ac, Bc, CcΛ, Dc1)
satisfies the conditions of Definition 5.10.

Due to the lack of exponential closed-loop stability, the solvability of the robust
output regulation problem requires additional conditions on the reference and distur-
bance signals. These conditions relate the behavior of the coefficients ykref and wk

dist

to the behavior of the transfer functions P (λ) and Pd(λ) on the frequencies {ωk}k∈I .
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We pose conditions on the sequences Πext = (Πext (k))k∈I ⊂ XB,Bd
× Y consisting of

the elements Πext (k) = (Π1
ext(k),Π

2
ext (k)) with

Π1
ext(k) = R(iωk, A

S)BSuk +R(iωk, A
S)Bdw

k
dist , Π2

ext(k) = (B∗
ck)

−1(uk −Dc2y
k
ref ),

where uk = PS(iωk)
−1ykref − PS(iωk)

−1CS
ΛR(iωk, A

S)Bdw
k
dist . In the case of a per-

turbed system, we define Π̃ext = (Π̃ext(k))k∈I analogously. Alternate ways of express-
ing Πext(k) are presented in Lemma 5.12. Note in particular that if (AS , BS , CS

Λ , D
S)

is exponentially stable, then (5.4) are satisfied provided that (‖uk‖)k ∈ �1(C) and
(‖B−1

ck ‖‖uk −Dc2y
k
ref ‖)k ∈ �2(C).

Theorem 5.11. Assume RePS(iωk) > 0 for all k ∈ I. The controller in Defini-
tion 5.10 solves the robust output regulation problem for all yref(t) and wdist(t) whose
coefficients satisfy

(Π1
ext(k))k ∈ �1(X), (Π2

ext(k))k ∈ �2(Y ), (uk)k ∈ �1(U).(5.4)

The closed-loop system is strongly stable and iR ⊂ ρ(Ae).
The controller is robust with respect to all perturbations (Ã, B̃, B̃d, C̃Λ, D̃) for

which u(t) = −Dc2y(t) remains an admissible output feedback, the strong closed-loop
stability is preserved, {iωk}k∈I ⊂ ρ(Ãe) ∩ ρ(ÃS), P̃S(iωk) are invertible for k ∈ I,
and (Π̃ext(k))k∈I satisfies (5.4).

If the closed-loop system is exponentially stable, then (5.4) are satisfied automat-

ically, and there exist Me, α > 0 such that
∫ t+1

t ‖e(s)‖ds ≤ Mee
−αt(‖xe0‖+ 1) for all

xe0 ∈ Xe.

Proof. The proof is based on the application of [30, Thm. 13]. The diagonal
structure of the controller and the invertibility of Bck imply that Ac and Bc satisfy
the conditions (5.1). To show that the closed-loop system is strongly stable, we apply
Theorem 3.2 for the systems (AS , BS , CS

Λ , D
S) and (Ac, Bc, CcΛ, Dc1). Conditions (1)

and (2) are satisfied due to the construction in Definition 5.10, and condition (3) is
satisfied by Lemma 3.4 since Cck = B∗

ck are invertible. Thus by Theorem 3.2 the
closed-loop system is strongly stable and iR ⊂ ρ(Ae).

To apply [30, Thm. 13] directly, we would need R(iωk, Ae)Bew
k
ext ∈ �1(Xe).

However, in [30] this property is used as a sufficient condition for the existence of
(fk)k ∈ �2(C) such that the operator H : D(H) ⊂ �2(C) → Xe in Lemma 5.4
satisfiesH ∈ L(�2(C), Xe) and R(H) ⊂ D(CeΛ). Here we will verify that the sequence
(fk)k ∈ �2(C) with

fk =

{
‖Π2

ext(k)‖+ (‖wk
ext‖+ ‖Π1

ext(k)‖+ ‖uk‖)1/2 if wk
ext �= 0,

2−|k| if wk
ext = 0

has this property. If k ∈ I and xk
e = (Π1

ext(k), zk) ∈ XB,Bd
× ZBc where

zk = (zjk)j∈I , zkk = Π2
ext (k), zjk = 0, j �= k,

then it is straightforward to verify that (iωk − Ae)x
k
e = Bew

k
ext , and thus we have

R(iωk, Ae)Bew
k
ext = (Π1

ext (k), zk). Now (f−1
k (‖wk

ext‖ + ‖Π1
ext(k)‖ + ‖uk‖))k ∈ �2(C)

and (f−1
k Π2

ext(k))k ∈ �∞(Y ). These properties and the structure of R(iωk, Ae)Bew
k
ext

imply that Hv is well-defined for every v ∈ �2(C), and

‖Hv‖2 =
∥∥∥∥∑
k∈I

f−1
k Π1

ext (k)vk

∥∥∥∥
2

X

+
∥∥(f−1

k Π2
ext(k)vk

)
k

∥∥2
�2(Y )

