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Designing Controllers with Reduced Order Internal Models

Lassi Paunonen

In this paper we study robust output tracking for autonomous
linear systems. We introduce a new approach to designing robust
controllers using a recent observation that a full internal model
is not always necessary for robustness. Especially this may be the
case if the control law is only required to be robust with respect to
a specific predetermined class of uncertainties in the parameters
of the plant. The results are illustrated with an example on robust
output tracking for coupled harmonic oscillators.

Index Terms—Output tracking, linear systems, robustness.

I. INTRODUCTION

In this paper we design a controller to achieve robust output
tracking for an autonomous linear system. This control objec-
tive (also known as the robust output regulation problem) has
been studied extensively for both finite-dimensional [1], [2],
[3] and infinite-dimensional plants [4], [5], [6], [7], [8], [9],
[10]. In particular, it is well-known that to achieve robustness
with respect to perturbations in the parameters of the plant it is
both necessary and sufficient that the controller incorporates a
so-called p-copy internal model [1], [2], [10]. In this paper we
design controllers using a new approach, which arises from a
recent observation that if the class of admissible perturbations
is restricted, robustness may be achievable without a full p-
copy internal model in the controller [11]. Instead, in such
situations a smaller internal model may be sufficient.

The results in this paper are presented for infinite-
dimensional linear systems of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X (1a)
y(t) = Cx(t) +Du(t) (1b)

on a Banach space X . This class of systems can be used in
modelling the behaviour of, in particular, heat and diffusion
processes, deformations and vibrations, and time delays. More-
over, the class also includes all autonomous finite-dimensional
systems, as they can be studied by choosing a state space
X = Cn or X = Rn, and letting A, B, C, and D be matrices
of appropriate sizes. The results presented in this paper — in
particular the method for constructing the robust controller —
are also new for finite-dimensional linear systems. Because
of this, we make periodic remarks on the terminology and
on how the main results are represented for finite-dimensional
systems.

In our main control problem, the controller is to be chosen
in such a way that the output y(·) of (1) asymptotically tracks
a given reference signal yref (·), i.e., ‖y(t) − yref (t)‖ → 0 as
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t → ∞. Moreover, for a predetermined class O of perturba-
tions of the plant (1), the control law is required to be robust
with respect to all perturbations (Ã, B̃, C̃, D̃) ∈ O for which
the closed-loop stability is preserved. The control problem
is a modification of the standard robust output regulation
problem [3], [9], where the class of considered perturbations
consists of all (Ã, B̃, C̃, D̃) for which the perturbed closed-
loop system is stable. The main contribution of this paper
is a method for solving the robust output tracking problem
for a given class O of perturbations using an observer-based
controller that incorporates a reduced order internal model.

The robust output regulation problem for a specific class
O of perturbations was studied recently in [11]. The results
in [11] concentrated on the properties of controllers that solve
the control problem, while methods for designing controllers
were not discussed. The purpose of this paper is to use the
results in [11] to construct a controller that solves the robust
output regulation problem for a given class O of perturbations.

The construction of the controller is completed in two parts.
In the first part we introduce the general controller structure,
and design a reduced order internal model that guarantees
robustness with respect to the class O of perturbations. In the
second part the construction is completed by fixing the free
parameters of the controller to achieve closed-loop stability.

The solution of the robust output tracking problem with
respect to perturbations in O is not achievable by the controller
structure used in, for example, [3], [9], [12]. Instead, we intro-
duce a new controller structure that makes the inclusion of a
reduced order internal model possible. The new controller can
also be used in solving the standard robust output regulation
problem. In particular, if O is chosen to consist of all possible
perturbations to the plant (1), our reduced order internal model
becomes the full p-copy internal model. In these regards, the
theory presented in this paper extends the results in [3], [9],
[12].

The results are illustrated with an example on control of two
interconnected driven harmonic oscillators. The controller is
designed to achieve output tracking of a sinusoidal signal and
to be robust with respect to small variations in the damping
coefficients of the harmonic oscillators.

