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Abstract

In this paper we study the robustness properties of strong and polynomial
stability of semigroups of operators. We show that polynomial stability of
a semigroup is robust with respect to a large and easily identifiable class
of perturbations to its infinitesimal generator. The presented results apply
to general polynomially stable semigroups and bounded perturbations. The
conditions on the perturbations generalize well-known criteria for the preser-
vation of exponential stablity of semigroups. We also show that the general
results can be improved if the perturbation is of finite rank or if the semi-
group is generated by a Riesz-spectral operator. The theory is applied to
deriving concrete conditions for the preservation of stability of a strongly
stabilized one-dimensional wave equation.
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1. Introduction

Characterizing classes of perturbations preserving the strong stability of
a strongly continuous semigroup has for a long time been a well-known open
problem. To this day, very few results are available even for semigroups
generated by special classes of operators. Nevertheless, results concerning
preservation of strong stability are sought after in many areas of mathematics
where infinite-dimensional linear differential equations are studied. In this
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paper we solve this problem for an important subclass of strongly stable
semigroups, the so-called polynomially stable semigroups [1, 2, 3].

A strongly continuous semigroup TA(t) generated by a linear operator
A on a Hilbert space X is said to be polynomially stable if it is uniformly
bounded, if iR ⊂ ρ(A), and if

‖TA(t)A−1‖ ≤ M

t1/α
, ∀t > 0 (1)

for some M > 0 and α > 0. A distinguishing feature of such semigroups is
that the spectrum of the operator A is fully contained in the open left half-
plane C− and may only approach the imaginary axis asymptotically. Poly-
nomial stability is encountered most notably when using pole placement [4]
to stabilize a bounded group with an infinite number of evenly spaced eigen-
values λk on the imaginary axis. It is well-known that in such a situation
it is not possible to shift the eigenvalues of the generator uniformly away
from the imaginary axis [5]. As a consequence, the eigenvalues µk of the sta-
bilized operator necessarily approach the imaginary axis as |Imµk| becomes
large. In particular this means that the stabilized semigroup can never be
exponentially stable. However, it turns out that it is indeed polynomially
stable.

Studying the robustness of the stability of the semigroup TA(t) consists
of introducing conditions under which the semigroup generated by the per-
turbed operator

A+ ∆

is strongly or polynomially stable. In this paper we are in particular in-
terested in characterizing classes of perturbations ∆ ∈ L(X) for which the
perturbed operator has the following three properties.

1. The spectrum σ(A+ ∆) is contained in the open left half-plane of C.

2. The semigroup generated by A+ ∆ is strongly stable.

3. The semigroup generated by A+ ∆ is polynomially stable.

This kind of subdivision of our main perturbation problem is based on two
observations. First of all, if the perturbed operator has the first one of the
above properties, the well-known Arendt-Batty-Lyubich-Vũ Theorem [6, 7, 8]
then states that the perturbed semigroup is strongly stable provided that it
is uniformly bounded. Furthermore, if the perturbed operator has the first
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two properties, then the polynomial stability can be determined based on
the behavior of the resolvent operator of A+ ∆ on the imaginary axis [3].

It is well-known that if TA(t) is not exponentially stable, then for any
ε > 0 there may exist a perturbation ∆ ∈ L(X) satisfying ‖∆‖ < ε such that
the semigroup generated by A+∆ is unstable. The main contribution of this
paper is to show that it is possible — and very easy — to introduce conditions
for the preservation of the stability of the semigroup if we instead employ
graph norms of the operators (−A)β and (−A∗)γ with suitable exponents
β ≥ 0 and γ ≥ 0. In particular we consider structured perturbations of the
form

A+BC

where B ∈ L(Y,X) and C ∈ L(X, Y ) for some Hilbert space Y . We show
that whenever A generates a polynomially stable semigroup on X, there exist
exponents β, γ ≥ 0 depending only on α > 0 in (1) and a constant δ > 0 such
that the perturbed semigroup is strongly and polynomially stable whenever

(−A)βB ∈ L(Y,X), (−A∗)γC∗ ∈ L(Y,X), (2)

and whenever the associated operator norms satisfy ‖(−A)βB‖ < δ and
‖(−A∗)γC∗‖ < δ.

