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Abstract. In this paper we study the stability properties of strongly
continuous semigroups generated by block operator matrices. We con-
sider triangular and full operator matrices whose diagonal operator
blocks generate polynomially stable semigroups. As our main results,
we present conditions under which also the semigroup generated by the
operator matrix is polynomially stable. The theoretical results are used
to derive conditions for the polynomial stability of a system consisting
of a two-dimensional and a one-dimensional damped wave equation.
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1. Introduction

The main topic of this paper is the nonuniform stability of strongly continuous
semigroups generated by 2× 2 block operator matrices. In particular, we are
interested in the asymptotic behaviour of semigroups generated by operators
of the form

A =

(
A1 BC
0 A2

)
, and A =

(
A1 B1C2

B2C1 A2

)
(1)

where A2 : D(A2) ⊂ X2 → X2 and A2 : D(A2) ⊂ X2 → X2 generate strongly
continuous semigroups T1(t) and T2(t), respectively, and where X1 and X2

are Hilbert spaces. The remaining operators are assumed to be bounded. In
both of the cases in (1) we denote by T (t) the semigroup generated by A
on the Hilbert space X = X1 × X2. We concentrate on a situation where
the semigroups T1(t) and T2(t) are polynomially stable [1, 3, 4], that is, the
semigroups are uniformly bounded, σ(A1) ⊂ C− and σ(A2) ⊂ C−, and there
exist α1, α2 > 0 and M1,M2 ≥ 1 such that for all t > 0

‖T1(t)A−1
1 ‖ ≤

M1

t1/α1
and ‖T2(t)A−1

2 ‖ ≤
M2

t1/α2
.
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As the main results of this paper, we present conditions under which also the
semigroup T (t) generated by A is polynomially stable.

If the semigroups T1(t) and T2(t) are exponentially stable, the operator
A can be seen as a bounded perturbation of an operator

A0 =

(
A1 0
0 A2

)
,

which generates an exponentially stable semigroup. The perturbation theory
for exponentially stable semigroups then states that also the semigroup gen-
erated by A is exponentially stable provided that the norms of the operators
BC, or B1C2 and B2C1, are sufficiently small [7, Thm. III.1.3]. In fact, the
semigroup generated by the block triangular operator A in (1) is exponen-
tially stable regardless of the size of ‖BC‖. However, if the stability of T1(t)
and T2(t) is not exponential, the situation becomes more complicated, as is
illustrated by the following example.

Example 1. If A1 : D(A1) ⊂ X1 → X1 generates a semigroup T1(t) on X1

and if ε > 0, then the block operator matrix

A =

(
A1 εI
0 A1

)
, D(A) = D(A1)×D(A1)

generates a semigroup

T (t) =

(
T1(t) εtT1(t)

0 T1(t)

)
on X = X1 ×X1. In order for this semigroup to be uniformly bounded, it is
necessary that

sup
t>0

εt‖T1(t)‖ <∞,

which implies ‖T1(t)‖ → 0 as t → ∞. However, this is only possible if the
semigroup T1(t) is exponentially stable [7, Prop. V.1.7]. This implies that the
semigroup T (t) is unstable whenever the semigroup T1(t) is not exponentially
stable.

In this paper we show that if T1(t) and T2(t) are not exponentially stable,
then the stability of the semigroup T (t) also depends on other properties
of BC, B1C2, and B2C1 besides their norms. In fact, if T1(t) and T2(t) are
polynomially stable, it is necessary to impose smoothness conditions on these
operators in order to guarantee the stability of T (t). In particular, we assume
the bounded operators in A satisfy range conditions of the form

R(B) ⊂ D((−A1)β) and R(C∗) ⊂ D((−A∗2)γ)

for some β, γ ≥ 0, or

R(B1) ⊂ D((−A1)β1), R(C∗1 ) ⊂ D((−A∗1)γ1)

R(B2) ⊂ D((−A2)β2), R(C∗2 ) ⊂ D((−A∗2)γ2)

for some βk, γk ≥ 0 and k = 1, 2. We will show that the semigroup generated
by a triangular A is polynomially stable provided that the exponents β and γ
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are sufficiently large. In the case of the semigroup generated by a full operator
matrix A, it is in addition required that the graph norms

‖(−A1)β1B1‖, ‖(−A∗1)γ1C∗1‖, ‖(−A2)β2B2‖, and ‖(−A∗2)γ2C∗2‖

are small enough. The results presented in this paper are based on the recent
characterization of polynomial stability of a semigroup on a Hilbert space in
terms of the behaviour of the resolvent operator of its generator [3, 4, 2].

In addition to our main focus, which is the case where both T1(t) and
T2(t) are polynomially stable, we separately consider the situations where
one of T1(t) and T2(t) is exponentially stable and the other is polynomially
stable. We show that in such a situation it is possible to completely omit the
conditions on the operator BC, and relax those on operators B2C1 and B1C2

in the stability results. In fact, we will see that these conditions agree with
the interpretation of exponential stability as the “limit case” of polynomial
stability with the exponent α = 0.

To the author’s knowledge, the polynomial stability of semigroups gen-
erated by block operator matrices has not been studied previously in the liter-
ature. One known result regarding nonuniform stability of triangular systems
states that if one of T1(t) and T2(t) is exponentially stable and the other is
strongly stable, the semigroup generated a triangular A is also strongly sta-
ble, see, for example, [10, Lem. 20]. The result only applies to triangular
systems, and in the corresponding situation for a full operator matrix the
stability can in general be destroyed even by operators B1C2 and B2C1 with
arbitrarily small norms. Example 19 in Section 6 demonstrates this situation.

The results presented in this paper can be used in studying the as-
ymptotic behaviour of linear partial differential equations. In addition, they
have applications in the control of infinite-dimensional linear systems. The
procedure for stabilizing a linear system using an observer-based dynamic
feedback controller requires studying the stability of semigroups generated
by block operator matrices, see for example [18, 10, 17, 16], and [6, Sec. 5.3].
If the controlled system is only strongly or polynomially stabilizable, de-
termining the stability of the closed-loop requires results on operators of the
form (1) where both of T1(t) and T2(t) are strongly or polynomially stable. In
particular, since the systems under consideration usually have finite numbers
of inputs and outputs, the interconnections corresponding to the operator
blocks BC, B1C2, and B2C2 in (1) are very often finite rank operators.

The operators in (1) can be seen as perturbations of the block-diagonal
operator A0 = diag(A1, A2). Therefore, the perturbation results in [13, 14, 15]
could be used to derive conditions for the stability of the semigroup generated
by A. During the course of this paper we will see that taking into account
the structure of the operator matrices yields considerably better results. In
particular, the general perturbation results in the above references require
that the exponents β and γ are sufficiently large, and the corresponding
graph norms of the perturbing operators are small enough. The results in
this paper show that in the case of the triangular block operator matrix,
the conditions on the graph norms can be omitted completely. Moreover, for
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both triangular and full operator matrices the conditions on the exponents
β, γ ≥ 0, and β1, γ1, β2, γ2 ≥ 0 are weaker than the conditions achievable by
a direct application of the perturbation results in [13, 14, 15].

We illustrate the applicability of the theoretical results by studying a
system consisting of two damped wave equations — one two-dimensional
and the other one-dimensional. Both of the wave equations are polynomi-
ally stable, and they are coupled in one direction. We use our results on
triangular systems to derive conditions under which the full coupled system
is polynomially stable. In addition, in Section 6 we present two shorter ex-
amples demonstrating that the conditions on the exponents β, γ ≥ 0, and
β1, γ1, β2, γ2 ≥ 0 in our main results are, in a certain sense, optimal.

The paper is organized as follows. In Section 2 we introduce notation and
collect some essential results on polynomially stable semigroups. The main
results of the paper are presented in Section 3. The results concerning the
stability of semigroups generated by triangular and full systems are proved
in Sections 4 and 5, respectively. Section 6 contains two examples illustrating
the optimality of our results. In Section 7 we apply the theoretical results to
determining the stability of two coupled wave equations.

2. Background on Polynomially Stable Semigroups

In this section we introduce the notation used throughout the paper, and re-
view the definition and some of the most important properties of polynomially
stable semigroups. If X and Y are Banach spaces and A : X → Y is a linear
operator, then we denote by D(A) and R(A) the domain and the range of A,
respectively. The space of bounded linear operators from X to Y is denoted
by L(X,Y ). If A : D(A) ⊂ X → X is a closed operator, then σ(A) and ρ(A)
denote the spectrum and the resolvent set of A, respectively. For λ ∈ ρ(A)
the resolvent operator is given by R(λ,A) = (λ−A)−1. The inner product
on a Hilbert space and the dual pairing on a Banach space are both denoted
by 〈·, ·〉.

For a function f : R → R and for α ≥ 0 we use the notation f(ω) =
O (|ω|α) if there exist constants M > 0 and ω0 ≥ 0 such that |f(ω)| ≤M |ω|α
for all ω ∈ R with |ω| ≥ ω0.

