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Abstract

In this paper we study the robustness of strong stability of a discrete semigroup on a Hilbert space under bounded
perturbations. As the main result we present classes of perturbations preserving the strong stability of the semigroup.

Keywords: Discrete semigroup, strong stability, robustness.
2010 MSC: 47A55, 47D06, 93D20

1. Introduction

Due to the high level of generality and the many forms
of strong stability, finding conditions for preservation of
strong stability of a semigroup under perturbations of its
generator is a challenging research problem. However, re-
cent advances in the theory of nonuniform stability of semi-
groups [1, 2, 3, 4] have made it possible to study robust-
ness of stability of semigroups that are not exponentially
stable [5, 6]. While general strongly stable semigroups
may have no intrinsic robustness properties, the theory
of nonuniform stability of semigroups opens doors for re-
search on robustness properties for many important sub-
classes of strongly stable semigroups.

In this short paper we consider the preservation of strong
stability of a discrete semigroup (An)n∈N with A ∈ L(X)
under additive perturbations A + BC with B ∈ L(Y,X)
and C ∈ L(X,Y ) for some separable Hilbert space Y .
In particular, we assume that the unperturbed semigroup
(An)n∈N is strongly stable in such a way that A has a finite
number of spectral points on the unit circle T, and the
growth of its resolvent operator is polynomially bounded
near these points.

The main result of this paper is a discrete analogue of
the set of conditions for preservation of strong stability
of strongly continuous semigroups presented in [6]. The
techniques employed here are similar to those used in [6],
but in many situations the proofs can be greatly simpli-
fied due to the fact that the operator A is bounded. The
discrete proofs also require several modifications, mainly
in estimating the behaviour of the resolvent operator near
the unit disk D. To the author’s knowledge, the preser-
vation of strong stability of discrete semigroups has not
been studied previously in the literature. Moreover, the
resolvent estimates presented in this paper generalize the
results found in the literature by allowing A to have mul-
tiple spectral points on T.
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Assumption 1 below states the standing assumptions on
the semigroup (An)n∈N. The strong stability of (An)n∈N
implies that σp(A) ∩ T = ∅. Since X is a Hilbert space,
Theorem I.2.9 and Corollary I.2.11 in [7] imply that for all
ϕ ∈ [0, 2π]

X = N (A− eiϕ)⊕R(A− eiϕ) = R(A− eiϕ).

Because of this, all spectral points of A on the unit circle
belong to σc(A).

Assumption 1. Let X be a Hilbert space and assume the
discrete semigroup (An)n∈N with A ∈ L(X) is strongly
stable in such a way that σ(A) ∩ T = {eiϕk}Nk=1 for some
N ∈ N and dA = mink 6=l|ϕk−ϕl| > 0. Assume further that
for some α ≥ 1, MA ≥ 1 and 0 < εA ≤ min{π/8, dA/3}

sup
0<|ϕ−ϕk|≤εA

|ϕ− ϕk|α‖R(eiϕ , A)‖ ≤MA, (1)

for all k ∈ {1, . . . , N} and ‖R(eiϕ , A)‖ ≤ MA whenever
|ϕ− ϕk| > εA for all k.

We assume that for some β, γ ≥ 0 the operators B ∈
L(Y,X) and C ∈ L(X,Y ) of the perturbation satisfy

R(B) ⊂ R((1− e−iϕkA)β) (2a)

R(C∗) ⊂ R((1− eiϕkA∗)γ) (2b)

for every k ∈ {1, . . . , N} and

(1− e−iϕkA)−βB, (1− eiϕkA∗)−γC∗ (3a)

are Hilbert–Schmidt operators for all k. (3b)

We recall that if (ek)∞k=1 is an orthonormal basis of Y ,
then T ∈ L(Y,X) is called Hilbert–Schmidt if (Tek)∞k=1 ∈
`2(X). The condition (2) combined with the Closed Graph
Theorem implies (1 − e−iϕkA)−βB ∈ L(Y,X) and (1 −
eiϕkA∗)−γC∗ ∈ L(X,Y ). Since A is bounded, also B and
C∗ are necessarily Hilbert–Schmidt operators whenever (3)
is satisfied. Finally, if dimY <∞, i.e., if the perturbation
BC is of finite rank, then (3) follows immediately from (2).

The following theorem presenting conditions for preser-
vation of strong stability is the main result of this paper.
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Theorem 2. Let Assumption 1 be satisfied for some α ≥ 1
and let β, γ ≥ 0 be such that β+γ ≥ α. There exists δ > 0
such that if B ∈ L(Y,X) and C ∈ L(X,Y ) satisfy (2)
and (3) and

‖(1− e−iϕkA)−βB‖ < δ, and ‖(1− eiϕkA∗)−γC∗‖ < δ

for all k ∈ {1, . . . , N}, then the discrete semigroup
((A+BC)

n
)n∈N is strongly stable. Moreover, we then

have σ(A + BC) ∩ T = σc(A + BC) ∩ T = {eiϕk}Nk=1,
and for all k

sup
0<|ϕ−ϕk|≤εA

|ϕ− ϕk|α‖R(eiϕ , A+BC)‖ <∞.