The paper is organized as follows. In Section II we state the
fundamental assumptions on the plant, the reference signals,
the controller, and the closed-loop system. In Section III we
formulate our main control objective, and recall the charac-
terization of controllers solving the problem. The controller is
constructed in Section IV, where we design the reduced order
internal model, and in Section V where the closed-loop is
stabilized. In Section VI we control a system of two harmonic
oscillators. Section VII contains concluding remarks.

If X and Y are Banach spaces and A : X → Y is a linear
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operator, then D(A) and N (A) denote the domain and the null
space of A, respectively. The space of bounded linear operators
from X to Y is denoted by L(X,Y ). (If X = Cn and Y =
Cm, then L(X,Y ) = Cm×n.) If A : X → X , then σ(A) and
ρ(A) = C \ σ(A) are its spectrum (the set of eigenvalues, if
A ∈ Cn×n) and its resolvent set, respectively. For λ ∈ ρ(A)
the resolvent operator is given by R(λ,A) = (λI−A)−1. The
inner product is denoted by 〈·, ·〉.

If the plant is finite-dimensional, the assumption “A gener-
ates a strongly continuous semigroup T (t) on X” is always
satisfied, and the semigroup is precisely the matrix exponential
function, i.e., T (t) = eAt for all t ≥ 0 [13]. The exponential
stability of the semigroup corresponds to the asymptotic
stability of the matrix exponential function eAt, and eAt is
stable if and only if σ(A) ⊂ C− (i.e., if the matrix A is
Hurwitz).

II. ASSUMPTIONS ON THE PLANT AND THE CONTROLLER

The operators of the plant (1) on a Banach space X are
such that A : D(A) ⊂ X → X generates a strongly
continuous semigroup T (t) on X [13]. The input, output, and
feedthrough operators satisfy B ∈ L(U,X), C ∈ L(X,Y ),
and D ∈ L(U, Y ), where U = Y = Cp are the input and
output spaces (in particular, the plant is assumed to have an
equal number of inputs and outputs). We assume that the pair
(A,B) is stabilizable and the pair (C,A) is detectable. The
transfer function of the plant is denoted by

P (λ) = CR(λ,A)B +D, λ ∈ ρ(A). (2)

If the system (1) is finite-dimensional, then the state space is
X = Cn for some n ∈ N, A ∈ Cn×n is a square matrix, and
the input, output, and feedthrough matrices satisfy B ∈ Cn×p,
C ∈ Cp×n, and D ∈ Cp×p. The transfer function is defined
by (2) whenever λ ∈ C is not an eigenvalue of A.

As is customary in the study of the output regulation prob-
lem, instead of a single reference signal yref (·) we consider a
class of reference signals generated by an exosystem

v̇(t) = Sv(t), v(0) = v0 ∈W (3a)
yref (t) = Fv(t) (3b)

on the space W = Cq , where S = diag(iω1, . . . , iωq),
(ωk)

q
k=1 ⊂ R are distinct frequencies, and F ∈ L(W,Y ) =

Cp×q . The signals generated by (3) are of the form yref (t) =∑q
k=1 e

iωkt〈v0, ek〉Fek, where {ek}qk=1 are the Euclidean
basis vectors. We assume that iωk ∈ ρ(A) and that P (iωk) is
invertible for every k ∈ {1, . . . , q}.

The regulation error is defined as e(t) = y(t)− yref (t). We
consider a dynamic error feedback controller

ż(t) = G1z(t) + G2e(t), z(0) = z0 ∈ Z (4a)
u(t) = Kz(t) (4b)

on a Banach space Z, where G1 : D(G1) ⊂ Z → Z generates
a strongly continuous semigroup, G2 ∈ L(Y,Z), and K ∈
L(Z,U). If the controller is finite-dimensional, then its state
space is Z = Cr for some r ∈ N, and the matrices G1, G2, and
K have dimensions G1 ∈ Cr×r, G2 ∈ Cr×p, and K ∈ Cp×r.

The plant and the controller can be written together as a
closed-loop system on the product space Xe = X × Z as

ẋe(t) = Aexe(t) +Bev(t), xe(0) = xe0 = [ x0
z0 ] (5a)

e(t) = Cexe(t) +Dev(t), (5b)

where Ce = [C DK], De = −F ,

Ae =

[
A BK
G2C G1 + G2DK

]
and Be =

[
0

−G2F

]
.