Definition 2. Let α > 0. A semigroup T (t) on a Banach space X generated by
A : D(A) ⊂ X → X is polynomially stable with power α, if T (t) is uniformly
bounded, iR ⊂ ρ(A), and if there exists M ≥ 1 such that

‖T (t)A−1‖ ≤ M

t1/α
, ∀t > 0.

For a polynomially stable semigroup T (t) generated by A, the operators
operators −A and −A∗ are sectorial in the sense of [9, Ch. 2] due to the fact
that T (t) is uniformly bounded. Therefore, the fractional powers (−A)β and
(−A∗)β are well-defined for all β ≥ 0.
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The theory presented in this paper is based on the following characteri-
zations for polynomial stability of a semigroup on a Hilbert space. For proofs
of the equivalences, see [2, Lem. 4.2], [4, Lem. 2.3, Thm. 2.4], and [11, Lem.
3.2].

Theorem 3. Assume A generates a uniformly bounded semigroup T (t) on
a Hilbert space X, and iR ⊂ ρ(A). For fixed α, β > 0 the following are
equivalent.

(a) ‖T (t)A−1‖ ≤ M

t1/α
, ∀t > 0

(a′) ‖T (t)(−A)−β‖ ≤ M

tβ/α
, ∀t > 0

(b) ‖R(iω,A)‖ = O(|ω|α)

(c) sup
Reλ≥0

‖R(λ,A)(−A)−α‖ <∞.

Lemma 4. Assume T (t) generated by A on a Hilbert space X is polynomially
stable with power α > 0, assume β, γ ≥ 0 are such that β + γ ≥ α, and let Y
be a Banach space. There exists a constant M ≥ 1 such that if B ∈ L(Y,X)
and C ∈ L(X,Y ) satisfy R(B) ⊂ D((−A)β) and R(C∗) ⊂ D((−A∗)γ), then

‖CR(λ,A)B‖ ≤M‖(−A)βB‖‖(−A∗)γC∗‖

for all λ ∈ C+.

Proof. Since (−A)β has a bounded inverse, (−A)β and (−A)βB are closed op-
erators. SinceD((−A)βB) = Y , the Closed Graph Theorem implies (−A)βB ∈
L(Y,X). Similarly, we have (−A∗)γC∗ ∈ L(Y,X) and C(−A)γ extends to a
bounded operator Cγ ∈ L(X,Y ) with norm ‖Cγ‖ ≤ ‖(−A∗)γC∗‖. If we

choose M = ‖(−A)α−β−γ‖ · sup
λ∈C+‖R(λ,A)(−A)−α‖, then for all λ ∈ C+

‖CR(λ,A)B‖ = ‖C(−A)γR(λ,A)(−A)−α(−A)α−β−γ(−A)βB‖

≤ ‖Cγ‖‖R(λ,A)(−A)−α‖‖(−A)α−β−γ‖‖(−A)βB‖

≤M‖(−A)βB‖‖(−A∗)γC∗‖.
�

Remark 5. The proof of Lemma 4 shows that the assumption R(C∗) ⊂
D((−A∗)γ) could be replaced with the condition that C(−A)γ : D((−A)γ) ⊂
X → Y has a bounded extension Cγ ∈ L(X,Y ). In this version of the result
the estimate on the operator CR(λ,A)B would become

‖CR(λ,A)B‖ ≤M‖(−A)βB‖‖Cγ‖.
Lemma 6. Let A generate a semigroup T (t) on a Hilbert space X and let

σ(A) ⊂ C−. The semigroup T (t) is uniformly bounded if and only if for all
x, y ∈ X we have

sup
ξ>0

ξ

∫ ∞
−∞

(
‖R(ξ + iη, A)x‖2 + ‖R(ξ + iη, A)∗y‖2

)
dη <∞.
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Moreover, if B̃ ∈ L(Y,X) where dimY <∞, then

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A)B̃‖2dη <∞, sup

ξ>0
ξ

∫ ∞
−∞
‖R(ξ + iη, A)∗B̃‖2dη <∞.

Proof. The proof of the first part can be found in [8, Thm. 2]. The second part

follows from the first part together with the estimate ‖RB̃‖2 ≤
∑p
j=1 ‖Rbj‖2

for R ∈ L(X) when B̃u =
∑p
j=1 ujbj for u ∈ Cp. �

3. Stability of Semigroups Generated by Operator Matrices

In this section we present our main results. The proofs of the theorems are
given in Sections 4 and 5. Throughout the paper we assume T1(t) and T2(t)
are strongly continuous semigroups generated by A1 : D(A1) ⊂ X1 → X1

and A2 : D(A2) ⊂ X2 → X2, respectively. Most of our results concern the
case where both X1 and X2 are Hilbert spaces, and we specifically point out
the results that are also valid for Banach spaces. Unless otherwise stated,
we assume T1(t) is polynomially stable with power α1 > 0, and T2(t) is
polynomially stable with power α2 > 0.

Our first main interest is in the stability of the semigroup T (t) generated
by

A =

(
A1 BC
0 A2

)
, D(A) = D(A1)×D(A2) (2)

where B ∈ L(Y,X1) and C ∈ L(X2, Y ) for some Banach space Y . Since the
operator BC is bounded, the semigroup T (t) has the form [6, Lem. 3.2.2]

T (t) =

(
T1(t) S(t)

0 T2(t)

)
,

where S(t) ∈ L(X2, X1) is such that

S(t)x2 =

∫ t

0

T1(t− s)BCT2(s)x2ds ∀x2 ∈ X2.

We assume the operators B and C satisfy

R(B) ⊂ D((−A1)β) and R(C∗) ⊂ D((−A∗2)γ) (3)

for some β, γ ≥ 0. As seen in the proof of Lemma 4, these conditions imply
(−A1)βB ∈ L(Y,X1) and (−A∗2)γC∗ ∈ L(Y,X2).

The first two results provide sufficient conditions for the stability of the
semigroup T (t) on Hilbert and Banach spaces, respectively.

Theorem 7. Assume X1 and X2 are Hilbert spaces. If β/α1 + γ/α2 > 1,
then the semigroup generated by A in (2) is polynomially stable with power
α = max{α1, α2}. If dimY <∞, then it is sufficient that β/α1 + γ/α2 ≥ 1.
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Theorem 8. Assume X1, X2, and Y are Banach spaces. If β/α1 + γ/α2 > 1,
then the semigroup generated by A in (2) is strongly stable. If α = α1 + α2,
then there exists M ≥ 1 such that

‖T (t)A−1‖ ≤M
(

ln t

t

)1/α

∀t > 0.

If one of the subsystems is exponentially stable, then the requirements
on the exponents β and γ can be omitted completely.

Theorem 9. If T1(t) is exponentially stable, then the semigroup T (t) generated
by A in (2) is polynomially stable with power α = α2. Similarly, if T2(t) is
exponentially stable, then T (t) is polynomially stable with power α = α1.

The above results are stated for upper triangular systems, but the anal-
ogous results are also valid for lower triangular systems. Indeed, any lower
triangular block operator matrix can be transformed into an upper triangular
one with a similarity transformation(

0 I
I 0

)(
A1 BC
0 A2

)(
0 I
I 0

)
=

(
A2 0
BC A1

)
.

Since the stability properties considered in this paper are invariant under
similarity transformations, Theorems 7, 8, and 9 also provide conditions for
stability of semigroups generated by lower triangular block operator matrices.

The remaining results in this section concern the stability of the semi-
group generated by an operator of the form

A =

(
A1 B1C2

B2C1 A2

)
, D(A) = D(A1)×D(A2) (4)

where B1 ∈ L(Y1, X1), B2 ∈ L(Y2, X2), C1 ∈ L(X1, Y2), and C2 ∈ L(X2, Y1)
satisfy

R(B1) ⊂ D((−A1)β1), R(C∗1 ) ⊂ D((−A∗1)γ1) (5a)

R(B2) ⊂ D((−A2)β2), R(C∗2 ) ⊂ D((−A∗2)γ2) (5b)

for some β1, β2, γ1, γ2 ≥ 0.

Theorem 10. Assume X1 and X2 are Hilbert spaces and let one of the fol-
lowing conditions be satisfied:

(i) β1, γ1 ≥ α1 and β2, γ2 ≥ α2

(ii) dimY1 <∞, β1 + γ1 ≥ α1, and β2, γ2 ≥ α2

(iii) dimY2 <∞, β1, γ1 ≥ α1, and β2 + γ2 ≥ α2

(iv) dimY1 < ∞, and dimY2 < ∞ and βk/αk + γl/αl ≥ 1 for every k, l ∈
{1, 2}.

Then there exists δ > 0 such that if B1, C1, B2, and C2 satisfy (5) and

‖(−A1)β1B1‖ · ‖(−A∗1)γ1C∗1‖ · ‖(−A2)β2B2‖ · ‖(−A∗2)γ2C∗2‖ < δ, (6)

then the semigroup generated by A in (4) is polynomially stable with power
α = max{α1, α2}.
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Written out explicitly, the conditions (iv) in Theorem 10 become

β1 + γ1 ≥ α1, β1/α1 + γ2/α2 ≥ 1,

β2 + γ2 ≥ α2, β2/α2 + γ1/α1 ≥ 1.