Such classes of perturbations are given a natural interpretation if we
consider B and C∗ as operators between slighly different spaces. Indeed,
condition (2) is in fact equivalent to the operators B and C∗ being bounded
as linear operators between the spaces

B : Y →
(
D((−A)β), ‖(−A)β·‖

)
, C∗ : Y →

(
D((−A∗)γ), ‖(−A∗)γ·‖

)
.

Moreover, the bounds on the sizes of the perturbations can immediately be
expressed using the the associated operator norms, because

‖B‖L(Y,D((−A)β)) = ‖(−A)βB‖, and ‖C∗‖L(Y,D((−A∗)γ)) = ‖(−A∗)γC∗‖.

In particular, the results presented in this paper generalize the conditions
for the preservation of exponential stability of semigroups. Indeed, we will
see that in the case of an exponentially stable semigroup we can in fact choose
β = γ = 0. The above conditions for the preservation of stability then simply
require that the ordinary operator norms of B and C are small enough.
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Considering structured perturbations of the form A + BC enables us to
easily study perturbations of finite rank by simply choosing Y = Cm. In this
case the perturbing operator BC can be written as

BC =
m∑
j=1

〈·, cj〉bj

for some {bj}mj=1 ⊂ X and {cj}mj=1 ⊂ X. For finite rank perturbations the
conditions for the preservation of the stability of the semigroup become very
concrete. Indeed, for such operators condition (2) is in fact equivalent to

{bj}mj=1 ⊂ D((−A)β), and {cj}mj=1 ⊂ D((−A∗)γ),

and the conditions on the operator norms are satisfied if ‖(−A)βbj‖ and
‖(−A∗)γcj‖ are small enough for all j ∈ {1, . . . ,m}. It also turns out that
for finite rank perturbations we can obtain stronger results than for more
general perturbations.

It should be noted that the classes of perturbations introduced in this
paper are in particular very large. Indeed, since A generates a semigroup,
for all β ≥ 0 and γ ≥ 0 both of the domains D((−A)β) and D((−A∗)γ)
are dense in X. The sizes of the perturbation classes are most obvious for
perturbations of rank one, i.e., for BC = 〈·, c〉b with b, c ∈ X. In such a
case the denseness of the domains implies that the considered classes contain
perturbations in directions that form a dense set in X.

The division of the main perturbation problem into parts reveals a funda-
mental difference between the results concerning the different subproblems.
The conditions for the preservation of strong and polynomial stablity of the
semigroup require β ≥ α and γ ≥ α for general operators B and C, and in
the case of finite rank perturbations either of the two conditions is sufficient.
This is in contrast with the conditions on the perturbation of the spectrum
where it is sufficient to assume β + γ ≥ α. In essence this means that when
considering only the preservation of the property σ(A) ⊂ C−, the require-
ment on the magnitudes of the exponents can be distributed between the two
components B and C of the perturbing operator.

As was already mentioned, there are essentially no previous results on
robustness of strong or polynomial stability for general semigroups. The
theory presented in this paper generalizes the approach used in [9], where
the problem was studied for semigroups generated by Riesz-spectral operators
and finite rank perturbations.
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Robustness of strong stability has also been studied in [10], where the
unperturbed operator was assumed to be a skew-adjoint diagonal operator
that had been stabilized strongly using a bounded feedback of rank one.
The authors showed that such a feedback is robust with respect to small
perturbations in a family of three dimensional half-planes. Unfortunately,
the characterizations of these half-planes make use of the solutions of certain
Lyapunov equations, and for this reason the conditions on the perturbations
become very complicated and in particular impossible to verify in practice.

We extend the results presented in [9] in several important ways. First
and foremost, the generator of the unperturbed semigroup is not required to
have any special structrure, whereas in [9] it was assumed to be generated
by a Riesz-spectral operator. The second most important generalization is
that the perturbing operators need not be of finite rank. Instead, we will
see that the conditions on the operator norms ‖(−A)βB‖ and ‖(−A∗)γC‖
naturally generalize the ones imposed on the finite rank perturbations in [9].
We also improve the results in [9] by showing that if the perturbation satisfies
the conditions for the property σ(A + BC) ⊂ C−, then the stability of the
perturbed semigroup does not require any additional conditions on the sizes
of the perturbation.