Due to our assumptions, the operator Ae generates a strongly
continuous semigroup Te(t) on Xe. If the plant (1) and the
controller are both finite-dimensional systems, also the closed-
loop system is finite-dimensional and Xe = Cn+r. The closed-
loop system is then stable precisely if σ(Ae) ⊂ C−.

III. THE ROBUST OUTPUT REGULATION PROBLEM

In this section we define the main control problem studied
in this paper. We consider situations where the operators
(or matrices, if (1) is finite-dimensional) A, B, C, and D
are perturbed to Ã : D(Ã) ⊂ X → X , B̃ ∈ L(U,X),
C̃ ∈ L(X,Y ), and D̃ ∈ L(U, Y ), respectively. For every
λ ∈ ρ(Ã) we denote the transfer function of the perturbed
plant by P̃ (λ) = C̃R(λ, Ã)B̃ + D̃. Moreover, the parameters
of the closed-loop system consisting of the perturbed plant and
the controller are denoted by C̃e =

[
C̃ D̃K

]
, and

Ãe =

[
Ã B̃K

G2C̃ G1 + G2D̃K

]
.

The perturbations in A, B, C, and D do not affect Be or De.

Definition 1. The class of all considered perturbations of
(A,B,C,D) is denoted by O. The class has the property
(A,B,C,D) ∈ O, and all (Ã, B̃, C̃, D̃) ∈ O satisfy the
following conditions.
(a) Ã generates a strongly continuous semigroup on X .
(b) For every k ∈ {1, . . . , q} we have that iωk ∈ ρ(Ã) and

P̃ (iωk) is invertible.

If the plant (1) is finite-dimensional, condition (a) in Defi-
nition 1 is trivially satisfied for any perturbation of the matrix
A. Moreover, if a controller stabilizes the unperturbed closed-
loop system exponentially, then the conditions of Definition 1
are satisfied and the closed-loop system remains stable for any
bounded perturbations with sufficiently small norms.

The main control problem studied in this paper is defined
in the following.

The Robust Output Regulation Problem for O. Choose
(G1,G2,K) in such a way that the following are satisfied:

1. The closed-loop system is stable, i.e., the semigroup
Te(t) generated by Ae is exponentially stable.

2. For all initial states v0 ∈W and xe0 ∈ Xe the regulation
error goes to zero asymptotically, i.e., limt→∞ e(t) = 0.

3. If (A,B,C,D) are perturbed to (Ã, B̃, C̃, D̃) ∈ O
in such a way that the perturbed closed-loop system
is exponentially stable, then limt→∞ e(t) = 0 for all
v0 ∈W and xe0 ∈ Xe.
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The largest possible class O contains all the perturbations
(Ã, B̃, C̃, D̃) that satisfy the two conditions in Definition 1. On
the other hand, the problem statement with O allows the study
of perturbations of very particular types. This is illustrated in
Section VI. Finally, in the other extreme case, the class O
can be chosen to only contain the operators (A,B,C,D) of
the nominal plant. The control problem then reduces to output
tracking without the robustness requirement.

The following theorem presented in [11, Thm. 4] char-
acterizes the controllers solving the robust output regulation
problem for the class O of perturbations.

Theorem 2. A controller (G1,G2,K) stabilizing the closed-
loop system solves the robust output regulation problem for
O if and only if for every (Ã, B̃, C̃, D̃) ∈ O for which the
perturbed closed-loop system is stable the equations

P̃ (iωk)Kz
k = −Fek (6a)

(iωkI − G1)zk = 0 (6b)

have solutions zk ∈ D(G1) for all k ∈ {1, . . . , q}.

IV. THE CONTROLLER WITH A REDUCED ORDER
INTERNAL MODEL

In this section we introduce a controller structure that is
suitable for solving the robust output regulation problem for
the class O of perturbations. The internal model principle
states that a stabilizing controller is robust with respect to all
perturbations of (A,B,C,D) (as long as closed-loop stability
is preserved) if the internal model contains p = dimY
copies of every frequency iωk of the exosystem. However,
if O is a smaller class, a smaller number of copies of some
of the frequencies iωk may already be enough to guarantee
robustness with respect to perturbations in O.