≤ ‖v‖2‖(f−1
k Π1

ext(k))k‖2�2(X) + ‖v‖2‖(f−1
k Π2

ext(k))k‖2�∞(Y )
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implies H ∈ L(�2(C), Xe). It remains to show R(Σ) ⊂ D(CeΛ). If we denote Pe0(λ) =
CeΛR(λ,Ae)Be, then Pe0(iωk)w

k
ext = −Q1(CΛΠ

1
ext (k) + D(uk − Dc2y

k
ref )) for every

k ∈ I. The regularity of (AS , BS , CS
Λ , D

S) and (5.4) imply (f−1
k Pe0(iωk)w

k
ext )k ∈

�2(Y ). If v ∈ �2(C) and λ > 0, the resolvent identity implies

λCeΛR(λ,Ae)Hv =
∑
k∈I

λf−1
k vk

λ− iωk
Pe0(iωk)w

k
ext − Pe0(λ)

∑
k∈I

λf−1
k vk

λ− iωk
wk

ext

−→
∑
k∈I

f−1
k Pe0(iωk)w

k
extvk

as λ → ∞ since (Ae, Be, Ce) is regular and since (f−1
k Pe0(iωk)w

k
extvk)k ∈ �1(Y ) and

(f−1
k wk

extvk) ∈ �1(Ud×Y ). Thus Hv ∈ D(CeΛ) by definition. An analogous argument

shows that for perturbed systems (Ã, B̃, B̃d, C̃Λ, D̃) the sequence (fk)k can again
be chosen so that H̃ has the required properties. Thus the claims of the theorem
follow from [30, Thm. 13]. If the closed-loop system is exponentially stable, then
(Π1

ext(k), zk) = R(iωk, Ae)Bew
k
ext implies (Πext(k))k ∈ �1(X × Y ), which also shows

(‖uk‖)k ∈ �1(C).

The following alternate expressions for Πext(k) can be verified using standard
operator identities and Lemma 2.1.

Lemma 5.12. If iωk ∈ ρ(A) for some k ∈ I, then

Π1
ext(k) = R(iωk, A)Bdw

k
dist +R(iωk, A)Bũk,

Π2
ext(k) = (B∗

ck)
−1ũk, uk = ũk +Dc2y

k
ref,

where ũk = P (iωk)
−1ykref − P (iωk)

−1Pd(iωk)w
k
dist. If D is boundedly invertible, then

Π1
ext(k) = RD

k Bdw
k
dist + R(iωk, A

S)BSPS(iωk)
−1ykref for all k ∈ I, where RD

k =

R(iωk, A
S −BS(DS)−1CS

Λ).

The following result shows that pointwise convergence is achieved for sufficiently
smooth signals yref (t) and wdist (t) and for suitable intial states.

Proposition 5.13. Assume yref(t) and wdist(t) are such that (ωkΠ
1
ext(k))k ∈

�1(X) and (ωkΠ
2
ext(k))k ∈ �2(Y ). If xe0 ∈ Xe and Aexe0 + Bewext(0) ∈ Xe, then

the regulation error in Theorem 5.11 satisfies ‖e(t)‖ → 0 as t → ∞. If the closed-loop
system is exponentially stable, then there exist Me, α > 0 such that

‖e(t)‖ ≤ Mee
−αt(‖Aexe0 +Bewext(0)‖+ 1)

for all xe0 ∈ Xe satisfying Aexe0 +Bewext(0) ∈ Xe.