In addition to extending the results in [9] for general semigroups, we also
improve them in the case where A is a Riesz-spectral operator. The most se-
rious drawback concerning the applicability of the results presented earlier is
that the conditions for the strong stablity of the perturbed semigroup require
that the perturbation satisfies either β ≥ α or γ ≥ α. In this paper we show
that for Riesz-spectral operators and finite rank perturbations the condition
for the exponents can in fact be distributed between the operators B and
C also in the results concerning the preservation of stability. In particular,
we show that for such operators the strong and polynomial stabilities of the
semigroup are preserved provided that the exponents satisfy β, γ ≥ α/2, and
the associated norms of the perturbing operators are small enough.

We apply the theoretic perturbation results to studying the preservation
of stability of a strongly stabilized wave equation. To this end, we continue
the example studied in [9]. In the previous reference it was shown that
it was possible compute actual perturbation bounds for the spectrum of the
perturbed equation to be contained in the open left half-plane of C. However,
the presented theory could not be used to study the preservation of stability
of the equation, and the preservation of uniform boundedness had to be
concluded using indirect methods. In this paper we use our improved results
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concerning semigroups generated by Riesz-spectral operators and complete
the study of the robustness properties of this equation. In particular we
use our perturbation classes to compute concrete bounds on the perturbing
functions to guarantee the preservation of strong and polynomial stabilities
of the wave equation.

If X and Y are Banach spaces and A : X → Y is a linear operator, we
denote by D(A), and R(A) the domain, and range of A, respectively. The
space of bounded linear operators from X to Y is denoted by L(X, Y ). If
A : D(A) ⊂ X → X, then σ(A), σp(A) and ρ(A) denote the spectrum, the
point spectrum and the resolvent set of A, respectively. For λ ∈ ρ(A) the
resolvent operator is given by R(λ,A) = (λI − A)−1.

For a function f : R→ R and for α ≥ 0 we use the notation

f(ω) = O (|ω|α)

if there exist constants M > 0 and ω0 ≥ 0 such that |f(ω)| ≤ M |ω|α for all
ω ∈ R with |ω| ≥ ω0.

2. Mathematical Preliminaries and the Perturbation Problem

In this section we formulate our perturbation problem mathematically.
In particular this includes stating the detailed assumptions on the unper-
turbed semigroup TA(t) and on the perturbing operators. We conclude the
section with some helpful lemmata concerning finite rank perturbations and
the fundamental properties of Riesz-spectral operators.

Throughout the paper we consider a strongly continuous semigroup TA(t)
generated by A : D(A) ⊂ X → X on a Hilbert space X. We assume TA(t)
is uniformly bounded, iR ⊂ ρ(A), and for some α > 0 and M > 0 the
semigroup satisfies

‖TA(t)A−1‖ ≤ M

t1/α
, t > 0. (3)

A semigroup satisfying these conditions is called polynomially stable [1, 2, 3].
In some references the polynomially stable semigroups are not necessarily
strongly stable. However, our assumption of uniform boundedness of TA(t)
together with the estimate (3) implies that TA(t) also satisfies TA(t)x → 0
as t→∞ for all x ∈ X.
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It is shown in [3] that the polynomial decay (3) of a uniformly bounded
semigroup is completely characterized by the behavior of the resolvent oper-
ator of A on the imaginary axis. More precisely, whenever TA(t) is uniformly
bounded and iR ⊂ ρ(A), for a fixed α > 0 the semigroup satisfies (3) for
some M > 0 if and only if [3, Thm. 2.4].

‖R(iω, A)‖ = O(|ω|α).

Since σ(A) ⊂ C−, the operators −A and −A∗ are sectorial in the sense
of [11]. For β ≥ 0 we can therefore consider the fractional powers (−A)β

and (−A∗)β as defined in [11, Ch. 3]. Since the operators are boundedly
invertible, the mappings

x 7→ ‖(−A)βx‖, x ∈ D((−A)β)

y 7→ ‖(−A∗)βy‖, y ∈ D((−A∗)β)

define norms that are equivalent to the graph norms of the operators (−A)β

and (−A∗)β, respectively. In particular, since the operators are closed, the
spaces (

D((−A)β), ‖(−A)β·‖
)
, and

(
D((−A∗)β), ‖(−A∗)β·‖

)
are Banach spaces for all β ≥ 0.