As the state space of the controller we choose Z = Z1×Z2,
where Z1 = CnZ and Z2 is a Banach space. The parameters
(G1,G2,K) of the controller are of the form

G1 =

[
G1 R1

0 R2

]
, G2 =

[
G2

R3

]
, K =

[
K1, −K2

]
,

where G1 ∈ L(Z1), R1 ∈ L(Z2, Z1), R2 : D(R2) ⊂
Z2 → Z2 generates a semigroup on Z2, G2 ∈ L(Y,Z1),
R3 ∈ L(Y,Z2), K1 ∈ L(Z1, U), and K2 ∈ L(Z2, U).

The matrix G1 is called the internal model of the exosys-
tem (3), and it will be chosen to contain a suitable number of
copies of the exosystem’s frequencies.

For every k ∈ {1, . . . , q} define

Sk = span
{
P̃ (iωk)

−1Fek
∣∣ (Ã, B̃, C̃, D̃) ∈ O

}
⊂ U

and pk = dimSk. We will show that the robust output
regulation problem for O can be solved with an internal model
G1 containing exactly pk copies of every frequency iωk of the
exosystem. In particular, we choose G1 to be a diagonal matrix

G1 =

iω1Ip1
. . .

iωqIpq

 ,

where the sizes of the diagonal blocks satisfy iωkIpk ∈
Cpk×pk . Since the frequencies iωk are distinct, we imme-
diately have dimN (iωkI − G1) = pk, which together with
the structure of G1 further implies dimN (iωkI − G1) ≥ pk.
We have G1 ∈ CnZ×nZ , where nZ = p1 + p2 + · · · + pq .
Label the Euclidean basis vectors as (e1, e2, . . . , enZ

) =
(ϕ1

1, . . . , ϕ
1
p1 , ϕ

2
1, . . . , ϕ

2
p2 , . . . , ϕ

q
1, . . . , ϕ

q
pq ). Then for every

k ∈ {1, . . . , q} the vectors {ϕk1 , . . . , ϕkpk} form an orthonor-
mal basis of N (iωkI −G1).

Theorem 3. For every k ∈ {1, . . . , q} let {uk1 , . . . , ukpk} ⊂ Sk
be a basis of Sk. If the part K1 in K is chosen as

K1 =

q∑
k=1

pk∑
l=1

〈·, ϕkl 〉ukl , (7)

then for any perturbations (Ã, B̃, C̃, D̃) ∈ O and for all k ∈
{1, . . . , q} the equations (6) have a solution zk ∈ D(G1).

Proof. Let (Ã, B̃, C̃, D̃) ∈ O and k ∈ {1, . . . , q} be arbitrary.
Since −P̃ (iωk)−1Fek ∈ Sk and since {uk1 , . . . , ukpk} is a basis
of Sk, there exist {αkl }

pk
l=1 ⊂ C such that

−P̃ (iωk)−1Fek =

pk∑
l=1

αkl u
k
l .

If we choose zk = (zk1 , 0)
T ∈ Z, where zk1 =

∑pk
l=1 α

k
l ϕ

k
l ∈

Z1, then a direct computation yields

P̃ (iωk)Kz
k = P̃ (iωk)K1z

k
1 = P̃ (iωk)

q∑
k′=1

pk′∑
l=1

〈zk1 , ϕk
′

l 〉uk
′

l

= P̃ (iωk)

pk∑
l=1

αkl u
k
l = P̃ (iωk)(−P̃ (iωk)−1Fek) = −Fek,

and thus zk ∈ D(G1) is a solution of (6a). Furthermore, we
have

(iωkI − G1)zk =

[
iωkI −G1 −R1

0 iωkI −R2

] [
zk1
0

]
=

[∑pk
l=1 α

k
l (iωkI −G1)ϕ

k
l

0

]
=

[
0
0

]
,

since {ϕkl }
pk
l=1 ⊂ N (iωkI − G1). This shows that zk also

satisfies (6b). Since (Ã, B̃, C̃, D̃) ∈ O and k ∈ {1, . . . , q}
were arbitrary, the proof is complete.