Proof. As in the proof of Theorem 5.11, R(iωk, Ae)Bew
k
ext = (Π1

ext (k), zk), where
zk = (zjk)j is such that zkk = Π2

ext(k) and zjk = 0 for j �= k. This structure,
(ωkΠ

1
ext(k))k ∈ �1(X), and (ωkΠ

2
ext(k))k ∈ �2(Y ) imply that qext in (5.2) satisfies

qext ∈ Xe. Since the required properties of H were verified in the proof of Theo-
rem 5.11, the claims follow from Lemma 5.4.

5.4. Nonuniform convergence rates of the regulation error. We will now
use Theorem 3.7 to derive convergence rates for the regulation error in Theorem 5.11.
The estimates are valid for reference and disturbance signals with sufficient levels of
smoothness. In particular, we assume {ωk}k∈I has a uniform gap and the coefficients
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of yref (t) and wdist (t) satisfy(
ωkΠ

1
ext(k)

)
k∈I ∈ �1(X),

(
ωkΠ

2
ext (k)

)
k∈I ∈ �2(Y ),(5.5)

which is a strictly stronger condition than the first two parts of (5.4).

Theorem 5.14. Assume (AS , BS , CS
Λ , D

S) is passive and exponentially stable,
the controller is as in Definition 5.10, and the conditions of Theorem 5.11 are satisfied.

Assume there exists 0 < ε < 1
2 infk 	=l|ωk − ωl| such that RePS(iω) > 0 for all

ω ∈ Ωε = {ω ∈ R | ∃k ∈ I : |ω − ωk| < ε }. Let η(·), γ(·) : R+ → (0, 1] be
continuous nonincreasing functions with the property infω>0 γ(ω + δ0)/γ(ω) > 0 for
some 0 < δ0 < min{1, ε} such that the following hold:

• RePS(iω) ≥ η(|ω|) for all ω ∈ Ωε.
• ‖B∗

cky‖ ≥ γ(|ωk|)‖y‖ for all k ∈ I and y ∈ Y .
Then the controller solves the robust output regulation problem and there exists M0 > 0
such that ‖R(iω,Ae)‖ ≤ MR(|ω|) with MR(·) = M0η(·)−1γ(·)−2. If supω>0 MR(ω) <
∞, then the closed-loop system is exponentially stable. More generally, there exist
M e

e , t0 ≥ 1 such that if (5.5) hold, then for all xe0 ∈ Xe satisfying Aexe0+Bewext(0) ∈
Xe we have∫ t+1

t

‖e(s)‖ds ≤ M e
e

MT (t)
(‖Aexe0 +Bewext(0)‖+Mext) , t ≥ t0,(5.6)

where MT (t) is determined by (b)–(c) in Theorem 3.7 and M2
ext = ‖(ωkΠ

1
ext(k))‖2�1 +

‖(ωkΠ
2
ext(k))k‖2�2 . In particular, if η(ω)−1γ(ω)−2 = O(ωα) for some α > 0, then (5.6)

holds with MT (t) = t1/α.

Proof. Theorem 5.11 shows that the controller solves the robust output regula-
tion problem, and ‖R(iω,Ae)‖ ≤ MR(|ω|) follows from Theorem 3.7 and Remark 3.8.
Thus (3.4) holds MT (·) and for some Me, t0 > 0. As shown in the proofs of The-
orem 5.11 and Lemma 5.13, the conditions of Lemma 5.4 are satisfied whenever
yref (t) and wdist (t) are such that (5.4) and (5.5) hold. If xe0 ∈ Xe is such that
Aexe0 + Bewext(0) ∈ Xe, then e(t) = CeΛTe(t)A

−1
e (Aexe0 + Bewext (0) − qext). The

admissibility of CeΛ and (3.4) imply∫ t+1

t

‖e(s)‖ds � ‖Te(t)A
−1
e (Aexe0 +Bewext (0)− qext)‖

≤ M e
e

MT (t)
(‖Aexe0 +Bewext (0)‖+ ‖qext‖) ,

which implies the claim since ‖qext‖2 ≤ M2
ext .

If C ∈ L(X,Y ) and Cc ∈ L(Z,U) in Theorem 5.14, then (5.6) can be replaced

with a pointwise rate ‖e(t)‖ ≤ Me
e

MT (t) (‖Aexe0 +Bewext(0)‖+Mext) for t ≥ t0. If

wdist (0) = 0 and Bc ∈ L(Z,U), then Lemma 5.5 gives a sufficient condition for initial
states z0 ∈ Z that achieve the convergence rate (5.6).