In the following we list the standing assumptions on our unperturbed
operator A and on the components B and C of the perturbation.

Assumption 1. Let X and Y be Hilbert spaces. Assume that the operators
A : D(A) ⊂ X → X, B ∈ L(Y,X), and C ∈ L(X, Y ) satisfy the following
for some α > 0, and β, γ ≥ 0.

1. The operator A generates a uniformly bounded semigroup, iR ⊂ ρ(A)
and there exists α > 0 such that

‖R(iω, A)‖ = O(|ω|α). (4)

2. We have R(B) ⊂ D((−A)β) and (−A)βB ∈ L(Y,X)

3. We have R(C∗) ⊂ D((−A∗)γ) and (−A∗)γC∗ ∈ L(Y,X)
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In the case of a single perturbing operator, i.e., if we want to study A+∆
for some ∆ ∈ L(X), we can choose Y = X in Assumption 1. The results can
then be applied to a structured perturbation BC with either

1. B = ∆, γ = 0, and C = I, or

2. C = ∆, β = 0, and B = I.

As was discussed in the introduction, we subdivide the main perturbation
problem concerning the preservation of stability into three parts. The first
one of these parts concerns the change of the spectrum of the operator,
and latter two consist of finding additional conditions for the strong and
polynomial stability of the perturbed semigroup.

Problem 2. Under the conditions of Assumption 1, characterize classes of
operators B and C with the following properties.

1. The spectrum of the perturbed operator satisfies σ(A+BC) ⊂ C−.

2. The semigroup generated by the perturbed operator A+BC is strongly
stable.

3. The semigroup generated by the perturbed operator A + BC is polyno-
mially stable.

We know from the theory of strong stability of semigroups that if the per-
turbed operator satisfies σ(A + BC) ⊂ C−, then for preservation of strong
stability it is sufficient to find conditions under which the perturbed semi-
group is uniformly bounded [6, 7, 8]. To further show that the perturbed
semigroup is also polynomially stable, we need to show that the resolvent
operator of the perturbed operator A+BC is polynomially bounded on the
imaginary axis [3].

2.1. Perturbations of Finite Rank

In this section we make a few quick remarks concerning perturbations of
finite rank. On a Hilbert space X, any finite rank perturbation BC can be
written in the form

BC =
m∑
j=1

〈·, cj〉bj ∈ L(X),
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with {bj}mj=1 ⊂ X and {cj}mj=1 ⊂ X. In Assumption 1 we can therefore take
Y = Cm, and choose the operators B ∈ L(Cm, X) and C ∈ L(X,Cm) as

Cx =

 〈x, c1〉
...

〈x, cm〉

 , B

y1
...
ym

 =
m∑
j=1

yjbj.

The conditions on B and C in Assumption 1 are then equivalent to requiring
that for some constants β ≥ 0 and γ ≥ 0 we have

bj ∈ D((−A)β), and cj ∈ D((−A∗)γ)

for all j ∈ {1, . . . ,m}. Furthermore, it is straightforward to verify

max
j
‖(−A)βbj‖ ≤ ‖(−A)βB‖ ≤ m ·max

j
‖(−A)βbj‖

max
j
‖(−A∗)γcj‖ ≤ ‖(−A∗)βC∗‖ ≤ m ·max

j
‖(−A∗)γcj‖.

This immediately implies that any conditions of the form ‖(−A)βB‖ < δ and
‖(−A∗)γC∗‖ < δ can be replaced with a requirement that the norms

‖(−A)βbj‖ and ‖(−A∗)γcj‖,

respectively, are small enough for all j ∈ {1, . . . ,m}.
The following lemma will be useful when considering finite rank pertur-

bations.