If the semigroup T1(t) is exponentially stable, it is possible to remove
the requirements on the exponents β1 and γ1 from the assumptions.

Theorem 11. Assume T1(t) is exponentially stable and β2, γ2 ≥ α2. There
exists δ > 0 such that if B2, and C2 satisfy (5b) and

‖B1‖ · ‖C1‖ · ‖(−A2)β2B2‖ · ‖(−A∗2)γ2C∗2‖ < δ,

then the semigroup generated by A in (4) is polynomially stable with power
α = α2. If dimY2 <∞, it is sufficient that the exponents satisfy β2+γ2 ≥ α2.

Applying a similarity transformation QAQ−1 with Q = Q−1 =
(

0
I
I
0

)
yields the following analogue of Theorem 11 in the case where T2(t) is expo-
nentially stable.

Corollary 12. Assume T2(t) is exponentially stable and β1, γ1 ≥ α1. There
exists δ > 0 such that if B1, and C1 satisfy (5a) and

‖(−A1)β1B1‖ · ‖(−A∗1)γ1C∗1‖ · ‖B2‖ · ‖C2‖ < δ,

then the semigroup generated by A in (4) is polynomially stable with power
α = α1. If dimY1 <∞, it is sufficient that the exponents satisfy β1+γ1 ≥ α1.

We begin by presenting the proofs for the results concerning semigroup
generated by triangular operator matrices. The results on the stability of
semigroup generated by full operator matrices are proved in Section 5.

4. Semigroups Generated By Triangular Operator Matrices

In this section we present the proofs for Theorems 7, 8, and 9 concerning the
stability of the semigroup generated by the triangular operator matrix

A =

(
A1 BC
0 A2

)
.

The main standing assumptions are that the semigroup T1(t) generated by
A1 is polynomially stable with power α1, the semigroup T2(t) generated by
A2 is polynomially stable with power α2, and that B and C satisfy

R(B) ⊂ D((−A1)β) and R(C∗) ⊂ D((−A∗2)γ)

for some β, γ ≥ 0. For a triangular operator matrix, the spectral properties
of A are determined by those of the operators A1 and A2.

Lemma 13. Assume X1, X2, and Y are Banach spaces. The spectrum of A
satisfies σ(A) ⊂ C− and

R(λ,A) =

(
R(λ,A1) R(λ,A1)BCR(λ,A2)

0 R(λ,A2)

)
(7)

for every λ ∈ C+.
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Proof. Let λ ∈ C+ be arbitrary. Since λ ∈ ρ(A1) and λ ∈ ρ(A2), a direct
computation shows that λ−A has a bounded inverse given by the right-hand
side of (7). This immediately implies λ ∈ ρ(A). �

Lemma 14. If X1, X2, and Y are Banach spaces and β/α1 + γ/α2 > 1, then
the semigroup T (t) is uniformly bounded.

Proof. Since the semigroups T1(t) and T2(t) are uniformly bounded, the semi-
group T (t) is uniformly bounded if (and only if) the operators S(t) are uni-
formly bounded with respect to t ≥ 0. Denote M1 = supt≥0‖T1(t)‖ and
M2 = supt≥0‖T2(t)‖. Moreover, let Mβ ,Mγ ≥ 1 be such that

‖T1(t)(−A1)−β‖ ≤ Mβ

tβ/α1
, and ‖T2(t)(−A2)−γ‖ ≤ Mγ

tγ/α2
,

for all t > 0. Let x ∈ X2 and t ≥ 2. If we denote Bβ = (−A1)βB ∈ L(Y,X1)

and Cγ = C(−A2)γ ∈ L(X2, Y ), then for s ∈ [1, t− 1] we have

‖T1(t− s)BCT2(s)x‖

= ‖T1(t− s)(−A1)−β(−A1)βBC(−A2)γT2(s)(−A2)−γx‖

≤ ‖T1(t− s)(−A1)−β‖‖Bβ‖‖Cγ‖‖T2(s)(−A2)−γ‖‖x‖

≤MβMγ‖Bβ‖‖Cγ‖‖x‖(t− s)−β/α1s−γ/α2

and thus

‖S(t)x‖ ≤
∫ t

0

‖T1(t− s)BCT2(s)x‖ds

≤
∫ 1

0

‖T1(t− s)‖‖BC‖‖T2(s)‖‖x‖ds+

∫ t−1

1

‖T1(t− s)BCT2(s)x‖ds

+

∫ t

t−1

‖T1(t− s)‖‖BC‖‖T2(s)‖‖x‖ds

≤ 2M1M2‖BC‖‖x‖+MβMγ‖Bβ‖‖Cγ‖‖x‖
∫ t−1

1

(t− s)−β/α1s−γ/α2ds.

Since x ∈ X2 was arbitrary, we have that supt≥0‖S(t)‖ <∞ if

sup
t≥2

∫ t−1

1

(t− s)−β/α1s−γ/α2ds <∞. (8)

If γ/α2 > 1, then∫ t−1

1

(t− s)−β/α1s−γ/α2ds ≤
∫ t−1

1

s−γ/α2ds ≤
∫ ∞

1

s−γ/α2ds <∞,

and if β/α1 > 1, then similarly∫ t−1

1

(t− s)−β/α1s−γ/α2ds ≤
∫ t−1

1

(t− s)−β/α1ds ≤
∫ ∞

1

r−β/α1dr <∞.
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In both of these cases (8) is satisfied. It remains to consider the case where
0 < β/α1 ≤ 1 and 0 < γ/α2 ≤ 1 satisfy β/α1 + γ/α2 > 1. Choose c =
β/α1 + γ/α2 > 1, p = cα1/β, and q = cα2/γ. Then

1

p
+

1

q
=

1

c
(β/α1 + γ/α2) = 1.

Since p > α1/β ≥ 1, and q > α2/γ ≥ 1, and since p · β/α1 = c > 1 and
q · γ/α2 = c > 1, the Hölder inequality with exponents p and q shows that∫ t−1

1

(t− s)−β/α1 · s−γ/α2ds ≤
(∫ t−1

1

(t− s)−p·β/α1ds
) 1
p
(∫ t−1

1

s−q·γ/α2ds
) 1
q

=
(∫ t−1

1

r−cdr
)1/p(∫ t−1

1

s−cds
)1/q

≤
(∫ ∞

1

r−cdr
)1/p(∫ ∞

1

s−cds
)1/q

<∞.

This shows that (8) holds also in the case where 0 < β/α1 ≤ 1, 0 < γ/α2 ≤ 1,
and β/α1 + γ/α2 > 1. This finally implies that supt≥0‖S(t)‖ <∞, and thus
T (t) is uniformly bounded. �

Lemma 15. Assume X1, X2 are Hilbert spaces and Y1 and Y2 are Banach
spaces, and that B̃ ∈ L(Y1, X1) and C̃ ∈ L(X2, Y2) satisfy R(B̃) ⊂ D((−A1)β)

and R(C̃∗) ⊂ D((−A∗2)γ) for some β, γ ≥ 0. If β/α1 + γ/α2 ≥ 1, then

‖R(iω,A1)B̃‖‖C̃R(iω,A2)‖ = O(|ω|α) with α = max{α1, α2}. Moreover, if
β ≥ α1, we then have

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A1)B̃‖2‖C̃R(ξ + iη, A2)x‖2dη <∞ ∀x ∈ X2. (9)

If dimY1 <∞, then (9) is satisfied whenever β/α1 + γ/α2 ≥ 1.

Proof. By Theorem 3 we can chooseM0 ≥ 1 such that ‖R(λ,A1)(−A1)−α1‖ ≤
M0 and ‖R(λ,A2)(−A2)−α2‖ ≤M0 for all λ ∈ C+.

If β/α1 ≥ 1, then for every λ ∈ C+ and x ∈ X2 we can estimate

‖R(λ,A1)B̃‖‖C̃R(λ,A2)x‖ = ‖R(λ,A1)(−A1)−α1(−A1)α1B̃‖‖C̃R(λ,A2)x‖

≤ ‖R(λ,A1)(−A1)−α1‖‖(−A1)α1B̃‖‖C̃‖‖R(λ,A2)x‖

≤M0‖(−A1)α1B̃‖‖C̃‖‖R(λ,A2)x‖,

which in particular implies ‖R(iω,A1)B̃‖‖C̃R(iω,A2)‖ = O(|ω|α) due to the
fact that ‖R(iω,A2)‖ = O(|ω|α). Moreover, we then have

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A1)B̃‖2‖C̃R(ξ + iη, A2)x‖2dη

≤M2
0 ‖(−A1)α1B̃‖2‖C̃‖2 sup

ξ>0
ξ

∫ ∞
−∞
‖R(ξ + iη, A2)x‖2dη <∞

by Lemma 6. Since x ∈ X2 was arbitrary, this shows that (9) is satisfied.
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If γ/α2 ≥ 1, then for every λ ∈ C+

‖R(λ,A1)B̃‖‖C̃R(λ,A2)x‖ = ‖R(λ,A1)B̃‖‖C̃(−A2)α2(−A2)−α2R(λ,A2)x‖

≤ ‖R(λ,A1)B̃‖‖C̃α2‖‖R(λ,A2)(−A2)−α2x‖

≤M0‖C̃α2
‖‖x‖‖R(λ,A1)B̃‖

where C̃α2 is the bounded extension of C̃(−A2)α2 to X2. Since ‖R(iω,A1)‖ =

O(|ω|α), this again implies ‖R(iω,A1)B̃‖‖C̃R(iω,A2)‖ = O(|ω|α). If in ad-
dition dimY1 <∞, we have

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A1)B̃‖2‖C̃R(ξ + iη, A2)x‖2dη

≤M2
0 ‖C̃α2‖2 sup

ξ>0
ξ

∫ ∞
−∞
‖R(ξ + iη, A2)B̃‖2dη <∞

again by Lemma 6. This shows that (9) holds if β = 0.