The following result presents necessary conditions for exponential closed-loop sta-
bility with controllers satisfying the conditions (5.1), which in turn are necessary for
robustness by [30, Thm. 13].

Proposition 5.15. Assume (AS , BS , CS
Λ , D

S) is strongly stable, {iωk}k∈I ⊂
ρ(AS), and (Ac, Bc, CcΛ, Dc) satisfies (5.1). If the closed-loop system is exponentially
stable, then supk∈I‖PS(iωk)

−1‖ < ∞.
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Proof. It follows from the proof of Lemma 4.2 that B0
e =

[
0
Bc

]
and C0

e = [0, CcΛ]

are admissible with respect to Ae. The proof of Theorem 3.2 implies C0
eR(iωk, Ae)B

0
e =

CcΛSA(iωk)
−1Bc, where SA(iωk) = iωk − Ac + BcPcl(iωk)CcΛ and Pcl(iωk) =

PS(iωk)(I + Dc1PS(iωk))
−1. Since the closed-loop system is exponentially stable,

we must have

sup
k∈I

‖CcΛSA(iωk)
−1Bc‖ < ∞.(5.7)

Let y ∈ Y and denote z = SA(iωk)
−1Bcy ∈ ZBc , which implies (iωk − Ac)z =

Bc(y−Pcl(iωk)CcΛz). The conditions (5.1) show that we must have y = Pcl(iωk)CcΛz.
Thus CcΛSA(iωk)

−1Bcy = Pcl(iωk)
−1y = (PS(iωk)

−1 +Dc1)y for all y ∈ Y , and the
claim follows from (5.7).

6. Examples.

6.1. A wave equation with boundary control. We consider a one-dimen-
sional undamped wave equation with boundary control and observation,

wtt(ξ, t) = wξξ(ξ, t), ξ ∈ (0, 1),(6.1a)

wξ(ξ, 0) = w0(ξ), wt(ξ, 0) = w1(ξ),(6.1b)

u(t) = −wξ(0, t), wξ(1, t) = 0,(6.1c)

y(t) = wt(0, t).(6.1d)

The results in [51] show that (6.1) defines a regular linear system with state x(t) =
(wξ(·, t), wt(·, t))T on X = L2(0, 1)× L2(0, 1). Its transfer function is given by

P (λ) =
1 + e−2λ

1− e−2λ
, λ �= iπk, k ∈ Z,

and D = 1. In particular, we have ReP (λ) ≥ 0 for all λ ∈ C+. We will construct a
controller that achieves exponential closed-loop stability and robust output regulation
for 1-periodic signals of the form yref (t) =

∑
k∈Z

ykref e
i2πkt with (ykref )k ∈ �1(C). For

this we will use a controller based on the transport equation presented in section 5.2
with τ = 1.

The system (6.1) can be stabilized exponentially with negative output feedback
u(t) = −Dc2y(t) with Dc2 > 0. For λ ∈ C+ the transfer function PS(λ) of the
stabilized system (AS , BS , CS

Λ , D
S) is given by

PS(λ) = P (λ)(I +Dc2P (λ))−1 =
1 + e−2λ

1 +Dc2 + (Dc2 − 1)e−2λ

and RePS(iω) =
Dc2 cos(ω)2

1+(D2
c2−1) cos(ω)2

. Now RePS(iω) = 0 if and only if ω = (k + 1/2)π

for some k ∈ Z. Therefore for any fixed 0 < ε < π/2 there exists η > 0 such that
RePS(iω) ≥ η > 0 for all ω ∈ Ωε = {ω ∈ R | ∃k ∈ I : |ω − 2πk| < ε }.

The conditions of Theorem 5.7 are satisfied, and thus the controller in Defini-
tion 5.6 solves the robust output regulation problem for all 1-periodic reference signals
with (ykref )k ∈ �1(C) and the output of the controlled system converges to yref (t) at
an exponential rate. The closed-loop system consisting of (6.1) and the controller
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(without the reference signal) becomes

wtt(ξ, t) = wξξ(ξ, t), ξ ∈ (0, 1),

zt(ξ, t) = zξ(ξ, t), ξ ∈ (0, 1),

wξ(ξ, 0) = w0(ξ), wt(ξ, 0) = w1(ξ), z(ξ, t) = z0(ξ),

wξ(0, t) = (β − 2−1/2)z(0, t)− (β + 2−1/2)z(1, t),

wt(0, t) = 2−1/2(z(0, t)− z(1, t)), wξ(1, t) = 0,

where β = Dc1+Dc2 > 0 is arbitrary. By Theorem 5.7 the semigroup Te(t) associated
to this coupled system of partial differential equations is exponentially stable, and thus
‖wξ(·, t)‖2L2 + ‖wt(·, t)‖2L2 + ‖z(·, t)‖2L2 → 0 at an exponential rate as t → ∞.