Lemma 3. Let Y = Cm. If R ∈ L(X), then

‖RB‖2 ≤
m∑
j=1

‖Rbj‖2, ‖CR‖2 ≤
m∑
j=1

‖R∗cj‖2. (5)

Proof. The estimates follow directly from

‖RBy‖2 =

∥∥∥∥∥
m∑
j=1

yjRbj

∥∥∥∥∥
2

≤

(
m∑
j=1

|yj|‖Rbj‖

)2

≤

(
m∑
j=1

|yj|2
)(

m∑
j=1

‖Rbj‖2

)
.

and

‖CRx‖2 =
m∑
j=1

|〈Rx, cj〉|2 =
m∑
j=1

|〈x,R∗cj〉|2 ≤ ‖x‖2

m∑
j=1

‖R∗cj‖2.
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2.2. Fundamental Properties of Riesz-Spectral Operators

In this section we introduce the notation and briefly state the most rel-
evant properties of Riesz-spectral operators [12, Sec. 2.3]. If A is a Riesz-
spectral operator, it can be written in the form

Ax =
∞∑
k=0

λk〈x, ψk〉φk, x ∈ D(A) =
{
x ∈ X

∣∣ ∞∑
k=0

|λk|2|〈x, ψk〉|2 <∞
}
,

where the sequences (φk)
∞
k=0 and (ψk)

∞
k=0 are biorthonormal, and both of

them are bases of X. The eigenvalues of A are σp(A) = {λk}∞k=0, and the full

spectrum of A is the closure of its point spectrum, i.e., σ(A) = σp(A).
There exist constants Mσ,mσ > 0 such that all x ∈ X satisfy

mσ

∞∑
k=0

|〈x, ψk〉|2 ≤ ‖x‖2 ≤Mσ

∞∑
k=0

|〈x, ψk〉|2

1

Mσ

∞∑
k=0

|〈x, φk〉|2 ≤ ‖x‖2 ≤ 1

mσ

∞∑
k=0

|〈x, φk〉|2.

For a Riesz-spectral operator the fractional domainsD((−A)β) andD((−A∗)γ)
have particularly simple representations as

D((−A)β) =
{
x ∈ X

∣∣ ∞∑
k=0

|λk|2β|〈x, ψk〉|2 <∞
}

D((−A∗)β) =
{
y ∈ X

∣∣ ∞∑
k=0

|λk|2β|〈y, φk〉|2 <∞
}
.

3. Robustness of Strong and Polynomial Stability of Semigroups

In this section we state our main results. We begin by answering the first
part of Problem 2. The following theorem characterizes classes of operators
B and C for which the spectrum of the operator A+BC is contained in the
left half-plane of C. The result also concludes that for all such perturbations
the elements λ of the spectrum of the perturbed operator may approach the
imaginary axis only as |Imλ| becomes large.
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Theorem 4. Let A, B, and, C satisfy Assumption 1 for some α > 0, and
β, γ ≥ 0. If β + γ ≥ α, then there exists δ > 0 such that the perturbed
operator satisfies

σ(A+BC) ⊂ C−

whenever ‖(−A)βB‖ · ‖(−A∗)γC∗‖ < δ.
Moreover, there exist constants cA > 0 and rA > 0 such that for any such

perturbation we have

Reλ ≤ −cA|Imλ|−α,

for all λ ∈ σ(A+BC) with |Imλ| ≥ rA.

The second one of our main results concerns the preservation of the stabil-
ity of the semigroup TA(t). The following theorem presents conditions under
which the perturbed semigroup is polynomially stable. For strong stability it
would have been sufficient to state additional conditions for the preservation
uniform boundedness. However, it turns out that our approach gives the
polynomial stability of the perturbed semigroup for free.

Theorem 5. Let A, B, and C satisfy Assumption 1 for some α > 0, and
β, γ ≥ α, and choose δ > 0 as in Theorem 4 for β = α and γ = 0. Then
for all B and C satisfying ‖(−A)αB‖ · ‖C∗‖ < δ we have σ(A+BC) ⊂ C−,
the semigroup TA+BC(t) generated by A+BC is uniformly bounded, and for
some M > 0 we have

‖TA+BC(t)(A+BC)−1‖ ≤ M

t1/α
, ∀t > 0.