We begin the paper by studying the behaviour of the re-
solvent operator R(λ,A) near the unit disk D in Section 2.
These results are required in the proof of Theorem 2, which
is presented subsequently in Section 3.

If X and Y are Banach spaces and A : X → Y is
a linear operator, we denote by D(A), R(A), and N (A)
the domain, the range, and the kernel of A, respectively.
The space of bounded linear operators from X to Y is
denoted by L(X,Y ). If A : D(A) ⊂ X → X, then σ(A),
σp(A), σc(A) and ρ(A) denote the spectrum, the point
spectrum, the continuous spectrum and the resolvent set
of A, respectively. For λ ∈ ρ(A) the resolvent opera-
tor is given by R(λ,A) = (λ−A)−1. The inner prod-
uct on a Hilbert space is denoted by 〈·, ·〉. We denote
T = { z ∈ C | |z| = 1 }, D = { z ∈ C | |z| < 1 },
D = { z ∈ C | |z| ≤ 1 }.

2. Resolvent Estimates

In this section we study the behaviour of the resolvent
operator R(λ,A) near the unit disk D. In particular, the
proof of Theorem 2 is based on the property that the poly-
nomial growth of the resolvent operator near the points
eiϕk can be cancelled by a suitable operator. The general
form of the resolvent estimates follows the recent results
for strongly continuous semigroups that have appeared
in [3, 8, 4], and the results in this section can be seen
as straightforward discrete reformulations of correspond-
ing results in the previous references. The main difference
compared to the previous references is that we allow the
operator A to have multiple spectral points on the unit
circle T.

Define Λk = 1 − e−iϕkA for k ∈ {1, . . . , N}. The op-
erators Λk and Λl commute for every k, l ∈ {1, . . . , N},
we have Λ∗k = 1 − eiϕkA∗, and the families (Λk)Nk=1 and
(Λ∗k)Nk=1 are uniformly sectorial [9, Sec. 2.1]. Indeed, since
the operator A is power bounded, the strong Kreiss resol-
vent condition [7, Sec. II.1.2] implies ‖R(λ, e−iϕkA)‖ ≤
M/(|λ| − 1) for all λ ∈ C \ D, where M = supn∈N‖An‖ =
supn∈N‖(e−iϕkA)n‖. This implies that for every λ > 0 we
have

‖λ(λ+ 1− e−iϕkA)−1‖ ≤ λ M

|λ+ 1| − 1
= M.

Since the bound is independent of ϕk ∈ [0, 2π], by [9,
Prop. 2.1.1] the family (Λk)Nk=1 is uniformly sectorial.
Since σp(A) ∩ T = ∅, the operators Λk are injective and
have sectorial inverses Λ−1

k : R(Λk) ⊂ X → X [9, Prop.
2.1.1(b)]. The same conclusions are true for the operators

Λ∗k = 1− eiϕkA∗. The fractional powers Λβk and (Λ∗k)γ are
therefore defined for all β, γ ∈ R.

Consider regions Ωk ⊂ C \ D defined as (see Figure 1)

Ωk =
{
λ ∈ C

∣∣ |λ| ≥ 1, 0 < |λ− eiϕk | ≤ rA
}
,

where rA = |1 − eiεA |. We have 0 < rA ≤ 1 and |eiϕk −
ei(ϕk±εA)| = rA for all k.

Ω1

Ω2

Figure 1: The domains Ωk.

The following is the main resolvent estimate required in
the proof of Theorem 2.

Theorem 3. If Assumption 1 is satisfied, there exists
M1 ≥ 1 such that

sup
λ∈Ωk

‖R(λ,A)Λαk‖ ≤M1 (4)

for all k ∈ {1, . . . , N}.

The proof of the theorem is based on the following two
lemmas. The Moment Inequality in Lemma 4 is an essen-
tial tool used several times during the course of the paper.

Lemma 4. Let 0 < θ̃ < θ. There exists Mθ̃ ≥ 1 such that
for all k ∈ {1, . . . , N}

‖Λθ̃kx‖ ≤Mθ̃‖x‖
1−θ̃/θ‖Λθkx‖θ̃/θ ∀x ∈ X.

If Y is a Banach space and R ∈ L(Y,X), then

‖Λθ̃kR‖ ≤Mθ̃‖R‖
1−θ̃/θ‖ΛθkR‖θ̃/θ

for all k. The corresponding results are valid for (Λ∗k)k.