It remains to consider the case where 0 < β < α1 and 0 < γ < α2

satisfy β/α1 + γ/α2 ≥ 1. We can choose 0 < β0 ≤ β and 0 < γ0 ≤ γ such
that β0/α1 + γ0/α2 = 1. By the Moment Inequality [9, Prop. 6.6.2] there
exist Mβ0/α1

,Mγ0/α2
≥ 1 such that

‖(−A1)−β0R‖ ≤Mβ0/α1
‖R‖1−β0/α1‖(−A1)−α1R‖β0/α1

‖(−A2)−γ0Q‖ ≤Mγ0/α2
‖Q‖1−γ0/α2‖(−A2)−α2Q‖γ0/α2

for any R ∈ L(Y,X1) and Q ∈ L(Y,X2). Let λ ∈ C+ and for brevity denote

R1 = R(λ,A1) and R2 = R(λ,A2). If C̃γ0 ∈ L(X2, Y ) is the bounded exten-

sion of C̃(−A2)γ0 to X2, and B̃β0
= (−A1)β0B̃ ∈ L(Y,X1), then for every

λ ∈ C+

‖R1B̃‖‖C̃R2x‖ = ‖(−A1)−β0R1(−A1)β0B̃‖‖C̃(−A2)γ0(−A2)−γ0R2x‖

≤ ‖(−A1)−β0R1B̃β0
‖‖C̃γ0‖‖(−A2)−γ0R2x‖

≤Mβ0/α1
‖R1B̃β0‖1−β0/α1‖(−A1)−α1R1B̃β0‖β0/α1

× ‖C̃γ0‖Mγ0/α2
‖R2x‖1−γ0/α2‖(−A2)−α2R2x‖γ0/α2

≤Mβ0/α1
Mγ0/α2

M2
0 ‖B̃β0

‖β0/α1‖C̃γ0‖‖x‖γ0/α2

× ‖R(λ,A1)B̃β0‖1−β0/α1‖R(λ,A2)x‖1−γ0/α2

which implies ‖R(iω,A1)B̃‖‖C̃R(iω,A2)‖ = O(|ω|α) since ‖R(iω,A1)‖ =
O(|ω|α), ‖R(iω,A2)‖ = O(|ω|α), and 1−β0/α1 +1−γ0/α2 = 1. If in addition
dimY1 < ∞, using the Hölder inequality for p = 1/(1 − β0/α1) and q =
1/(1 − γ/α2) (which satisfy 1/p + 1/q = 1 − β0/α1 + 1 − γ0/α2 = 1) and
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denoting M̃ = Mβ0/α1
Mγ0/α2

M2
0 ‖B̃β0

‖β0/α1‖C̃γ0‖‖x‖γ0/α2 , we have

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A1)B̃‖2‖C̃R(ξ + iη, A2)x‖2dη

≤ M̃2 sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A1)B̃β0‖

2(1− β0α1
)‖R(ξ + iη, A2)x‖2(1− γ0

α2
)dη

≤ M̃2 sup
ξ>0

(
ξ

∫ ∞
−∞
‖R(ξ + iη, A1)B̃β0

‖2dη
) 1
p
(
ξ

∫ ∞
−∞
‖R(ξ + iη, A2)x‖2dη

) 1
q

≤ M̃2

(
sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A1)B̃β0

‖2dη
) 1
p

×
(

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A2)x‖2dη

) 1
q

<∞

by Lemma 6. This shows that (9) is true if β, γ > 0, and thus concludes the
proof. �

Proof of Theorem 7. The claim of the theorem is that if β/α1 + γ/α2 > 1,
then the semigroup T (t) is polynomially stable with power α = max{α1, α2}.
Moreover, if dimY <∞, then the condition β/α1 + γ/α2 ≥ 1 is sufficient.

We have from Lemma 13 that σ(A) ⊂ C−. In order to prove that T (t)
is polynomially stable with power α = max{α1, α2}, we need to show that
T (t) is uniformly bounded and ‖R(iω,A)‖ = O(|ω|α). Assume first that
β/α1 + γ/α2 ≥ 1. By Lemma 13 the resolvent operator is of the form

R(λ,A) =

(
R(λ,A1) R(λ,A1)BCR(λ,A2)

0 R(λ,A2)

)
for every λ ∈ C+. We have ‖R(iω,A1)‖ = O(|ω|α), and ‖R(iω,A2)‖ =
O(|ω|α) by assumption, and

‖R(iω,A1)BCR(iω,A2)‖ ≤ ‖R(iω,A1)B‖‖CR(iω,A2)‖ = O(|ω|α)

by Lemma 15. Together these properties imply that ‖R(iω,A)‖ = O(|ω|α).
If β/α1 + γ/α2 > 1, the uniform boundedness of T (t) follows directly

from Lemma 14.
It remains to show that if dimY < ∞, then the semigroup T (t) is

uniformly bounded whenever β/α1 + γ/α2 ≥ 1. Since we already showed
that ‖R(iω,A)‖ = O(|ω|α), the polynomial stability will then follow from
Theorem 3. For any x = (x1, x2) ∈ X and λ ∈ C+ we have (denoting R1 =
R(λ,A1) and R2 = R(λ,A2) for brevity)

‖R(λ,A)x‖2 = ‖R1x1 +R1BCR2x2‖2 + ‖R2x2‖2

≤ 2‖R1x1‖2 + 2‖R1B‖2‖CR2x2‖2 + ‖R2x2‖2

‖R(λ,A)∗x‖2 = ‖R∗1x1‖2 + ‖(R1BCR2)
∗
x1 +R∗2x2‖2

≤ ‖R∗1x1‖2 + 2‖R∗2C∗‖2‖B∗R∗1x1‖2 + 2‖R∗2x2‖2

≤ ‖R∗1x1‖2 + 2‖R(λ,A∗2)C∗‖2‖B∗R(λ,A∗1)x1‖2 + 2‖R∗2x2‖2.
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Now

sup
ξ>0

ξ

∫ ∞
−∞

(
‖R(ξ + iη, A)x‖2 + ‖R(ξ + iη, A)∗x‖2

)
dη

≤ 2 sup
ξ>0

ξ

∫ ∞
−∞

(
‖R(ξ + iη, A1)x1‖2 + ‖R(ξ + iη, A1)∗x1‖2

)
dη

+ 2 sup
ξ>0

ξ

∫ ∞
−∞

(
‖R(ξ + iη, A2)x2‖2 + ‖R(ξ + iη, A2)∗x2‖2

)
dη

+ 2 sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A1)B‖2‖CR(ξ + iη, A2)x2‖2dη

+ 2 sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ − iη, A∗2)C∗‖2‖B∗R(ξ − iη, A∗1)x1‖2dη <∞,

where the first two suprema on the right hand side are finite by Lemma 6 since
T1(t) and T2(t) are uniformly bounded. The third and the fourth suprema
are finite by Lemma 15 since dimY < ∞. Now Lemma 6 shows that the
semigroup T (t) is uniformly bounded, and it is therefore polynomially stable
with power α = max{α1, α2}. �

Proof of Theorem 8. We want to show that if β/α1 + γ/α2 > 1, then T (t) is
strongly stable, and there exists a constant M ≥ 1 such that ‖T (t)A−1‖ ≤
M
(

ln t
t

)1/(α1+α2)
for all t > 0.

We have from Lemmas 13 and 14 that σ(A) ⊂ C− and that the semi-
group T (t) is uniformly bounded. We therefore have from [5, Cor. 4.2] that
T (t) is strongly stable.

Since the semigroups T1(t) and T2(t) are polynomially stable, we have
from [3, Prop 1.3 & Ex. 1.4] that ‖R(iω,A1)‖ = O(|ω|α1) and ‖R(iω,A2)‖ =
O(|ω|α2). If α = α1 + α2, then

‖R(iω,A1)B‖‖CR(iω,A2)‖ ≤ ‖R(iω,A1)‖‖B‖‖C‖‖R(iω,A2)‖ = O(|ω|α),

which together with Lemma 13 further implies that ‖R(iω,A)‖ = O(|ω|α).
We now have from [3, Thm. 1.5 & Ex. 1.7] that there exists M ≥ 1 such that

‖T (t)A−1‖ ≤M
(

ln t
t

)1/α
for all t > 0. �

Proof of Theorem 9. The claim of the theorem is that if T1(t) is exponentially
stable and T2(t) is polynomially stable with power α2, then the semigroup
T (t) is polynomially stable with power α = α2. Moreover, we also want to
show that if T2(t) is exponentially stable and T1(t) is polynomially stable
with power α1, then the semigroup T (t) is polynomially stable with power
α = α1.