In particular, the perturbed semigroup is strongly and polynomially stable.
If dimY <∞, the conclusions remain valid for any γ ≥ 0.

On a Hilbert space a semigroup TA(t) is uniformly bounded if and only
if the same is true for the adjoint semigroup TA(t)∗ generated by A∗. It
is therefore reasonable to expect that Theorem 5 has an analogue with the
roles of the operators B and C reversed. Indeed, this follows directly from the
fact that we can apply Theorem 5 to the operator A∗ and the perturbation
(BC)∗ = C∗B∗.
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Corollary 6. Let A, B, and C satisfy Assumption 1 for some α > 0, and
β, γ ≥ α and choose δ > 0 as in Theorem 4 for β = 0 and γ = α. Then for
all B and C satisfying ‖B‖ · ‖(−A∗)αC∗‖ < δ we have σ(A + BC) ⊂ C−,
the semigroup TA+BC(t) generated by A+BC is uniformly bounded, and for
some M > 0 we have

‖TA+BC(t)(A+BC)−1‖ ≤ M

t1/α
, ∀t > 0.

In particular, the perturbed semigroup is strongly and polynomially stable.
If dimY <∞, the conclusions remain valid for any β ≥ 0.

Finally, for semigroups generated by Riesz-spectral operators we can im-
prove the conditions in Theorem 5. In particular, in this case the conditions
on the exponents β and γ can be distributed between the components B and
C of the perturbing operator, as was possible when considering perturbation
of the spectrum of A in Theorem 4. We will see in Section 5 that besides
Riesz-spectral operators, part of the result can also be formulated for general
operators A whose resolvents satisfy an additional integrability condition.

Theorem 7. Assume dimY < ∞, let A be a Riesz-spectral operator, and
let A, B, and C satisfy the conditions of Assumption 1 for α > 0, and
β, γ ≥ α/2. Choose δ > 0 as in Theorem 4 for β = γ = α/2. Then for all B
and C satisfying ‖(−A)

α
2B‖ · ‖(−A∗)α

2C∗‖ < δ we have σ(A + BC) ⊂ C−,
the semigroup TA+BC(t) generated by A+BC is uniformly bounded, and for
some M > 0 we have

‖TA+BC(t)(A+BC)−1‖ ≤ M

t1/α
, ∀t > 0.

In particular, the perturbed semigroup is strongly and polynomially stable.

The proofs of the Theorems 4, 5, and 7 are presented in Sections 4 and 5.
Before moving on, however, we will take a moment to address the optimality
of our conditions. The following theorem presents a simple counterexample
to demonstrate that the condition β + γ ≥ α in Theorem 4 is necessary for
the property σ(A+BC) ⊂ C− and the stability of the perturbed semigroup
to be achieved using bounds on the norms ‖(−A)βB‖ and ‖(−A∗)γC∗‖.

Theorem 8. Consider the semigroup generated by the diagonal operator

Ax =
∞∑
k=1

λk〈·, φk〉φk, D(A) =
{
x ∈ X

∣∣ ∞∑
k=1

|λk|2|〈x, φk〉|2 <∞
}
,
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where {φk}∞k=1 is an orthonormal basis of X, and λk = −|k|−α + ik for all
k ∈ N and for some α > 0.

For any β, γ ≥ 0 such that β + γ < α and for all δ > 0 there exist B
and C for which ‖(−A)βB‖ · ‖(−A∗)γC∗‖ < δ and σp(A+BC) ∩ C+ 6= ∅.

Proof. Let β, γ ≥ 0 be such that β + γ < α, and let δ > 0. Consider a rank
one perturbation BC with B = b and C = 〈·, c〉, where b = c =

√
|Reλn|φn

for some n ∈ N. Now

‖(−A)βB‖·‖(−A∗)γC∗‖ = |λn|β
√
|Reλn||〈φn, φn〉| · |λn|γ

√
|Reλn||〈φn, φn〉|

= |λn|β+γ|Reλn| =

(√
1

n2α
+ n2

)β+γ
1

nα

≤
(√

2n2
)β+γ 1

nα
= 2

β+γ
2 nβ+γ−α → 0,

as n → ∞, since β + γ − α < 0. If we choose n >
(
2−

β+γ
2 δ
)α−β−γ

, we then
have ‖(−A)βB‖ · ‖(−A∗)γC∗‖ < δ, but

(A+BC)φn = λnφn + |Reλn|〈φn, φn〉φn = i Imλnφn.