Proof. For a fixed k the properties follow from [9, Prop.
6.6.4]. However, by [9, Prop. 2.6.11] and the uniform
sectoriality of the operator family (Λk)k it is possible to
choose Mθ̃ to be independent of k.
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Lemma 5. If Assumption 1 is satisfied, then there exists
M0 ≥ 1 such that for all k

sup
λ∈Ωk

|λ− eiϕk |α‖R(λ,A)‖ ≤M0.

Proof. Let M = supn∈N‖An‖. From Assumption 1 we
have

sup
0<|ϕ−ϕk|≤εA

|ϕ− ϕk|α‖R(eiϕ , A)‖ ≤MA.

The strong Kreiss resolvent condition implies (|λ| −
1)‖R(λ,A)‖ ≤M whenever |λ| > 1.

Let λ = reiϕ ∈ Ωk. Since |ϕ−ϕk| ≤ εA ≤ π/8, and since
|ϕ− ϕk| is equal to the arc length between points eiϕ ∈ T
and eiϕk ∈ T, we have |eiϕ−eiϕk | ≤ |ϕ−ϕk|. For r = 1 the
bound |λ−eiϕk |α‖R(λ,A)‖ ≤ |ϕ−ϕk|α‖R(eiϕ, A)‖ ≤MA

follows from (1). On the other hand, if ϕ = ϕk, 1 < r ≤
1 + rA and λ = reiϕk , then the strong Kreiss resolvent
condition implies

|λ− eiϕk |α‖R(λ,A)‖ = (r − 1)α‖R(λ,A)‖
≤ (r − 1)‖R(λ,A)‖ ≤M

since (r − 1)α ≤ r − 1 due to the fact that α ≥ 1 and
0 < r − 1 ≤ rA ≤ 1. It remains to consider the case
λ = reiϕ ∈ Ωk with r > 1 and ϕ 6= ϕk. We can estimate

|reiϕ − eiϕk | ≤ |reiϕ − eiϕ|+ |eiϕ − eiϕk |
≤ r − 1 + |ϕ− ϕk|.

Since α ≥ 1 and 1 < r ≤ 2, we have (r − 1)α ≤ r − 1
and (using the scalar inequality (a+ b)α ≤ 2α(aα+ bα) for
a, b ≥ 0) we get

|λ− eiϕk |α ≤ 2α (r − 1 + |ϕ− ϕk|α)

and the resolvent identity R(reiϕ, A) = R(eiϕ, A)(1− (r−
1)eiϕR(reiϕ, A)) implies

‖R(reiϕ, A)‖ ≤ ‖R(eiϕ, A)‖(1 + (r − 1)‖R(reiϕ, A)‖)
≤ ‖R(eiϕ, A)‖(1 +M)

and

|λ− eiϕk |α‖R(λ,A)‖ ≤ 2α (r − 1 + |ϕ− ϕk|α) ‖R(λ,A)‖
≤ 2α(M + |ϕ− ϕk|α‖R(eiϕ, A)‖(1 +M))

≤ 2α (M +MA(1 +M)) .

Since in each of the situations the bound for |λ −
eiϕk |α‖R(λ,A)‖ is independent of k ∈ {1, . . . , N}, the
proof is complete.

Proof of Theorem 3. Let k ∈ {1, . . . , N}, λ ∈ Ωk, and de-
note Rλ = R(λ,A) and λk = λ− eiϕk for brevity.

We begin by showing that if α = n+ α̃ with n ∈ N and
0 ≤ α̃ < 1, then there exists M̃ ≥ 1 (independent of k)
such that

sup
λ∈Ωk

|λk|n‖R(λ,A)Λα̃k‖ ≤ M̃. (5)

By Lemma 5 there exists M0 ≥ 1 such that |λ −
eiϕk |α‖R(λ,A)‖ ≤ M0 for all k. If α = n and α̃ = 0,
we have |λk|n‖RλΛα̃k‖ = |λk|α‖Rλ‖ ≤M0. Thus the claim

is satisfied with M̃ = M0, which is independent of k.
If 0 < α̃ < 1, then by Lemma 4 there exists a con-

stant Mα̃ independent of k and λ such that ‖RλΛα̃k‖ ≤
Mα̃‖Rλ‖1−α̃‖RλΛk‖α̃. Using

eiϕkRλΛk = Rλ(eiϕk −A) = 1− λkRλ (6)

and the scalar inequality (a+ b)α̃ ≤ 2α̃(aα̃ + bα̃) we get

|λk|n‖RλΛα̃k‖ ≤Mα̃|λk|n‖Rλ‖1−α̃‖RλΛk‖α̃

= Mα̃|λk|n‖Rλ‖1−α̃‖1− λkRλ‖α̃

≤ 2α̃Mα̃|λk|n‖Rλ‖1−α̃(1 + |λk|α̃‖Rλ‖α̃)

≤ 2α̃Mα̃

[
(|λk|

n
1−α̃ ‖Rλ‖)1−α̃ + |λk|n+α̃‖Rλ‖

]
.