Since by Definition 2 a polynomially stable semigroup is also strongly
stable, we have from [10, Lem. 20] that the semigroup T (t) is strongly stable.
In particular this implies that T (t) is uniformly bounded. By Theorem 3 it
remains to show that iR ⊂ ρ(A) and ‖R(iω,A)‖ = O(|ω|α).
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Let x = (x1, x2)T ∈ X be such that ‖x‖2 = ‖x1‖2 + ‖x2‖2 = 1. For
brevity denote R1 = R(iω,A1) and R2 = R(iω,A2). Now

‖R(iω,A)x‖2 = ‖R1x1 +R1BCR2x2‖2 + ‖R2x2‖2

≤ 2
(
‖R1‖2‖x1‖2 + ‖R1‖2‖BC‖2‖R2‖2‖x2‖2

)
+ ‖R2‖2‖x2‖2

≤ 2
(
‖x1‖2 + ‖x2‖2

) (
‖R1‖2 + ‖R1‖2‖BC‖2‖R2‖2 + ‖R2‖2

)
≤ 2 max

{
‖BC‖2, 1

} (
‖R1‖2(1 + ‖R2‖2) + ‖R2‖2

)
≤ 2(‖BC‖2 + 1)(‖R(iω,A1)‖2 + 1)(‖R(iω,A2)‖2 + 1).

Due to the assumptions and Theorem 3 one of the norms ‖R(iω,A1)‖ and
‖R(iω,A2)‖ is of order O(|ω|α), and the other is uniformly bounded. This
together with the above estimate shows that ‖R(iω,A)‖ = O(|ω|α). �

5. Semigroups Generated By Full Operator Matrices

In this section we prove the results concerning the semigroup generated by
the block operator matrix

A =

(
A1 B1C2

B2C1 A2

)
where A1 and A2 generate polynomially stable semigroups. The operators
B1 ∈ L(Y1, X1), B2 ∈ L(Y2, X2), C1 ∈ L(X1, Y2), and C2 ∈ L(X2, Y1) satisfy

R(B1) ⊂ D((−A1)β1), R(C∗1 ) ⊂ D((−A∗1)γ1)

R(B2) ⊂ D((−A2)β2), R(C∗2 ) ⊂ D((−A∗2)γ2)

for some β1, β2, γ1, γ2 ≥ 0.

Lemma 16. If λ ∈ C+ is such that 1 ∈ ρ(C2R(λ,A2)B2C1R(λ,A1)B1), then
λ ∈ ρ(A) and

R(λ,A) =

(
R1 +R1B1C2S1(λ)−1B2C1R1 R1B1C2S1(λ)−1

S1(λ)−1B2C1R1 S1(λ)−1

)
where R1 = R(λ,A1), R2 = R(λ,A2), and

S1(λ)−1 = R(λ,A2) +R(λ,A2)B2C1R(λ,A1)B1D
−1
λ C2R(λ,A2),

Dλ = I − C2R(λ,A2)B2C1R(λ,A1)B1.

Proof. Let λ ∈ C+ be such that 1 ∈ ρ(C2R(λ,A2)B2C1R(λ,A1)B1) and
denote R1 = R(λ,A1) and R2 = R(λ,A2). The Schur complement S1(λ) of
λ−A1 in

λ−A =

(
λ−A1 −B1C2

−B2C1 λ−A2

)
is S1(λ) = λ−A2−B2C1R1B1C2. Since 1 ∈ ρ(C2R2B2C1R1B1), the Sherman–
Morrison–Woodbury formula (see, e.g., [13, Lem. 10]) implies that S1(λ) is
boundedly invertible and

S1(λ)−1 = R2 +R2B2C1R1B1(I − C2R2B2C1R1B1)−1C2R2.
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Since the λ − A1 and its Schur complement S1(λ) are boundedly invertible,
we have that λ ∈ ρ(A) and the resolvent operator R(λ,A) is given by

R(λ,A) =

(
I R1B1C2

0 I

)(
R1 0
0 S1(λ)−1

)(
I 0

B2C1R1 I

)
=

(
R1 +R1B1C2S1(λ)−1B2C1R1 R1B1C2S1(λ)−1

S1(λ)−1B2C1R1 S1(λ)−1

)
.

�

Lemma 17. If any one of the conditions (i)-(iv) in Theorem 10 is satisfied,
then ‖R(iω,Ak)Bk‖‖ClR(iω,Al)‖ = O(|ω|α) with α = max{α1, α2}, and

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, Ak)Bk‖2‖ClR(ξ + iη, Al)xl‖2dη <∞ (10a)

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, Ak)∗C∗k‖2‖B∗l R(ξ + iη, Al)

∗xl‖2dη <∞ (10b)

for every k, l ∈ {1, 2}.

Proof. The property ‖R(iω,Ak)Bk‖‖ClR(iω,Al)‖ = O(|ω|α) follows from
Lemma 15 since in each of the situations (i)-(iv) the exponents satisfy βk/αk+
γl/αl ≥ 1.

We have from Lemma 15 that for fixed k, l ∈ {1, 2} the condition (10a)
is satisfied if either

(a) βk ≥ αk, or
(b) dimYk <∞ and βk/αk + γl/αl ≥ 1.

It is therefore sufficient to verify that in each of the situations (i)-(iv), for
every k, l ∈ {1, 2} either (a) or (b) is satisfied.

In the following we list the possible situations with respect to the con-
ditions (i)-(iv), and the possible combinations of (k, l).

Condition (i): (a) is satisfied for k = 1, 2 (and consequently, for every
(k, l) ∈ {1, 2} × {1, 2}).

Condition (ii): For (k, l)

(1, 1) (b) is satisfied since dimY1 <∞ and β1/α1 + γ1/α1 ≥ 1
(1, 2) (b) is satisfied since dimY1 <∞ and β1/α1 + γ2/α2 ≥ β1/α1 + 1 ≥ 1
(2, l) (a) is safisfied since β2 ≥ α2

Condition (iii): For (k, l)

(1, l) (a) is satisfied since β1 ≥ α1

(2, 1) (b) is satisfied since dimY2 <∞ and β2/α2 + γ1/α1 ≥ β2/α2 + 1 ≥ 1
(2, 2) (b) is satisfied since dimY2 <∞ and β2/α2 + γ2/α2 ≥ 1

Condition (iv): (b) is satisfied for for every (k, l) ∈ {1, 2} × {1, 2} since
dimYk <∞ and βk/αk + γl/αl ≥ 1 by assumption.
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To show (10b), we note that

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, Ak)∗C∗k‖2‖B∗l R(ξ + iη, Al)

∗xl‖2dη

= sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ − iη, A∗k)C∗k‖2‖B∗l R(ξ − iη, A∗l )xl‖2dη

= sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A∗k)C∗k‖2‖B∗l R(ξ + iη, A∗l )xl‖2dη.

We can apply Lemma 15 to operators A∗, C∗k and B∗k for k, l ∈ {1, 2}, and
see that for fixed k, l ∈ {1, 2} the condition (10b) is satisfied if either

(a′) γk ≥ αk, or
(b′) dimYk <∞ and βl/αl + γk/αk ≥ 1.

Similarly as above, it can be verified that in every situation (i)-(iv) either
(a′) or (b′) is satisfied. �

Proof of Theorem 10. The assumption in the theorem is that the exponents
β1, β2, γ1, γ2 ≥ 0 satisfy at least one of the conditions (i)-(iv). The claim is
that there exists δ > 0 such that if

‖(−A1)β1B1‖‖(−A∗1)γ1C∗1‖‖(−A2)β2B2‖‖(−A∗2)γ2C∗2‖ < δ, (11)

then the semigroup T (t) is polynomially stable with power α = max{α1, α2}.
By Lemma 4 we can choose M1,M2 ≥ 1 such that

‖C1R(λ,A1)B1‖ ≤M1‖(−A1)β1B1‖‖(−A∗1)γ1C∗1‖ (12a)

‖C2R(λ,A2)B2‖ ≤M2‖(−A2)β2B2‖‖(−A∗2)γ2C∗2‖ (12b)

for all λ ∈ C+. If we choose 0 < δ < 1/(M1M2) and if (11) is satisfied, then
‖C1R(λ,A1)B1C2R(λ,A2)B2‖ ≤ δM1M2 < 1. In particular, this implies that

1 ∈ ρ(C1R(λ,A1)B1C2R(λ,A2)B2) for all λ ∈ C+. Lemma 16 now shows that

σ(A) ⊂ C− and gives a formula for the resolvent R(λ,A) for λ ∈ C+.