This concludes that σp(A+ BC) ∩ C+ 6= ∅, and further that the semigroup
generated by A+BC is unstable.

4. Perturbation of the Spectrum

In this section we present the proof of Theorem 4 describing the change of
the spectrum of A under perturbations. For this we use the following lemma
relating the order of growth of the resolvent operator of A on the imaginary
axis to its behavior in the right half-plane of C. The proof of this convenient
result can be found in [3, Lem. 2.3], [13, Lem. 3.2].

Lemma 9. Assume A generates a uniformly bounded semigroup on a Hilbert
space X, and iR ⊂ ρ(A). For a fixed α > 0 we have

‖R(iω, A)‖ = O(|ω|α)

if and only if

sup
Reλ≥0

‖R(λ,A)(−A)−α‖ <∞. (6)
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In analyzing the change of the spectrum of A — as well as the preserva-
tion of the stability of the semigroup in the next section — we also use the
Sherman-Morrison-Woodbury formula given in the next lemma. This well-
known operator identity can be verified with a straightforward computation.

Lemma 10. Let λ ∈ ρ(A), B ∈ L(Y,X), C ∈ L(X, Y ). If 1 ∈ ρ(CR(λ,A)B),
then λ ∈ ρ(A+BC) and

R(λ,A+BC) = R(λ,A) +R(λ,A)B(I − CR(λ,A)B)−1CR(λ,A). (7)

We will begin the proof of Theorem 4 by showing that if A is polynomi-
ally stable, we can extend the estimate (6) to an appropriately chosen open
domain ∆α ⊂ C containing the closed right half-plane of C. The proof of
Theorem 4 is then completed by showing that under the given assumptions
we can choose δ > 0 in such a way that ∆α ⊂ ρ(A + BC) whenever the
perturbing operators satisfy ‖(−A)βB‖ · ‖(−A∗)γC∗‖ < δ.

We remark that the construction of the domain ∆α is mainly required for
showing that the spectrum of the perturbed operator may only approach the
imaginary axis at a rate |Imλ|−α. The proof of Theorem 4 can be simplified
if we are only interested in showing σ(A + BC) ⊂ C−, see Remark 13 for
details.

Theorem 11. Let A satisfy the conditions of Assumption 1 for some α > 0.
Then there exists an open set ∆α ⊂ C with the following properties.

1. We have C+ ⊂ ∆α ⊂ ρ(A) and there exist constants cA > 0 and rA > 0
such that any λ ∈ C \∆α with |Imλ| ≥ rA satisfies

Reλ ≤ −cA|Imλ|−α.

2. We have

sup
λ∈∆α

‖R(λ,A)(−A)−α‖ <∞. (8)

Proof. Let 0 < κ < 1. Since the resolvent operator of A satisfies (4), there
exists ω0 ≥ 1 and MA > 0 such that

‖R(iω, A)‖ ≤MA|ω|α, whenever |ω| ≥ ω0. (9)
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Every λ ∈ ρ(A) satisfies dist(λ, σ(A)) ≥ ‖R(λ,A)‖−1 [14, Cor. IV.1.14], and
therefore for every iω with |ω| ≥ ω0 we necessarily have

dist(iω, σ(A)) ≥ 1

MA|ω|α
.

In particular this implies that any λ ∈ σ(A) with |Imλ| ≥ ω0 must satisfy
Reλ ≤ −(1/MA)|Imλ|−α. Therefore the spectrum of A can approach the
imaginary axis only as |Imλ| becomes large, and at a rate that is at most
|Imλ|−α.

Our aim now is to construct the domain ∆α in such a way that it contains
the closed right half-plane of C−, and its boundary lies between the imaginary
axis and the spectrum of A. The final result of the construction is illustrated
in Figure 1. The mathematical details are written out in the following.