Since n = bαc ≥ 1 we have

n

1− α̃
=

nα

(1− α̃)(n+ α̃)
=

nα

n− α̃(n− 1)− α̃2
≥ α.

Since λ ∈ Ωk, we have |λk| ≤ rA ≤ 1, and thus |λk|
n

1−α̃ ≤
|λk|α, and

|λk|n‖RλΛα̃k‖ ≤ 2α̃Mα̃

[
(|λk|α‖Rλ‖)1−α̃ + |λk|α‖Rλ‖

]
≤ 2α̃Mα̃

[
M1−α̃

0 +M0

]
≤ 2α̃+1Mα̃M0,

since M0 ≥ 1. Therefore the claim holds with M̃ =
2α̃+1Mα̃M0, which is independent of k.

We can now show that there exists M1 ≥ 1 such that (4)
is satisfied for all k. Again denote α = n+α̃ and let K > 0
be such that ‖Λl+α̃k ‖ ≤ K for all 0 ≤ l ≤ n − 1 and all k.
Using the identity (6) repeatedly, we obtain

einϕkR(λ,A)Λnk = (−λk)nR(λ,A) +

n−1∑
l=0

(−λk)n−1−leilϕkΛlk

and thus (using |λk| ≤ rA ≤ 1)

‖R(λ,A)Λαk‖ = ‖einϕkR(λ,A)ΛnkΛα̃k‖

≤ |λk|n‖R(λ,A)Λα̃k‖+

n−1∑
l=0

|λk|n−1−l‖Λl+α̃k ‖ ≤ M̃ + nK.

Since the bound is independent of both λ ∈ Ωk and k, the
proof is complete.

Lemma 6. Let Assumption 1 be satisfied. There exists
M2 ≥ 1 such that

sup
λ/∈D∪

⋃
k Ωk

‖R(λ,A)‖ ≤M2.

Proof. Let λ = reiϕ ∈ C \ (D ∪
⋃
k Ωk) and let λ0 = r0e

iϕ

be such that 1 ≤ r0 ≤ r and λ0 lies on the boundary of D∪⋃
k Ωk. Then either λ0 ∈ T, which implies ‖R(λ0, A)‖ ≤

MA by Assumption 1, or otherwise λ0 ∈ Ωk and |λ0 −
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eiϕk | = rA for some k ∈ {1, . . . , N}. By Lemma 5 we have
that there exists M0 (independent of k) such that in the
latter case

|λ0 − eiϕk |α‖R(λ0, A)‖ ≤M0 ⇔ ‖R(λ0, A)‖ ≤ M0

rαA
.

Now, if M = supn∈N‖An‖, then (|λ|−1)‖R(λ,A)‖ ≤M by
the strong Kreiss resolvent condition. Using the resolvent
identity R(λ,A) = R(λ0, A)+(λ0−λ)R(λ0, A)R(λ,A) and
|λ− λ0| = r − r0 ≤ r − 1 = |λ| − 1 we have

‖R(λ,A)‖ ≤ ‖R(λ0, A)‖(1 + |λ− λ0|‖R(λ,A)‖)
≤ max{MA,M0/r

α
A}(1 + (|λ| − 1)‖R(λ,A)‖)

≤ max{MA,M0/r
α
A}(1 +M).

Since the bound is independent of λ, this concludes the
proof.

Combining the above results shows that the growth of
the resolvent operator R(λ,A) near the unit disk D is can-
celled by the operator Λα1 · · ·ΛαN .

Corollary 7. If Assumption 1 is satisfied, then

sup
λ/∈D∪{eiϕk}k

‖R(λ,A)Λα1 · · ·ΛαN‖ <∞.

3. The Preservation of Strong Stability

In this section we present the proof of Theorem 2. We
begin by studying the change of the spectrum of A under
the perturbations.

Theorem 8. Let Assumption 1 be satisfied for some α ≥ 1
and let β, γ ≥ 0 be such that β + γ ≥ α. There exists
δ > 0 such that if B ∈ L(Y,X) and C ∈ L(X,Y ) satisfy

R(B) ⊂ R(Λβk) and R(C∗) ⊂ R((Λ∗k)γ) and

‖Λ−βk B‖ < δ, and ‖(Λ∗k)−γC∗‖ < δ,

for every k, then σ(A+BC) ⊂ D∪{eiϕk}Nk=1 and {eiϕk}k ⊂
σ(A+ BC) \ σp(A+ BC). In particular, under the above
conditions we have

sup
λ/∈D∪{eiϕk}k

‖(1− CR(λ,A)B)−1‖ <∞. (7)

The proof of Theorem 8 is based on the following two
lemmas.