Remark 4. If Sk = U and pk = dimSk = p for every
k ∈ {1, . . . , q}, the internal model G1 becomes the full p-copy
internal model G1 = block diag(iω1Ip, . . . , iωqIp) where
Ip ∈ Cp×p. In this case the bases {ukl }

p
l=1 can be chosen

to consist of the Euclidean basis vectors, i.e., ukl = el for
every k ∈ {1, . . . , q} and l ∈ {1, . . . , p}. The operator K1

in (7) is then equal to K1 =
[
Ip Ip . . . Ip

]
∈ Cp×pq. All

the results presented in this paper remain valid also in this
situation. Finally, if the class O of perturbations consists of
all the perturbations (Ã, B̃, C̃, D̃) satisfying the two conditions
in Definition 1, a full p-copy internal model is necessary for
robustness. This follows from [11, Thm. 7] and the fact that
the conditions of Definition 1 are satisfied and the closed-loop
stability is preserved for all sufficiently small perturbations in
D.
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V. STABILIZATION OF THE CLOSED-LOOP SYSTEM

The following theorem fixes the remaining parameters of
the controller (G1,G2,K) in such a way that the closed-loop
system is stabilized exponentially.

Theorem 5. Define Z = Z1 × X and consider the con-
troller (4) with

G1 =

[
G1 G2(C +DK2)
0 A+BK2 + L(C +DK2)

]
, G2 =

[
G2

L

]
,

and K =
[
K1 −K2

]
, where the operators G1, G2, K1, K2,

and L are chosen as follows.

(a) G1 and K1 are as in Section IV.
(b) K2 ∈ L(X,U) and L1 ∈ L(Y,X) are chosen in such

a way that the semigroups generated by A + BK2 and
A+ L1C are exponentially stable.

(c) He1 ∈ L(Z1, X) is defined by

He1=

q∑
k=1

pk∑
l=1

〈·, ϕkl 〉R(iωk, A+ L1C)(B + L1D)K1ϕ
k
l

and it is the (unique) solution of the Sylvester equation

He1G1 = (A+ L1C)He1 + (B + L1D)K1. (8)

(d) With the choices in (a)–(c), the pair (CHe1 +DK1, G1)
is detectable, and G2 ∈ L(Y,Z1) is chosen in such a way
that G1 +G2(CHe1 +DK1) generates an exponentially
stable semigroup (i.e., the matrix is Hurwitz).

(e) Finally, we choose L = L1 +He1G2.

With these choices the closed-loop system (5) is stable, and
the controller (4) solves the robust output regulation problem
for O.

Proof. Assume G1 and K1 are as in Section IV. We begin by
verifying the properties given in parts (b)–(d) of the theorem.

(b) Due to the assumption that (A,B) and (C,A) are
stabilizable and detectable, respectively, it is possible to choose
K2 and L1 in such a way that A+BK2 and A+L1C generate
exponentially stable semigroups.

(c) Since A+L1C generates an exponentially stable semi-
group and since G1 is a diagonal matrix with σ(G1) =
{iωk}qk=1 ⊂ iR, we have from [14, Cor. 8] that the Sylvester
equation (8) has a unique solution. If we choose He1 as
suggested and if k ∈ {1, . . . , q} and l ∈ {1, . . . , pk}, then
a direct computation (using G1ϕ

k
l = iωkϕ

k
l ) yields

(He1G1 − (A+ L1C)He1)ϕ
k
l = (iωkI −A− L1C)He1ϕ

k
l

= (iωkI −A− L1C)R(iωk, A+ L1C)(B + L1D)K1ϕ
k
l

= (B + L1D)K1ϕ
k
l .

Since {ϕkl | k = 1, . . . , q, l = 1, . . . , pk } is a basis of Z1,
this concludes that He1 is the unique solution of (8).