To prove uniform boundedness of T (t) using Lemma 6, we need to esti-
mate the norms ‖R(λ,A)x‖ and ‖R(λ,A)∗x‖ for x = (x1, x2)T ∈ X and

λ ∈ C+. Let λ ∈ C+ and denote R1 = R(λ,A1), R2 = R(λ,A2), and
Dλ = I−C1R(λ,A1)B1C2R(λ,A2)B2. If MD = 1/(1−δM1M2), then a stan-

dard Neumann series argument shows that ‖D−1
λ ‖ ≤MD. If we choose M̃1 =

M1‖(−A1)β1B1‖‖(−A∗1)γ1C∗1‖ and M̃2 = M2‖(−A2)β2B2‖‖(−A∗2)γ2C∗2‖, then
the equations (12) imply

‖C1R(λ,A1)B1‖ ≤ M̃1 and ‖C2R(λ,A2)B2‖ ≤ M̃2.
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In the estimates we use the scalar inequalities (a + b)2 ≤ 2(a2 + b2) and
(a+ b+ c)2 ≤ 3(a2 + b2 + c2) for a, b, c ≥ 0. We have

‖R(λ,A)x‖2 = ‖R1x1 +R1B1C2S1(λ)−1B2C1R1x1 +R1B1C2S1(λ)−1x2‖2

+ ‖S1(λ)−1B2C1R1x1 + S1(λ)−1x2‖2

≤ 3‖R1x1‖2 + 3‖R1B1C2S1(λ)−1B2C1R1x1‖2 + 3‖R1B1C2S1(λ)−1x2‖2

+ 2‖S1(λ)−1B2C1R1x1‖2 + 2‖S1(λ)−1x2‖2.

Using S1(λ)−1 = R2 + R2B2C1R1B1D
−1
λ C2R2, the terms on the right-hand

side can be further estimated by

‖R1B1C2S1(λ)−1B2C1R1x1‖
≤ ‖R1B1‖

(
‖C2R2B2‖+ ‖C2R2B2‖‖C1R1B1‖‖D−1

λ ‖‖C2R2B2‖
)
‖C1R1x1‖

≤ (M̃2 + M̃1M̃
2
2MD)‖R1B1‖‖C1R1x1‖,

and similarly we get

‖R1B1C2S1(λ)−1x2‖ ≤ (1 + M̃1M̃2MD)‖R1B1‖‖C2R2x2‖

‖S1(λ)−1B2C1R1x1‖ ≤ (1 + M̃1M̃2MD)‖R2B2‖‖C1R1x1‖

‖S1(λ)−1x2‖ ≤ ‖R2x2‖+ M̃1MD‖R2B2‖‖C2R2x2‖.

Denote Mtot = max{M̃1MD, 1 + M̃1M̃2MD, M̃2 + M̃1M̃
2
2MD}. Combining

the above estimates yields

‖R(λ,A)x‖2 ≤ 3‖R1x1‖2 + 3‖R1B1C2S1(λ)−1B2C1R1x1‖2

+ 3‖R1B1C2S1(λ)−1x2‖2 + 2‖S1(λ)−1B2C1R1x1‖2 + 2‖S1(λ)−1x2‖2

≤ 3‖R1x1‖2 + 3M2
tot‖R1B1‖2‖C1R1x1‖2 + 3M2

tot‖R1B1‖2‖C2R2x2‖2

+ 2M2
tot‖R2B2‖2‖C1R1x1‖2 + 4‖R2x2‖2 + 4M2

tot‖R2B2‖2‖C2R2x2‖2

≤ 3‖R1x1‖2 + 4‖R2x2‖2 + 4M2
tot

∑
k,l=1,2

‖RkBk‖2‖ClRlxl‖2.

Lemmas 6 and 17 thus imply

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A)x‖2dη ≤ 3 sup

ξ>0
ξ

∫ ∞
−∞
‖R(ξ + iη, A1)x1‖2dη

+ 4 sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A2)x2‖2dη

+ 4M2
tot

∑
k,l=1,2

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, Ak)Bk‖2‖ClR(ξ + iη, Al)xl‖2dη <∞.

Furthermore, the same estimates also show that

‖R(iω,A)‖2 ≤ 3‖R(iω,A1)‖2 + 4‖R(iω,A2)‖2

+ 4M2
tot

∑
k,l=1,2

‖R(iω,Ak)Bk‖2‖ClR(iω,Al)‖2.
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This immediately implies ‖R(iω,A)‖ = O(|ω|α) with α = max{α1, α2}, since
we have ‖R(iω,Ak)Bk‖‖ClR(iω,Al)‖ = O(|ω|α) by Lemma 17.

Because

R(λ,A)∗ =

(
R∗1 +

(
R1B1C2S1(λ)−1B2C1R1

)∗ (
S1(λ)−1B2C1R1

)∗(
R1B1C2S1(λ)−1

)∗ (
S1(λ)−1

)∗ )
we can similarly estimate the norm of R(λ,A)∗x by

‖R(λ,A)∗x‖2 ≤ 3‖R∗1x1‖2 + 3‖(R1B1C2S1(λ)−1B2C1R1)∗x1‖2

+ 3‖(S1(λ)−1B2C1R1)∗x2‖2 + 2‖(R1B1C2S1(λ)−1)∗x1‖2

+ 2‖(S1(λ)−1)∗x2‖2.

Since (S(λ)−1)∗ = R∗2+R∗2C
∗
2 (C1R1B1D

−1
λ )∗B∗2R

∗
2 and ‖B∗2R∗2C∗2‖ = ‖(C2R2B2)∗‖ =

‖C2R2B2‖, we get

‖(R1B1C2S1(λ)−1B2C1R1)∗x1‖ = ‖R∗1C∗1B∗2(S1(λ)−1)∗C∗2B
∗
1R
∗
1x1‖

≤ ‖R∗1C∗1‖
(
‖C2R2B2‖+ ‖C2R2B2‖‖C1R1B1‖‖D−1

λ ‖‖C2R2B2‖
)
‖B∗1R∗1x1‖

≤ (M̃2 + M̃1M̃2MD)‖R∗1C∗1‖‖B∗1R∗1x1‖,
and

‖(S1(λ)−1B2C1R1)∗x2‖ ≤ (1 + M̃1M̃2MD)‖R∗1C∗1‖‖B∗2R∗2x2‖

‖(R1B1C2S1(λ)−1)∗x1‖ ≤ (1 + M̃1M̃2MD)‖R∗2C∗2‖‖B∗1R∗1x1‖

‖(S1(λ)−1)∗x2‖ ≤ ‖R∗2x2‖+ M̃1MD‖R∗2C∗2‖‖B∗2R∗2x2‖.

Similarly as in the case of ‖R(λ,A)x‖, the above estimates further imply

‖R(λ,A)∗x‖2 ≤ 3‖R∗1x1‖2 + 4‖R∗2x2‖2 + 4M2
tot

∑
k,l=1,2

‖R∗kC∗k‖2‖B∗l R∗l xl‖2.

Lemmas 6 and 17 now show that

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A)∗x‖2dη ≤ 3 sup

ξ>0
ξ

∫ ∞
−∞
‖R(ξ + iη, A1)∗x1‖2dη

+ 4 sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A2)∗x2‖2dη

+ 4M2
tot

∑
k,l=1,2

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, Ak)∗C∗k‖2‖B∗l R(ξ + iη, Al)

∗xl‖2dη

<∞.

By Lemma 6 we finally have that the semigroup T (t) is uniformly bounded.
This implies that T (t) is polynomially stable with power α = max{α1, α2}.

�

Proof of Theorem 11. The claim of the theorem is that if T1(t) is exponen-
tially stable and β2, γ2 ≥ α2, then there exists δ > 0 such that the semigroup
T (t) is polynomially stable with power α = α2 provided that

‖B1‖‖C1‖‖(−A2)β2B2‖‖(−A∗2)γ2C∗2‖ < δ, (13)
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Moreover, dimY2 <∞, it is sufficient that β2 + γ2 ≥ α2.
Since T1(t) is exponentially stable, we have sup

λ∈C+‖R(λ,A1)‖ < ∞.
Because of this and by Lemma 4 we can choose M1,M2 ≥ 1 such that

‖C1R(λ,A1)B1‖ ≤M1‖B1‖‖C1‖

‖C2R(λ,A2)B2‖ ≤M2‖(−A2)β2B2‖‖(−A∗2)γ2C∗2‖

for all λ ∈ C+. If we choose 0 < δ < 1/(M1M2) and if (13) is satisfied, then
‖C1R(λ,A1)B1C2R(λ,A2)B2‖ ≤ δM1M2 < 1. As in the proof of Theorem 10

we can now see that σ(A) ⊂ C−, and ‖D−1
λ ‖ is uniformly bounded for λ ∈ C+.

If we can verify that under the assumptions of the theorem the condi-
tions (10) are satisfied for every k, l ∈ {1, 2}, then the uniform boundedness
of T (t) follows directly from the estimates made in the proof of Theorem 10.