Lemma 9. Let Assumption 1 be satisfied for some α ≥ 1
and let β, γ ≥ 0 be such that β + γ ≥ α. There exists
MR ≥ 1 such that if B ∈ L(Y,X) and C ∈ L(X,Y ) satisfy

R(B) ⊂ R(Λβk) and R(C∗) ⊂ R((Λ∗k)γ) for some k, then

‖CR(λ,A)B‖ ≤MR‖Λ−βk B‖‖(Λ∗k)−γC∗‖

for all λ ∈ Ωk.

Proof. Since Λβk ∈ L(X), the operators Λ−βk and Λ−βk B are

closed. Since D(Λ−βk B) = Y , the Closed Graph Theorem

implies Λ−βk B ∈ L(Y,X). Similarly (Λ∗k)−γC∗ ∈ L(Y,X)

and CΛ−γk extends to a bounded operator Cγ ∈ L(X,Y )

with norm ‖Cγ‖ ≤ ‖(Λ∗k)−γC∗‖. ChooseMk = ‖Λβ+γ−α
k ‖·

supλ∈Ωk
‖R(λ,A)Λαk‖. Then for all λ ∈ Ωk

‖CR(λ,A)B‖ = ‖CΛ−γk R(λ,A)ΛαkΛβ+γ−α
k Λ−βk B‖

≤ ‖Cγ‖‖R(λ,A)Λαk‖‖Λ
β+γ−α
k ‖‖Λ−βk B‖

≤Mk‖Λ−βk B‖‖(Λ∗k)−γC∗‖.

Finally, we can choose MR = max{M1, . . . ,MN}.

Lemma 10. Let Assumption 1 be satisfied for some α ≥ 1
and let β, γ ≥ 0 be such that β + γ ≥ α. There exists
δ0 > 0 such that if if B ∈ L(Y,X) and C ∈ L(X,Y ) satisfy

R(B) ⊂ R(Λβk) and R(C∗) ⊂ R((Λ∗k)γ) and ‖Λ−βk B‖ < δ0
and ‖(Λ∗k)−γC∗‖ < δ0 for all k, then {eiϕk}k ⊂ σ(A +
BC) \ σp(A+BC).

Proof. Choose 0 ≤ β1 ≤ β and 0 ≤ γ1 ≤ γ such that
β1 +γ1 = 1. Let k ∈ {1, . . . , N} and assume ‖Λ−β1

k B‖ < 1
and ‖(Λ∗k)−γ1C∗‖ < 1. The condition 0 ≤ γ1 ≤ 1 im-

plies R(Λk) ⊂ R(Λγ1k ) ⊂ X, and thus D(Λ−γ1k ) = X

due to the fact that eiϕk ∈ σc(A). The operator CΛ−γ1k

has a unique bounded extension Cγ1 with norm ‖Cγ1‖ =
‖(Λ∗k)−γ1C∗‖ < 1.

Since ‖eiϕkΛ−β1

k BCγ1‖ ≤ ‖Λ
−β1

k B‖‖Cγ1‖ < 1, the oper-

ator 1− eiϕkΛ−β1

k BCγ1 is boundedly invertible, and

eiϕk −A−BC = eiϕkΛβ1

k (1− e−iϕkΛ−β1

k BCγ1)Λγ1k .

Since Λβ1

k and Λγ1k are injective and at least one of them is
not surjective, the operator eiϕk −A−BC is injective but
not surjective. This implies eiϕk ∈ σ(A+BC)\σp(A+BC).

Finally, let K > 0 be such that ‖Λβ−β1

k ‖ ≤ K and

‖(Λ∗k)γ−γ1‖ ≤ K for all k. Then ‖Λ−β1

k B‖ ≤ K‖Λ−βk B‖
and ‖(Λ∗k)−γ1C∗‖ ≤ K‖(Λ∗k)−γC∗‖. This concludes that

‖Λ−β1

k B‖ < 1 and ‖(Λ∗k)−γ1C∗‖ < 1 can be achieved by
choosing a small enough δ0 > 0.