(d) Since σ(G1) = {iωk}qk=1 ⊂ iR and N (iωkI −
G1) = span{ϕk1 , . . . , ϕkpk} for each k ∈ {1, . . . , q}, the
detectability of (CHe1+DK1, G1) can be verified by showing
that (CHe1 + DK1)ϕ

k
l 6= 0 for all k ∈ {1, . . . , q} and

l ∈ {1, . . . , pk} [15, Thm. 6.2-5]. To this end, let k and l be
arbitrary. Using (7) and the formulas for He1 and K1 shows

(CHe1 +DK1)ϕ
k
l

= CR(iωk, A+ L1C)(B + L1D)K1ϕ
k
l +DK1ϕ

k
l

= PL(iωk)K1ϕ
k
l = PL(iωk)u

k
l ,

where PL(λ) = CR(λ,A + L1C)(B + L1D) + D for
λ ∈ C+. It is straightforward to show (using the Woodbury
formula) that for every λ ∈ ρ(A) ∩ ρ(A + L1C) we have
1 ∈ ρ(CR(λ,A)L1) and PL(λ) = (I−CR(λ,A)L1)

−1P (λ).
Since P (iωk) is invertible by assumption and iωk ∈ ρ(A) ∩
ρ(A + L1C), also PL(iωk) is invertible. We therefore have
(CHe1 + DK1)ϕ

k
l = PL(iωk)u

k
l 6= 0, since PL(iωk) is

invertible and ukl 6= 0 (because {ukl }
pk
l=1 is a basis of

Sk). This concludes that the pair (CHe1 + DK1, G1) is
detectable, and G2 can be chosen in such a way that the matrix
G1 +G2(CHe1 +DK1) is Hurwitz.

We have now shown that the parameters of the controller
can be chosen as suggested in parts (a)–(e). It remains to
show that the controller solves the robust output regulation
problem for O. We have from Theorem 3 that the equations (6)
have solutions for all perturbations (Ã, B̃, C̃, D̃) ∈ O and all
k ∈ {1, . . . , q}. Because of this, Theorem 2 implies that the
controller (G1,G2,K) solves the control problem provided that
the closed-loop system is stable. In the remaining part of the
proof we will show that the semigroup Te(t) generated by Ae
is exponentially stable.

If the controller (G1,G2,K) is chosen as in the statement
of the theorem, the operator Ae is given by

Ae =

 A BK1 −BK2

G2C G1 +G2DK1 G2C
LC LDK1 A+BK2 + LC

 .
If we choose a similarity transform Qe ∈ L(X ×Z1×X) by

Qe =
[
I 0 0
0 I 0
I 0 I

]
and Q−1e =

[
I 0 0
0 I 0
−I 0 I

]
,

we can define Âe = QeAeQ
−1
e on X×Z1×X , and compute

Âe = Qe

 A+BK2 BK1 −BK2

0 G1 +G2DK1 G2C
−A−BK2 LDK1 A+BK2 + LC


=

A+BK2 BK1 −BK2

0 G1 +G2DK1 G2C
0 (B + LD)K1 A+ LC

 .
Denote

Âe1 =

[
G1 +G2DK1 G2C
(B + LD)K1 A+ LC

]
.

Since A + BK2 is exponentially stable by assumption, the
block triangular structure shows that Âe (and hence also Ae
by similarity) is exponentially stable if Âe1 is exponentially
stable [13, Lem. 3.2.2]. Since L = L1 +He1G2, we have

Âe1 =

[
G1 0

(B + L1D)K1 A+ L1C

]
+

[
G2

He1G2

] [
DK1 C

]
.
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Define Qe1 =
[

I 0
He1 −I

]
∈ L(Z1×X) with Q−1e1 = Qe1. Since

He1 satisfies the equation (8), a direct computation yields

Q−1e1

[
G1 0

(B + L1D)K1 A+ L1C

]
Qe1 =

[
G1 0
0 A+ L1C

]
.

Therefore, if we define Ae1 = Q−1e1 Âe1Qe1, then

Ae1 =

[
G1 0
0 A+ L1C

]
+

[
G2

0

] [
CHe1 +DK1 − C

]
=

[
G1 +G2(CHe1 +DK1) −G2C

0 A+ L1C

]
.

Since A + L1C generates an exponentially stable semigroup
and G1 +G2(CHe1 +DK1) is Hurwitz, also the semigroup
generated by Ae1 is exponentially stable by [13, Lem. 3.2.2].
This finally concludes that the closed-loop system is exponen-
tially stable.

The proof of Theorem 5 can be modified in a situation where
the internal model (either full or of reduced order) is chosen
in some other way than the one given in Section IV. Three
properties need to be verified: (1) The pair (G1,K1) contains
a suitable internal model, (2) the Sylvester equation (8) has a
solution, and (3) the matrix G2 can be chosen in such a way
that G1 +G2(CHe1 +DK1) is exponentially stable.