6.2. A strongly stabilizable wave equation. In this example we consider
another one-dimensional wave equation, now with distributed control and observation,

wtt(ξ, t) = wξξ(ξ, t) + b(ξ)u(t), ξ ∈ (0, 1),(6.2a)

w(0, t) = 0, w(1, t) = 0,(6.2b)

w(ξ, 0) = w0(ξ), wt(ξ, 0) = w1(ξ),(6.2c)

y(t) =

∫ 1

0

b(ξ)wt(ξ, t)dξ,(6.2d)

where b(ξ) = 2(1 − ξ). Equation (6.2) determines a passive linear system with state
x(t) = (w(·, t), wt(·, t))T on X = H1

0 (0, 1) ∩ L2(0, 1) with bounded input and output
operators satisfying C = B∗. The transfer function P (λ) can be computed as in [13,
sec. II]. Negative output feedback u(t) = −Dc2y(t) stabilizes the system strongly for
any Dc2 > 0, but the system is not exponentially stabilizable. However, the semi-

group generated by AS is polynomially stable since
∫ 1

0 b(ξ) sin(kπξ)dξ = 2
kπ implies

‖R(iω,A−BDc2C)‖ = O(ω2) for Dc2 > 0 by [37, Thm. 1].
Our aim is to design a controller to achieve robust output tracking of yref (t) =

sin(πt) + 1
4 cos(2πt). The frequencies of the signal yref (t) are {±π,±2π}. Due to

robustness, the controller will be able to track any reference signal with these fre-
quencies. Since dimY = p = 1, we can construct a passive feedback controller in
Definition 5.1 on Z = R4 by choosing

Ac = blockdiag(J1, J2), J1 =

[
0 π
−π 0

]
, J2 =

[
0 2π

−2π 0

]
,

Cc = [k1, 0, k2, 0], Bc = C∗
c , and Dc > 0. The values of k1, k2 ∈ R and Dc affect the

stability properties of the closed-loop system. In this example we choose k1 = k2 = 3
and Dc = 35. By construction the controller is robust with respect to perturbations
in the system provided that the strong stability of the closed-loop is preserved. Since
B and C are bounded operators, Proposition 5.3 shows that ‖e(t)‖ → 0 as t → ∞ for
all initial states x0 ∈ D(A) and z0 ∈ Z.

For simulations, the system (6.2) was approximated with the finite element method
with N = 24 points on [0, 1]. Figure 1 depicts the behavior of the error e(t) and the

integrals
∫ t+1

t
‖e(s)‖ds for 0 ≤ t ≤ 24 for initial states x0(ξ) = ξ(1 − ξ)(2 − 5ξ) and

z0 = 0. Figure 1 also plots the solution w(ξ, t) of the controlled wave equation for
0 ≤ t ≤ 6.
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Fig. 1. The solution w(ξ, t) of controlled wave equation (left) and e(t) (top right) and
∫ t+1
t

‖e(s)‖ds (bottom right).

6.3. Periodic output tracking for a heat equation. In the final example we
consider a two-dimensional boundary controlled heat equation on Ω = [0, 1]× [0, 1]

xt(ξ, t) = Δx(ξ, t), x(ξ, 0) = x0(ξ),(6.3a)

∂x

∂n
(ξ, t)|Γ1 = u(t),

∂x

∂n
(ξ, t)|Γ2 = wdist (t),

∂x

∂n
(ξ, t)|Γ0 = 0,(6.3b)

y(t) =

∫
Γ1

x(ξ, t)dξ,(6.3c)

where the parts Γ0, Γ1, and Γ2 of the boundary ∂Ω are defined so that Γ1 = { ξ =
(0, ξ2) | 0 ≤ ξ2 ≤ 1 }, Γ2 = { ξ = (ξ1, 1) | 1/2 ≤ ξ1 ≤ 1 }, Γ0 = ∂Ω \ (Γ1 ∪ Γ2). By [11,
Cor. 2] the heat equation defines a regular linear system with state x(t) = x(·, t) on
X = L2(Ω) with feedthrough D = 0. The system is passive,