Proof of Theorem 8. Let β+γ ≥ α and choose K > 0 such
that ‖Λβk‖ ≤ K and ‖(Λ∗k)γ‖ ≤ K for all k. We then have

‖B‖ ≤ K‖Λ−βk B‖ and ‖C‖ ≤ K‖(Λ∗k)−γC∗‖. Lemmas 6,
9, and 10 now imply that it is possible to choose δ > 0 in
such a way that if

‖Λ−βk B‖ < δ, and ‖(Λ∗k)−γC∗‖ < δ,

for all k, then ‖CR(λ,A)B‖ ≤ c < 1 for every λ /∈ D ∪
{eiϕk}k, and {eiϕk}k ⊂ σ(A + BC) \ σp(A + BC). The
Sherman–Morrison–Woodbury formula

R(λ,A+BC) = R(λ,A) (8a)

+R(λ,A)B(1− CR(λ,A)B)−1CR(λ,A) (8b)
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now implies that σ(A + BC) ⊂ D ∪ {eiϕk}k. Moreover,
a standard Neumann series argument shows that ‖(1 −
CR(λ,A)B)−1‖ ≤ 1/(1 − c) for every λ /∈ D ∪ {eiϕk}k,
which in turn concludes that (7) is satisfied.

The following theorem characterizes uniform bounded-
ness of a discrete semigroup on a Hilbert space [7, Thm.
II.1.12].

Theorem 11. Let A ∈ L(X) on a Hilbert space X be
such that σ(A) ⊂ D. The discrete semigroup (An)n∈N is
bounded if and only if for all x, y ∈ X

sup
1<r≤2

(r − 1)

∫ 2π

0

(
‖R(reiϕ , A)x‖2+‖R(reiϕ , A)∗y‖2

)
dϕ <∞.

Lemma 12. Assume that (An)n∈N is bounded. If Y is a
separable Hilbert space and if B̃ ∈ L(Y,X) is a Hilbert–
Schmidt operator, then

sup
1<r≤2

(r − 1)

∫ 2π

0

‖R(reiϕ , A)B̃‖2dϕ <∞,

sup
1<r≤2

(r − 1)

∫ 2π

0

‖R(reiϕ , A)∗B̃‖2dϕ <∞.

Proof. Let M = supn∈N‖An‖. As in the proof of [10, Thm.
3.11] and in [10, Rem. 3.2] the Parseval’s equality shows
that for every 1 < r ≤ 2 and x ∈ X

(r − 1)

∫ 2π

0

‖R(reiϕ , A)x‖2dϕ = 2π
r − 1

r2

∞∑
n=0

‖Anx‖2

r2n

≤ 2πM2‖x‖2 r − 1

r2

∞∑
n=0

1

r2n
=

2πM2‖x‖2

r + 1
≤ πM2‖x‖2.

If (el)
∞
l=1 ⊂ Y is an orthonormal basis of Y , then

∞∑
l=1

sup
1<r≤2

(r − 1)

∫ 2π

0

‖R(reiϕ , A)B̃el‖2dϕ ≤ πM2
∞∑
l=1

‖B̃el‖2.

For every R ∈ L(X) we have ‖RB̃‖2 ≤
∑∞
l=1‖RB̃el‖2.

Combining these properties we get

sup
1<r≤2

(r − 1)

∫ 2π

0

‖R(reiϕ , A)B̃‖2dϕ

≤
∞∑
l=1

sup
1<r≤2

(r − 1)

∫ 2π

0

‖R(reiϕ , A)B̃el‖2dϕ

≤ πM2
∞∑
l=1

‖B̃el‖2 <∞.

The second claim can be shown analogously.

Lemma 13. Let Assumption 1 be satisfied for some
α ≥ 1, let β, γ ≥ 0 be such that β + γ ≥ α, and let
k ∈ {1, . . . , N}. If B ∈ L(Y,X) and C ∈ L(X,Y ) satisfy
the conditions (2) and (3), then there exists a function
fk : C \

(
D ∪ {eiϕl}Nl=1

)
→ R+ such that

‖R(λ,A)B‖‖CR(λ,A)‖ ≤ fk(λ) ∀λ ∈ Ωk,

and fk(·) has the properties sup0<|ϕ−ϕk|≤εA |ϕ −
ϕk|αfk(eiϕ) <∞ and

sup
1<r≤2

(r − 1)

∫ 2π

0

fk(reiϕ)2dϕ <∞. (9)

Proof. We begin by considering the case where β > 0 and
γ > 0. Choose 0 < β1 ≤ β and 0 < γ1 ≤ γ such that
β1 + γ1 = α. For brevity, denote Rλ = R(λ,A) and λk =

λ − eiϕk . Moreover, denote Bβ1 = Λ−β1

k B ∈ L(Y,X) and

C̃γ1 = (Λ∗k)−γ1C∗ ∈ L(Y,X). Since Bβ1 = Λβ−β1

k Λ−βk B

and C̃γ1 = (Λ∗k)γ−γ1(Λ∗k)−γC∗, condition (3) implies that

also Bβ1
and C̃γ1 are Hilbert–Schmidt operators.