VI. DRIVEN HARMONIC OSCILLATORS

In this section we control a system consisting of two
interconnected driven harmonic oscillators

q̈1(t) + α1q̇1(t) + q1(t) = q2(t) + F1(t)

q̈2(t) + α2q̇2(t) + 2q2(t) = −q1(t) + F2(t),

where α1 ≥ 0 and α2 ≥ 0 are the damping coefficients of
the subsystems. In the nominal situation we have α1 = 1 and
α2 = 0 (the first oscillator is damped and the second one is
undamped). We design a controller that is robust with respect
to small changes in the coefficients α1 and α2.

The control inputs to the system are the external forces
F1(t) and F2(t), and the measurements are the positions q1(t)
and q2(t) of the oscillators. With choices x1 = q1, x2 = q̇1,
x3 = q2, and x4 = q̇2, the system can be written in standard
form (1) on the space X = C4, where x = [x1, x2, x3, x4]

T ,
x0 = [q1(0), q̇1(0), q2(0), q̇2(0)]

T , u(t) = [u1(t), u2(t)]
T =

[F1(t), F2(t)]
T , y(t) = [y1(t), y2(t)]

T = [q1(t), q2(t)]
T , and

A =

[
0 1 0 0
−1 −α1 1 0
0 0 0 1
−1 0 −2 −α2

]
, B =

[
0 0
1 0
0 0
0 1

]
,

C =
[
1
0
0
0
0
1
0
0

]
, and D = 0 ∈ C2×2. In the nominal situation,

when α1 = 1 and α2 = 0, the matrix A has two stable and
two unstable eigenvalues. The pairs (A,B) and (C,A) are
controllable and observable, respectively. The transfer function
of the nominal plant is P (λ) = CR(λ,A)B. Since the
matrices A, B, and C are real, we have P (λ) = P (λ).

We consider output tracking of a reference signal

yref (t) =

[
1 + cos(πt)
−1 + cos(πt)

]
=

[
1
−1

]
+ cos(πt)

[
1
1

]
. (9)

To generate yref (·), we choose an exosystem (3) on the space
W = C3 with parameters

S = diag(0, iπ,−iπ), F =
[

1 1 1
−1 1 1

]
.

The reference signal in (9) is then generated with an initial
state v0 = (1, 1/2, 1/2)T ∈ C3. We have q = 3, iω1 = 0,
iω2 = iπ, and iω3 = −iπ. The transfer function P (λ) of the
plant exists and is invertible at λ = 0, iπ,−iπ.

The Class of Perturbations: The class O of perturbations
consists of (Ã, B,C) where the perturbed damping coeffi-
cients α̃1, α̃2 ≥ 0 are such that P̃ (λ) exists and is invertible
for λ ∈ {0,±iπ}. The transfer function of the perturbed plant
is P̃ (λ) = CR(λ, Ã)B. Since Ã, B, and C are real, we again
have P̃ (λ) = P̃ (λ).

Construction of the Reduced Order Internal Model: We
need the spaces Sk corresponding to the frequencies {iωk}3k=1

of the exosystem. We begin with iω1 = 0. A direct com-
putation shows that P̃ (iω1) does not depend on the values
of α̃1 ≥ 0 and α̃2 ≥ 0 (as long as 0 ∈ ρ(Ã)). Therefore
P̃ (0) = P (0) = 1

3

[
2
−1

1
1

]
for every (Ã, B,C) ∈ O, and

S1 = span
{
P̃ (0)−1Fe1

∣∣ (Ã, B,C) ∈ O }
= span{P (0)−1Fe1} = span

{[
2
−1
]}
.

Thus p1 = 1, and we can choose the basis of S1 to be {u11}
with u11 =

[
2
−1

]
.