If k = 1 and l = 1, 2, we have that

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A1)B1‖2‖ClR(ξ + iη, Al)xl‖2dη

≤ ‖B1‖2‖Cl‖2
(

sup
λ∈C+

‖R(λ,A)‖
)2

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, Al)xl‖2dη <∞

by Lemma 6. On the other hand, if k = l = 2, then (10a) follows directly
from Lemma 15 and our assumptions. Finally, we need to consider the case
where k = 2 and l = 1. If β2 ≥ α2, then

‖R(λ,A2)B2‖ ≤ ‖R(λ,A2)(−A2)−α2‖‖(−A2)α2−β2‖‖(−A2)β2B2‖

for all λ ∈ C+ and

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A2)B2‖2‖C1R(ξ + iη, A1)x1‖2dη

≤ ‖(−A2)β2B2‖2‖(−A2)α2−β2‖2‖C1‖2
(

sup
λ∈C+

‖R(λ,A2)(−A2)−α2‖
)2

× sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A1)x1‖2dη <∞

by Lemma 6. On the other hand, if dimY2 <∞, then

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A2)B2‖2‖C1R(ξ + iη, A1)x1‖2dη

≤ ‖C1‖2‖x1‖2
(

sup
λ∈C+

‖R(λ,A1)‖
)2

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A2)B2‖2dη <∞

again by Lemma 6.
It remains to show that ‖R(iω,A)‖ = O(|ω|α2). The estimates made in

the proof of Theorem 10 show that

‖R(iω,A)‖2 ≤ 3‖R(iω,A1)‖2 + 4‖R(iω,A2)‖2

+ 4M2
tot

∑
k=1,2

‖R(iω,Ak)Bk‖2‖ClR(iω,Al)‖2.
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This implies ‖R(iω,A)‖ = O(|ω|α2), since in the case where k = 1 or
l = 1, one of the resolvents is uniformly bounded, and we clearly have
‖R(iω,Ak)Bk‖‖ClR(iω,Al)‖ = O(|ω|α2). In the case k = l = 2 the same
conclusion follows from Lemma 15. �

6. Examples Concerning Optimality of the Results

In this section we present two examples to illustrate the optimality of the
conditions in the results presented in Section 3. In the first example we show
that the condition β/α1 +γ/α2 ≥ 1 is in general an optimal condition for the
polynomial stability of a semigroup generated by a triangular block operator
matrix.

Example 18. Let A1 : D(A1) ⊂ X1 → X1 generate a semigroup T1(t) such
that T1(t) is polynomially stable with power α > 0, but

sup
t>0

t ‖T1(t)(−A1)−α̃‖ =∞ for every 0 ≤ α̃ < α. (14)

Choose X2 = X1, A2 = A1, Y = X1, B = (−A1)−β ∈ L(X1) and C =
(−A1)−γ ∈ L(X1). Consider the triangular block operator matrix

A =

(
A1 BC
0 A1

)
=

(
A1 (−A1)−(β+γ)

0 A1

)
.

A direct computation shows that T (t) generated by A is of the form

T (t) =

(
T1(t) tT1(t)(−A1)−(β+γ)

0 T1(t)

)
.

Since T1(t) is uniformly bounded, the semigroup T (t) is uniformly bounded
if and only if supt>0 t ‖T1(t)(−A1)−(β+γ)‖ <∞. Our assumption (14) shows
that if β/α1 +γ/α2 < 1, or equivalently β+γ < α, the semigroup T (t) is not
uniformly bounded and it is therefore unstable. This shows that the condition
β/α1 + γ/α2 ≥ 1 is in general an optimal condition for the exponents.

On the other hand, it is straightforward to verify that in this example
β/α1 + γ/α2 ≥ 1 is sufficient for polynomial stability of T (t) even though Y
is infinite-dimensional.

The second example shows that β2+γ2 ≥ α2 in Theorem 11 is in general
an optimal condition for the exponents.

Example 19. Let X1 = X2 = `2(C), and consider

A1 =

∞∑
k=1

(−σ + ik) 〈·, φk〉φk, and A2 =

∞∑
k=1

(
− 1

kα2
+ ik

)
〈·, φk〉φk

where α2 > 0, σ > 0 and {φk}∞k=1 is the Euclidean basis of X1. The operators
A1 and A2 generate semigroups T1(t) and T2(t), respectively, such that T1(t)
is exponentially stable and T2(t) is polynomially stable with power α2. Choose
Y1 = Y2 = C and for some fixed n ∈ N let B1 = σφn, B2 = n−α2/2φn, C1 =
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〈·, φn〉, and C2 = n−α2/2〈·, φn〉. The block operator matrix A on X = X1×X2

is then given by

A =

(
A1

σ
nα2/2

〈·, φn〉φn
1

nα2/2
〈·, φn〉φn A2

)
.

We have R(B2) = R(C∗2 ) = span{φn} ⊂ D((−A2)∞), and therefore the
range conditions on B2 and C2 are satisfied for any choices of the exponents
β2, γ2 ≥ 0. We will show that if β2 + γ2 < α2, then for any δ > 0 we can
choose n ∈ N in such a way that the semigroup T (t) is unstable even though

‖B1‖ · ‖C1‖ · ‖(−A2)β2B2‖ · ‖(−A∗2)γ2C∗2‖ < δ.

To this end, let δ > 0 be arbitrary. A direct computation yields ‖B1‖ = σ,
‖C1‖ = 1, ‖(−A2)β2B2‖ = nβ2−α2/2 and ‖(−A∗2)γ2C∗2‖ = nγ2−α2/2. Since
β2 + γ2 < α2 by assumption, the product

‖B1‖ · ‖C1‖ · ‖(−A2)β2B2‖ · ‖(−A∗2)γ2C∗2‖ = σnβ2+γ2−α2

can be made smaller than δ > 0 by choosing a sufficiently large n ∈ N. It
should be noted that also both of the operator norms ‖B1C2‖ = σn−α2/2 and
‖B2C1‖ = n−α2/2 can be made arbitrarily small by choosing a large enough
n ∈ N.

To show that T (t) is unstable, consider the operator

λ−A =

(
λ−A1 − σ

nα2/2
〈·, φn〉φn

− 1
nα2/2

〈·, φn〉φn λ−A2

)
for λ ∈ C+. The Schur complement S1(λ) of λ−A1 in λ−A is

S1(λ) = λ−A2 −
σ

nα2
〈R(λ,A1)φn, φn〉〈·, φn〉φn.

Since σ(A1) ⊂ C−, we have that iω ∈ iR is an eigenvalue of A if and only if
0 is an eigenvalue of S1(iω). But a direct computation shows that

S1(in)φn = inφn −
(
−σ + in

)
φn −

σ

nα2
· 1

in+ 1/nα2 − in
φn

= σφn −
σ

nα2
nα2φn = 0.

This implies that λ = in ∈ iR is an eigenvalue of A, and thus the semigroup
generated by A is unstable for all choices of n ∈ N.

7. Coupled Wave Equations

In this section we use the results in Section 3 to study the stability properties
of a system consisting of two coupled wave equations,

vtt(z, t)−∆v(z, t) + a(z)vt(z, t) = B0C0w(·, t) (15a)

wtt(r, t)− wrr(r, t) + (1− r)u(t) = 0 (15b)
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on z ∈ Ω = (0, π)×(0, π) ⊂ R2 and r ∈ (0, 1), respectively, and with boundary
and initial conditions

v(z, t) = 0 z ∈ ∂Ω

v(z, 0) = v0(z), vt(z, 0) = v1(z)

w(0, t) = w(1, t) = 0

w(r, 0) = w0(r), wt(r, 0) = w1(r).

The equation (15a) is a two-dimensional wave equation with local viscous
damping term a(z)vt(z, t) [12, Sec 3, Ex. 3]. The function a(z) is chosen as

a(z) =

{
1 0 ≤ z1 ≤ 1
0 otherwise

for z = (z1, z2) ∈ Ω. The function u(t) in (15b) is chosen in such a way
that the one-dimensional subsystem is polynomially stable. This is done in
Section 7.2. Our main aim in this example is to derive conditions for the op-
erators B0 and C0 in the coupling between the equations so that the coupled
system (15) is polynomially stable. To accomplish this, we will write (15) as
a triangular system

d

dt

(
x1

x2

)
=

(
A1 BC
0 A2

)(
x1

x2

)
, (17)

on a suitable space X = X1 ×X2, and subsequently use Theorem 7 to study
the stability of the semigroup generated by its system operator.

7.1. The Two-Dimensional System

The equation (15a) with the boundary conditions in (16) can be written as
a first order linear system on a Hilbert space X = H1

0 (Ω)×L2(Ω) with inner
product 〈x, y〉X = 〈∇x1,∇y1〉L2(Ω)2 + 〈x2, y2〉L2(Ω) by choosing (see [12, Sec.
3, Ex. 3]) x = (v, vt), and

A =

(
0 I
∆ −a(z)

)
, D(A) =

{
(x1, x2)

∣∣ x2 ∈ H1
0 (Ω), ∆x1 ∈ L2(Ω)

}
.