Let M1 ≥ 1 be as in Theorem 3. By Lemma 4 there
exist constants Mβ1

,Mγ1 ≥ 1 such that for every λ ∈ Ωk

‖RλB‖ = ‖Λβ1

k RλBβ1
‖

≤Mβ1‖RλBβ1‖1−β1/α‖ΛαkRλBβ1‖β1/α

≤Mβ1
‖RλBβ1

‖1−β1/α‖ΛαkRλ‖β1/α‖Bβ1
‖β1/α

‖R∗λC∗‖ = ‖(Λ∗k)γ1R∗λC̃γ1‖
≤Mγ1‖R∗λC̃γ1‖1−γ1/α‖(Λ∗k)αR∗λC̃γ1‖γ1/α

≤Mγ1‖R∗λC̃γ1‖1−γ1/α‖RλΛαk‖γ1/α‖C̃γ1‖γ1/α.

Thus for K = Mβ1
Mγ1M1‖Bβ1

‖β1/α‖C̃γ1‖γ1/α we have

‖RλB‖‖CRλ‖ ≤ K‖RλBβ1
‖1−β1/α‖R∗λC̃γ1‖1−γ1/α.

Define fk(·) by fk(λ) = K‖RλBβ1‖1−β1/α‖R∗λC̃γ1‖1−γ1/α
for all λ ∈ C \

(
D ∪ {eiϕl}Nl=1

)
. We will now show that

fk(·) has the desired properties.
Since 1 − β1/α + 1 − γ1/α = 1, for all ϕ ∈ [0, 2π] with

0 < |ϕ− ϕk| ≤ εA we have from Assumption 1 that

|ϕ− ϕk|αfk(eiϕ)

≤ |ϕ− ϕk|α‖R(eiϕ , A)‖K‖Bβ1‖1−β1/α‖C̃γ1‖1−γ1/α

≤MAK‖Bβ1
‖1−β1/α‖C̃γ1‖1−γ1/α.

This concludes that sup0<|ϕ−ϕk|≤εA |ϕ−ϕk|
αfk(eiϕ) <∞.

Moreover, if we denote q = 1/(1−β1/α), q′ = 1/(1−γ1/α),
then 1/q + 1/q′ = 1 and the Hölder inequality implies∫ 2π

0

fk(reiϕ)2dϕ

= K2

∫ 2π

0

‖R(reiϕ , A)Bβ1‖
2
q ‖R(reiϕ , A)∗C̃γ1‖

2
q′ dϕ

≤ K2

(∫ 2π

0

‖R(reiϕ , A)Bβ1
‖2dϕ

) 1
q

×
(∫ 2π

0

‖R(reiϕ , A)∗C̃γ1‖2dη
) 1
q′

.

The property (9) now follows from Lemma 12 since Bβ1

and C̃γ1 are Hilbert–Schmidt.
It remains to show that the claims are true if β = 0 or

γ = 0, or equivalently, whenever either γ ≥ α or β ≥ α.
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Let M1 ≥ 1 be as in Theorem 3. If β ≥ α, then R(B) ⊂
R((1 − e−iϕkA)α). Choose K0 > 0 so that ‖Λβ−αl ‖ ≤ K0

for all l ∈ {1, . . . , N}. For all λ ∈ Ωk

‖RλB‖‖CRλ‖ ≤ ‖RλΛαk‖‖Λ
β−α
k ‖‖Λ−βk B‖‖R∗λC∗‖

≤ K‖R∗λC∗‖,

where K = M1K0MΛδ. We choose fk(·) such that fk(λ) =
K‖R∗λC∗‖ for all λ ∈ C \

(
D ∪ {eiϕl}Nl=1

)
. Then |ϕ −

ϕk|αfk(eiϕ) ≤ |ϕ − ϕk|αK‖R(eiϕ , A)‖‖C‖ ≤ KMA‖C‖
whenever 0 < |ϕ− ϕk| ≤ εA, and∫ 2π

0

fk(reiϕ)2dϕ ≤ K2

∫ 2π

0

‖R(reiϕ , A)∗C∗‖2dϕ.

Since C∗ is Hilbert–Schmidt, Lemma 12 shows that (9) is
satisfied. The case with β = 0 and γ ≥ α can be handled
analogously.

Proof of Theorem 2. Let δ > 0 be chosen as in Theo-
rem 8 and assume ‖Λ−βk B‖ < δ, and ‖(Λ∗k)−γC∗‖ < δ
for all k. By Theorem 8 there exists MD ≥ 1 such that
‖(1− CR(λ,A)B)−1‖ ≤MD for all λ /∈ D ∪ {eiϕk}Nk=1.
We begin the proof by showing that the semigroup
((A+BC)

n
)n∈N is bounded.