For iω2 = iπ and α̃1, α̃2 ≥ 0 for which {iωk}3k=1 ⊂
ρ(Ã) and P̃ (iωk) are invertible we have P̃ (iω2)

−1Fe2 =[
−π2−iπα̃1

2−π2−iπα̃2

]
. We want to show that the space

S2 = span
{
P̃ (iω2)

−1Fe2
∣∣ (Ã, B,C) ∈ O }

contains at least two linearly independent vectors. Since the
plant with the nominal damping coefficients belongs to O, it
is sufficient to find perturbed coefficients α̃1, α̃2 ≥ 0 such that
(Ã, B,C) ∈ O and such that P (iω2)

−1Fe2 and P̃ (iω2)
−1Fe2

are linearly independent. To this end, we can choose α̃2 =
α2 = 0 and let α̃1 be such that |α̃1−α1| is small but nonzero
(small enough so that iωk ∈ ρ(Ã) and P̃ (iωk) are invertible
for k = 1, 2, 3). Then the two vectors

P (iω2)
−1Fe2 =

[
−π2−iπ
2−π2

]
, P̃ (iω2)

−1Fe2 =
[
−π2−iπα̃1

2−π2

]
are linearly independent. Since S2 ⊂ C2, this immediately
concludes that S2 = C2 and p2 = dimS2 = 2. As the basis
of S2 we can choose {u21, u22} where u21 = e1 and u22 = e2.

Since P̃ (λ) = P̃ (λ) and Fe3 = Fe2, it is easy to see that
also p3 = dimS3 = dimS2 = 2, and we can choose the basis
{u31, u32} of S3 such that u31 = e1 and u32 = e2.

Using the above information, we can see that the internal
model can be chosen as G1 = diag (0, iπ, iπ,−iπ,−iπ) , and
(ϕ1

1, ϕ
2
1, ϕ

2
2, ϕ

3
1, ϕ

3
2) = (e1, e2, e3, e4, e5). The matrix K1 in

Theorem 3 is

K1 =
[
u11, u

2
1, u

2
2, u

3
1, u

3
2

]
=

[
2 1 0 1 0
−1 0 1 0 1

]
.

Stabilization of the Closed-Loop System: The remaining
parameters of the controller are chosen as in Theorem 5. We



6

begin by using pole placement to choose matrices K2 and L1

so that σ(A+BK2) = σ(A+ L1C) = {−2± i,−2± 1.3i}.
In the second part, we choose the matrix He1 as in part (c)

of Theorem 5. Furthermore, we need to choose G2 in such a
way that G1 +G2(CHe1 +DK1) is Hurwitz. As we saw in
the proof of Theorem 5, we have

CHe1 +DK1 =

3∑
k=1

pk∑
l=1

〈·, ϕkl 〉PL(iωk)ϕkl

where PL(λ) = CR(λ,A + L1C)B (since D = 0). We use
pole placement to choose G2 so that σ(G1 + G2(CHe1 +
DK1)) = {−2,−2± 0.9πi,−2± 1.1πi}. Finally, we choose
L = L1+He1G2. The parameters of the controller on Z = C9

are

G1 =

[
G1 G2C
0 A+BK2 + LC

]
∈ C9×9, G2 =

[
G2

L

]
∈ C2×9,

and K = [K1, −K2] ∈ C9×2.
The controlled system was simulated with initial states x0 =

[1, 0,−2, 0]T for the plant, and z0 = 0 ∈ C9 for the controller.
The output and the regulation error are depicted in Figures 1
and 2, respectively.
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Fig. 1. y (solid) and yref (dashed)
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Fig. 2. Regulation error e(t)

By construction, the control law is robust with respect to
small changes in α1 and α2. Figures 3 and 4 depict the
behaviour of the output and the regulation error, respectively,
with perturbed damping coefficients α̃1 = 0.9 and α̃2 = 0.15.
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Fig. 3. y (solid) and yref (dashed)
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Fig. 4. Regulation error e(t)

VII. CONCLUSIONS

In this paper we have designed a controller to achieve robust
output tracking for a linear system. We have studied a situation
where the control law is only required to be robust with respect
to a predetermined class O of perturbations. The results in
this paper illustrate that in some situations the solution of this

problem does not require a full p-copy internal model in the
controller.

Further research topics include studying the use of other
types of controllers besides the observer-based design used in
this paper. In particular, if the original system is exponentially
stable, the standard robust output regulation problem can be
solved using a very simple controller [4], [6] that is finite-
dimensional even for infinite-dimensional plants.
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