P (λ) =
coth(

√
λ)√

λ
, λ ∈ C+ \ {0},

and |P (iω)−1| = O(|
√
ω|) for ω ∈ R with large |ω|. The system (6.3) is exponentially

stabilizable with feedback u(t) = −Dc2y(t) for any Dc2 > 0.
We will design an infinite-dimensional dynamic feedback controller that achieves

robust output tracking of the 2-periodic nonsmooth reference signal yref (t) in Figure 2
and rejects a suitable class of 2-periodic disturbance signals wdist (t). The frequencies
of the signals are {ωk}k∈Z with ωk = πk for k ∈ Z, and the Fourier coefficients of
yref (t) are such that |ykref | = O(|k|−3).

We can construct the controller as in Definition 5.10 by choosing Z = �2(C),
Ac = diag(iωk)k∈I , Bc = c((1 + |k|)−1/2−ε)k∈Z for some small ε > 0, Cc = B∗

c , and
Dc1 = 0. The parameters ε > 0, Dc = Dc2 > 0, and c > 0 affect the stability
properties of the closed-loop system. Proposition 5.15 shows that since P (ωk) → 0
as |k| → ∞, the closed-loop system cannot be stabilized exponentially. However,
by Theorem 3.7 the closed-loop system consisting of (2.1) and the controller with
the above choices of parameters is polynomially stable. Indeed, since RePS(iω) =
O(|ω|−1/2) and |B−1

ck | = (1 + |k|)1/2+ε = O(|ωk|1/2+ε), we have from Theorem 5.14
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Fig. 2. The reference yref(t) (left, gray), the output y(t) (left, blue), and
∫ t+1
t ‖e(s)‖ds (right)

for the heat equation.

that ‖R(iω,Ae)‖ = O(|ω|3/2+2ε) and there exist Me, t0 > 0 such that

‖Te(t)xe0‖ ≤ Me

t1/α
‖Aexe0‖, xe0 ∈ D(Ae), t ≥ t0,

where α = 3/2 + 2ε.
To verify that the controller is capable of regulating the given signals yref (t)

and wdist (t), we need to show that the conditions (5.4) are satisfied. The norms
‖R(iω,A)B‖ and ‖R(iω,A)Bd‖ are uniformly bounded for large |ω|. Lemma 5.12
and (B∗

ck)k ∈ �2(C) imply that it is sufficient to show

(|Bck|−1|PS(iωk)|−1(|ykref |+ |Pd(iωk)||wk
dist |))k∈Z ∈ �2(C).

The eigenfunction expansion of A can be used to show |Pd(iω)| = O(|ω|−1), and since
|P (iω)−1| = O(|ω|1/2), the above condition is satisfied for all yref (t) and wdist (t) with

(|k|1+ε|ykref |)k∈Z ∈ �2(C) and (|k|ε|wk
dist |)k∈Z ∈ �2(C).

The condition on (ykref )k in particular holds for yref (t) in Figure 2.
Finally, we can study the rational rates of decay of ‖e(t)‖ using Theorem 5.14.

The conditions in (5.5) are both satisfied if

(|k|2+ε|ykref |)k∈Z ∈ �2(C) and (|k|1+ε|wk
dist |)k∈Z ∈ �2(C).

The first condition is satisfied for yref (t) in Figure 2 whenever 0 < ε < 1/2. Then for
all xe0 ∈ Xe such that Aexe0 +Bev0 ∈ Xe we have∫ t+1

t

‖e(s)‖ds ≤ M e
e

t1/α
(‖Aexe0 +Bewext (0)‖+Mext) , t ≥ t0,(6.4)

where α = 3/2 + 2ε, and a direct estimate shows that for any fixed ε > 0

Mext � ‖(|k|2+ε|ykref |+ |k|1+ε|wk
dist |)‖�2 .