Let x ∈ X and for brevity denote Rλ = R(reiϕ , A) and
Dλ = 1 − CR(reiϕ , A)B. Using the Sherman–Morrison–
Woodbury formula (8) and the scalar inequality (a+b)2 ≤
2(a2 + b2) for a, b ≥ 0 we can estimate∫ 2π

0

‖R(reiϕ , A+BC)x‖2dϕ

=

∫ 2π

0

‖Rλx+RλBD
−1
λ CRλx‖2dϕ

≤ 2

∫ 2π

0

‖Rλx‖2dϕ+ 2M2
D‖x‖2

∫ 2π

0

‖RλB‖2‖CRλ‖2dϕ.

Similarly, using ‖(RλBD−1
λ CRλ)∗‖ = ‖RλBD−1

λ CRλ‖ ≤
MD‖RλB‖‖CRλ‖ we get∫ 2π

0

‖R(reiϕ , A+BC)∗x‖2dϕ

=

∫ 2π

0

‖R∗λx+ (RλBD
−1
λ CRλ)∗x‖2dϕ

≤ 2

∫ 2π

0

‖R∗λx‖2dϕ+ 2M2
D‖x‖2

∫ 2π

0

‖RλB‖2‖CRλ‖2dϕ.

The above estimates together with Theorem 11 imply that
the semigroup ((A+BC)

n
)n∈N is uniformly bounded if

sup
1<r≤2

(r − 1)

∫ 2π

0

‖RλB‖2‖CRλ‖2dϕ <∞. (10)

For all k ∈ {1, . . . , N} let fk(·) be the functions in
Lemma 13. By Lemma 6 we can choose M2 ≥ 1 such that
‖R(λ,A)‖ ≤M2 for all λ /∈ D∪

⋃
k Ωk. Let 1 < r ≤ 2. For

each k ∈ {1, . . . , N} denote by Erk ⊂ [0, 2π] the interval

such that reiϕ ∈ Ωk if and only if ϕ ∈ Erk. Finally, denote
Er = [0, 2π] \ (

⋃
k E

r
k). Now∫ 2π

0

‖RλB‖2‖CRλ‖2dϕ

=

∫
Er
‖RλB‖2‖CRλ‖2dϕ+

N∑
k=1

∫
Erk

‖RλB‖2‖CRλ‖2dϕ

≤
∫
Er
M2

2 ‖B‖2‖C‖2M2
2 dϕ+

N∑
k=1

∫
Erk

fk(reiϕ)2dϕ

≤ 2πM4
2 ‖B‖2‖C‖2 +

N∑
k=1

∫ 2π

0

fk(reiϕ)2dϕ,

which immediately implies (10) by Lemmas 12 and 13, and
therefore ((A+BC)

n
)n∈N is bounded.

Since the perturbed semigroup is bounded and X is a
Hilbert space, Theorem I.2.9 and Corollary I.2.11 in [7]
imply that σ(A+BC) ∩ T ⊂ σp(A+BC) ∪ σc(A+BC).
However, by Theorem 8 we have that {eiϕk}k ⊂ σ(A +
BC) \ σp(A + BC). Together these properties conclude
that eiϕk ∈ σc(A+BC) for all k.

Theorem 8 shows that σ(A + BC) ∩ T = {eiϕk}Nk=1 is
finite and σp(A + BC) ∩ T = ∅. The discrete Arendt–
Batty–Lyubich–Vũ Theorem [7, Thm. II.2.18] thus con-
cludes that the semigroup ((A+BC)

n
)n∈N is strongly sta-

ble.
It remains to show that for all k we have

sup
0<|ϕ−ϕk|≤εA

|ϕ− ϕk|α‖R(eiϕ , A+BC)‖ <∞. (11)

Let k be arbitary. By Lemma 13 there exists Mk ≥ 1 such
that |ϕ− ϕk|αfk(eiϕ) ≤Mk whenever 0 < |ϕ− ϕk| ≤ εA.
The Sherman–Morrison–Woodbury formula (8) implies
that for all ϕ ∈ [0, 2π] satisfying 0 < |ϕ − ϕk| ≤ εA we
have

‖R(eiϕ , A+BC)‖
≤ ‖R(eiϕ , A)‖+ ‖R(eiϕ , A)B‖MD‖CR(eiϕ , A)‖
≤ ‖R(eiϕ , A)‖+MDfk(eiϕ),

and thus

|ϕ− ϕk|α‖R(eiϕ , A+BC)‖
≤ |ϕ− ϕk|α‖R(eiϕ , A)‖+MD|ϕ− ϕk|αfk(eiϕ)

≤MA +MDMk.

This concludes that (11) is satisfied.
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