With these choices (15a) without the term B0C0w(·, t) on the right-hand side
becomes

ẋ = Ax, x(0) = x0,

where x0 = (v0, v1)T . Since a(z) is strictly positive on a vertical strip of Ω,
we have from [12, Sec. 3, Ex. 3] that A generates a strongly stable semigroup
and ‖R(iω,A)‖ = O(|ω|2), and thus by Theorem 3 the semigroup generated
by A is polynomially stable with power α = 2.

In the composite system (17) we choose the first subsystem as X1 =
H1

0 (Ω) × L2(Ω) and A1 = A. The semigroup T1(t) generated by A1 is then
polynomially stable with power α1 = 2.
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7.2. The One-Dimensional System

Now we turn our attention to the one-dimensional equation (15b) with the
boundary and initial conditions in (16). We define g0(r) = 1 − r and A0 :

D(A0) ⊂ L2(0, 1)→ L2(0, 1) as A0 = − d2

dr2 with the domain

D(A0) =
{
x ∈ L2(0, 1)

∣∣ x, x′ abs. cont., x′′ ∈ L2(0, 1), x(0) = x(1) = 0
}
,

(i.e., D(A0) = H1
0 (0, 1)∩H2(0, 1)). The operator A0 has a positive self-adjoint

square root

A
1/2
0 x =

∞∑
k=1

kπ〈x(·),
√

2 sin(kπ·)〉L2

√
2 sin(kπ·)

and the space X = D(A
1/2
0 ) × L2(0, 1) is a Hilbert space with the inner

product 〈x, y〉X = 〈A1/2
0 x1, A

1/2
0 y1〉L2 + 〈x2, y2〉L2 for x = (x1, x2)T and

y = (y1, y2)T . Choosing

x =

(
w
wr

)
, A =

(
0 I
−A0 0

)
, D(A) = D(A0)×D(A

1/2
0 ),

Gu = gu =

(
0
g0

)
u, x0 =

(
w0

w1

)
,

the wave equation (15b) can be written as

ẋ = Ax+Gu, x(0) = x0. (18)

We will now show that we can choose K = 〈·, h〉 ∈ L(X,C) in such a way that
with feedback input u(t) = Kx(t) the system (18) is polynomially stable with
power α = 5/3. The eigenvalues of the operator A are λk = ikπ for k ∈ Z\{0},
and the corresponding eigenvectors

ϕk(z) =
1

λk

(
sin(kπz)
λk sin(kπz)

)
form an orthonormal basis of X and

〈g, ϕk〉X = 〈g0, sin(kπ·)〉L2 =
1

kπ
.

For k 6= 0 denote µk = − 1
|k|5/3 +ikπ. Then for any λ ∈ C with dist(λ, σ(A)) ≥

π
3 = 1

3 infk 6=l|λk − λl| and for any l 6= 0 we have∑
k 6=0

|〈g, ϕk〉|2

|λ− λk|2
≤ 1

π2 dist(λ, σ(A))2

∑
k 6=0

1

k2
<∞ (19a)

∑
k 6=0
k 6=l

|〈g, ϕk〉|2

|λk − λl|2
≤ 1

π2

∑
k 6=0
k 6=l

1

k2π2
<∞ (19b)

∑
k 6=0

|µk − λk|2

|〈g, ϕk〉|2
=
∑
k 6=0

1
|k|10/3

1
π2k2

= π2
∑
k 6=0

1

|k|4/3
<∞. (19c)
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We now have from [19, Thm. 1] that there exists h ∈ X such that A + GK
with K = 〈·, h〉X is a Riesz-spectral operator with eigenvalues {µk}k 6=0 and
A+GK has at most finite number of nonsimple eigenvalues. This immediately
implies that for some constant M ≥ 1 and for ω ∈ R we have

‖R(iω,A+GK)‖ ≤ M

infk dist(iω, µk)
= O(|ω|5/3),

and thus the semigroup generated by A + GK is polynomially stable with
power α = 5/3.

In the composite system (17) we choose X2 = D(A
1/2
0 ) × L2(0, 1) and

A2 = A + GK. We then have that the semigroup T2(t) generated by A2 is
polynomially stable with power α2 = 5/3.

7.3. The Composite System

If the space X1 and X2 and the operators A1 and A2 are chosen as in Sec-
tions 7.1 and 7.2, then the coupled wave equations (15) can be written as a
triangular system

d

dt

(
x1

x2

)
=

(
A1 BC
0 A2

)(
x1

x2

)
,

where the operators B ∈ L(Y,X1) and C ∈ L(X2, Y ) are such that By =
(0, B0y)T ∈ X1 for y ∈ Y and C(x1

2, x
2
2) = C0x

1
2 for x2 = (x1

2, x
2
2)T ∈ X2.

We can now use Theorem 7 to impose conditions on B and C so that
the triangular block operator matrix generates a polynomially stable semi-
group. Indeed, if these operators are such that R(B) ⊂ D(A1) and C(−A2) :
D(A2) → X2 extends to a bounded operator on X2 (i.e., if β = γ = 1),
then β/α1 + γ/α2 = 1/2 + 3/5 = 11/10 > 1, and Theorem 7 shows that the
system (15) is polynomially stable with power α = max{α1, α2} = 2. In par-
ticular, the space Y does not have to be finite-dimensional. As an example,
we can consider an interconnection of the form

(B0C0w(·, t))(z) =
∑
k 6=0

1

k2
〈w(·, t), sin(kπ·)〉L2 sin(kz1) sin(kz2) (20)

for z = (z1, z2) ∈ Ω. Here we can choose Y = `2(C) with the Euclidean basis

vectors {ek}k∈Z\{0}, and define B0 ∈ L(Y, L2(Ω)) and C0 ∈ L(D(A
1/2
0 ), Y )

such that

(B0y)(z) =
∑
k 6=0

1

k2
〈y, ek〉 sin(kz1) sin(kz2)

C0x
1
2 =

∑
k 6=0

〈x1
2, sin(kπ·)〉L2ek
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for z = (z1, z2) ∈ Ω. We then have

‖C0x
1
2‖2 =

∑
k 6=0

|〈x1
2, sin(kπ·)〉L2 |2 = 2

∞∑
k=1

|〈x1
2, sin(kπ·)〉L2 |2

≤
∞∑
k=1

k2π2|〈x1
2,
√

2 sin(kπ·)〉L2 |2 = ‖x1
2‖2D(A

1/2
0 )

.

For every (x1, x2)T ∈ D(A2) = D(A0)×D(A
1/2
0 ) we also have that

C(−A2)

(
x1

x2

)
= −C

(
0 I
−A0 0

)(
x1

x2

)
− CGK

(
x1

x2

)
= −C0x

2 − CGK
(
x1

x2

)
.

Since CGK ∈ L(X2, Y ) and since

‖C0x
2‖2 =

∑
k 6=0

|〈x2, sin(kπ·)〉L2 |2 =

∞∑
k=1

|〈x2,
√

2 sin(kπ·)〉L2 |2 = ‖x2‖2L2(0,1)

≤ ‖x1‖2
D(A

1/2
0 )

+ ‖x2‖2L2(0,1) =

∥∥∥∥(x1

x2

)∥∥∥∥2

,

we have that C(−A2) extends to a bounded operator on X2, and thus we can
let γ = 1.

In order to verify that B satisfies R(B) ⊂ D((−A1)β) for β = 1, we
need to show that R(B0) ⊂ H1

0 (Ω). Let y ∈ Y = `2(C) be arbitrary. We have
(〈y, ek〉/k)k 6=0 ∈ `1(C), and therefore

∂

∂z1
(B0y)(z) =

∑
k 6=0

〈y, ek〉
k2

k cos(kz1) sin(kz2) =
∑
k 6=0

〈y, ek〉
k

cos(kz1) sin(kz2)

∂

∂z2
(B0y)(z) =

∑
k 6=0

〈y, ek〉
k

sin(kz1) cos(kz2).

Moreover, the property (〈y, ek〉/k)k 6=0 ∈ `1(C) implies that ∂
∂z1

(B0y)(·) and
∂
∂z2

(B0y)(·) are bounded uniformly continuous functions on Ω = [0, π]×[0, π].

Indeed, if we for instance denote f(z) = ∂
∂z1

(B0y)(z) and yk = 〈y, ek〉/k, and

if ε > 0, then there exists N ∈ N such that
∑
|k|>N |yk| < ε/4. Moreover,

since the function z 7→ fN (z) =
∑

0<|k|≤N yk cos(kz1) sin(kz2) is uniformly

continuous, there exists δ > 0 such that |fN (z) − fN (z̃)| < ε/2 whenever
‖z − z̃‖ < δ. Thus if ‖z − z̃‖ < δ, then

|f(z)− f(z̃)| ≤ |fN (z)− fN (z̃)|+ 2
∑
|k|>N

|yk| <
ε

2
+
ε

2
= ε.

Since we also clearly have (B0y)(z) = 0 for every z ∈ ∂Ω, this shows that
B0y ∈ H1

0 (Ω). The element y ∈ Y was arbitrary, and we have thus shown
that R(B0) ⊂ H1

0 (Ω).
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Since the conditions of Theorem 7 are satisfied, we have that the sys-
tem (15) of wave equations with the coupling (20) is polynomially stable with
power α = max{α1, α2} = 2.
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