For disturbance signals satisfying wdist (0) = 0, Lemma 5.5 shows that (6.4) holds
whenever x0 ∈ D(A) and z0 ∈ D(Ac) are such that Ccz0 = Dc(CΛx0 − yref (0)).
Moreover, by Proposition 5.13 the regulation error satisfies ‖e(t)‖ → 0 as t → ∞ for
all such initial states.

For simulations the solution of the controlled heat equation (6.3) was approxi-
mated with finite differences using an N ×N grid with N = 20. The free parameters
of the controller were chosen as ε = 1/10, c = 8, and Dc = 15. The state of the
controller was approximated by truncating the infinite matrix Ac to a 31× 31 diago-
nal matrix with eigenvalues {iπk}|k|≤NS

for NS = 15. Figure 2 depicts the output of
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the controlled heat equation for 2 ≤ t ≤ 8 and the behavior of the error integrals for
0 ≤ t ≤ 10 for the initial state x0(ξ1, ξ2) = −(1 + ξ21/4− ξ31/6)(cos(πξ2)/10 + 2) such
that x0 ∈ D(A) and an initial state z0 ∈ D(Ac) satisfying Ccz0 = Dc(Cx0 − yref (0)).

Appendix A.

Lemma A.1. Let X be a Hilbert space and let T, S ∈ L(X) be such that ReT ≥
c ≥ 0 and ReS ≥ d ≥ 0.

(a) If T is boundedly invertible, then ReT−1 ≥ c‖T ‖−2. If c > 0, then T−1 exists
and ‖T−1‖ ≤ 1

c .

(b) If c > 0 or d > 0, then ‖T (I + ST )−1‖ ≤ ‖T‖2

c+d‖T‖2 . If c > 0 and d ≥ 0, then

ReT (I + ST )−1 ≥ c3 + c2d‖T ‖2
‖T ‖2(1 + c‖S‖)2 .

(c) If T is invertible, c ≥ 0, and d > 0, then ReT (I+ST )−1 ≥ d(‖T−1‖+‖S‖)−2.
(d) If c ≥ 0 and S ≥ 0, then I + ST and I + TS are boundely invertible, and

ReT (I + ST )−1 ≥ 0.

Proof. (a) The proof of the first part is elementary and latter claims follow from
the estimate ‖Tx‖‖x‖ ≥ |〈Tx, x〉| ≥ Re〈Tx, x〉 ≥ c‖x‖2 for x ∈ X .

(b) If c > 0, we can use part (a) and T (I + ST )−1 = (T−1 + S)−1. If d > 0, then
an argument similar to the one used in [14, Lem. 2.3] shows that ‖T (I+ST )−1‖ ≤ 1

d .
(c) The claim follows from T (I + ST )−1 = (T−1 + S)−1 and part (a).
(d) Assume ReT ≥ 0 and S ≥ 0. The invertibility of I + ST implies that also

I+TS is invertible. It is straightforward to show that the range of I+ST is dense in
X . Thus it suffices to show that I+ST is lower bounded. If this is not true there exists
a sequence (xn)n ⊂ X such that ‖xn‖ = 1 for all n ∈ N and ‖(I + ST )xn‖ → 0 as
n → ∞. Then 0 ← Re〈(I + ST )xn, T xn〉 ≥ ‖S1/2Txn‖2, and further ‖STxn‖ → 0 as
n → ∞. However, since ‖xn‖ = 1, we would then have ‖(I + ST )xn‖ �→ 0 as n → ∞,
which is a contradiction. Finally, the proof of ReT (I + ST )−1 ≥ 0 is elementary.

Lemma A.2. Let P (·) : C+ → L(Y ) be such that ReP (λ) ≥ 0 for all λ ∈ C+ and
let Dc ≥ 0. Then −1 ∈ ρ(DcP (λ)) for all λ ∈ C+. If supλ∈C+

‖P (λ)‖ < ∞, then in

addition supλ∈C+
‖(I +DcP (λ))−1‖ < ∞.

Proof. The fact that −1 ∈ ρ(DcP (λ)) for all λ ∈ C+ follows from Lemma A.1(d).
Assume supλ∈C+

‖P (λ)‖ < ∞. In order to show that (I +DcP (λ))−1 are uniformly

bounded for λ ∈ C+ it is sufficient to show that there exists a constant r > 0 such
that ‖(I +DcP (λ))u‖ ≥ r‖u‖ for all u ∈ U and λ ∈ C+. If no such r > 0 exists, we
can choose sequences (λn)n ⊂ C+ and (un)n ⊂ U with ‖un‖ = 1 for all n ∈ N such
that ‖(I +DcP (λn))un‖ → 0 as n → ∞. Then

0 ← Re〈(I +DcP (λn))un, P (λn)un〉 ≥ ‖D1/2
c P (λn)un‖2,

which implies ‖DcP (λn)un‖ → 0 as n → ∞. However, since ‖un‖ = 1, we would then
have ‖(I +DcP (λn))un‖ �→ 0 as n → ∞, which is a contradiction.

The last lemma concerns output feedback for passive systems. Several additional
results on this topic can be found in [18].

Lemma A.3. Assume (A,B,CΛ, D) is a passive regular linear system and σ(A) ⊂
C−. If Dc ≥ 0, then the system (A − BDcQ1CΛ, BQ2, Q1CΛ, Q1D) with Q1 = (I +
DDc)

−1 and Q2 = (I +DcD)−1 is regular, passive, and strongly stable in such a way
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that σ(A−BDcQ1CΛ) ⊂ C−. If A generates an exponentially stable semigroup, then
the same is true for A−BDcQ1CΛ.

Proof. The system (A − BDcQ1CΛ, BQ2, Q1CΛ, Q1D) is obtained from (1.1)
with output feedback u(t) = −Dcy(t). The regularity follows from [43], since −Dc

is an admissible output feedback operator by Lemma A.1(d). Since Dc ≥ 0, it
is straightforward to verify that (A − BDcQ1CΛ, BQ2, Q1CΛ, Q1D) is passive. In
particular A − BDcQ1CΛ generates a contraction semigroup, and the strong stabil-
ity of the semigroup follows from the Arendt–Batty–Lyubich–Vũ Theorem [4, 27]
once we have shown iR ⊂ σ(A − BDcQ1CΛ). Let λ ∈ C+. The transfer function
P (λ) = CΛR(λ,A)B + D satisfies ReP (λ) ≥ 0, and thus the operator I + DDc +
CΛR(λ,A)BDc = I + P (λ)Dc is boundedly invertible by Lemma A.1(d). Using
Lemma 2.1 we therefore see that λ ∈ ρ(A−BDcQ1CΛ) and

R(λ,A−BDcQ1CΛ) = R(λ,A)−R(λ,A)B(I +DcP (λ))−1DcCΛR(λ,A).

Since λ ∈ C+ was arbitrary, we have σ(A − BDcQ1CΛ) ⊂ C−. If A generates an
exponentially stable semigroup, then supλ∈C+

‖(I+DcP (λ))−1‖ < ∞ by Lemma A.2,

and the regularity and exponential stability of (A,B,CΛ, D) imply supλ∈C+
‖R(λ,A−

BDcQ1CΛ)‖ < ∞. Thus the semigroup generated by A−BDcQ1CΛ is exponentially
stable.

Proof of Lemma 2.1. Let λ ∈ ρ(A) be such thatQ−1+CΛR(λ,A)B has a bounded
inverse. Denote Rλ = R(λ,A) and R(λ) = Rλ − RλB(Q−1 + CΛRλB)−1CΛRλ. If
x ∈ X , then R(λ)x ∈ XB and a computation on X−1 shows

(λ−A+BQCΛ)R(λ)x

= x+B
[
Q− (I +QCΛRλB)(Q−1 + CΛRλB)−1

]
CΛRλx = x ∈ X.

Thus R(λ)x ∈ D(A − BQCΛ) and (λ − A + BQCΛ)R(λ) = I. On the other hand,
if x ∈ D(A − BQCΛ), then x ∈ XB and we can again compute on X−1 (considering
R(λ) as an operator R(λ) : X +R(B) → X)

R(λ)(λ −A+BQCΛ)x

= x+RλB
[
Q− (Q−1 + CΛRλB)−1(I + CΛRλBQ)

]
CΛx = x.

Since x ∈ D(A−BQCΛ) was arbitrary, this completes the proof.
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[19] T. Hämäläinen and S. Pohjolainen, A finite-dimensional robust controller for systems in
the CD-algebra, IEEE Trans. Automat. Control, 45 (2000), pp. 421–431.
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