Γ∞
α

Γ∞
α

∆α

σ(A)

δAδ0

Figure 1: The domain ∆α ⊃ C+

Since iR ⊂ ρ(A), the points λ ∈ σ(A) with |Imλ| ≤ ω0 are uniformly
bounded away from the imaginary axis, i.e., we have

δ0 = sup
{

Reλ
∣∣ λ ∈ σ(A), and |Imλ| ≤ ω0

}
< 0.

We can therefore define δA < 0 by

δA = max

{
κδ0,−

κ

MA|ω0|α

}
< 0.
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The domain ∆α ⊂ C is defined in such a way that the real part of λ ∈ ∆α

is bounded from below by both the vertical line Γ0
α = {λ ∈ C− | Reλ = δA }

and the curve

Γ∞α =
{
λ ∈ C−

∣∣ λ = − κ

MA|s|α
+ is, s 6= 0

}
.

The paths Γ0
α and Γ∞α intersect each other at two points λ±0 ∈ C−. If we

denote by rA > 0 the modulus of the imaginary part of the intersections, i.e.,
λ±0 = Reλ0 ± irA, then rA is determined by

δA = Reλ0 = − κ

MA|rA|α
⇔ rA =

(
κ

|δA|MA

)1/α

.

The fact that |δA| ≤ (κ/MA)|ω0|−α finally ensures rA ≥ ω0. By definition we
clearly have C+ ⊂ ∆α ⊂ ρ(A), and the domain ∆α satisfies the properties in
the theorem.

It remains to show that (8) is satisfied for this choice of ∆α. By Lemma 9
it suffices to show that ‖R(λ,A)(−A)−α‖ is uniformly bounded with respect
to λ ∈ ∆α ∩ C−. Furthermore, since the compact set{

λ ∈ C−
∣∣ δA ≤ Reλ ≤ 0, |Imλ| ≤ rA

}
⊂ C−

is contained in ρ(A), the mapping λ 7→ ‖R(λ,A)(−A)−α‖ is continuous,
and thus uniformly bounded, on this set. It therefore remains to show that
‖R(λ,A)(−A)−α‖ is uniformly bounded for λ ∈ ∆α ∩ C− with |Imλ| ≥ rA.

By construction of ∆α, for any λ ∈ ∆α satisfying |Imλ| ≥ rA ≥ ω0

and Reλ ≤ 0 we have |Reλ| < (κ/MA)|Imλ|−α. We can use the resolvent
equation to estimate

‖R(λ,A)(−A)−α‖ = ‖R(Reλ+ i Imλ,A)(−A)−α‖

= ‖R(i Imλ,A)(−A)−α+(−Reλ)R(i Imλ,A)R(Reλ+ i Imλ,A)(−A)−α‖

≤ ‖R(i Imλ,A)(−A)−α‖+ |Reλ| · ‖R(i Imλ,A)‖‖R(λ,A)(−A)−α‖,

and thus(
1− |Reλ| · ‖R(i Imλ,A)‖

)
‖R(λ,A)(−A)−α‖ ≤ ‖R(i Imλ,A)(−A)−α‖.

But since |Reλ| < (κ/MA)|Imλ|−α, we have from (9) that

|Reλ| · ‖R(i Imλ,A)‖ < κ

MA|Imλ|α
·MA|Imλ|α = κ < 1,
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and thus

‖R(λ,A)(−A)−α‖ ≤ ‖R(i Imλ,A)(−A)−α‖
1− |Reλ| · ‖R(i Imλ,A)‖

≤ 1

1− κ
· sup

Reµ≥0
‖R(µ,A)(−A)−α‖.

Since the bound on the right-hand side is finite and independent of λ, this
concludes the proof.

We can now prove Theorem 4 using the domain ∆α and the estimate (8).

Proof of Theorem 4. Let ∆α be as in Theorem 11 and choose M > 0 as

M = sup
λ∈∆α

‖R(λ,A)(−A)−α‖ <∞.

Since β + γ ≥ α, we have (−A)α−β−γ ∈ L(X), and we can thus define

δ =
1

M‖(−A)α−β−γ‖
> 0.

Let B ∈ L(Y,X) and C ∈ L(X, Y ) be such that ‖(−A)βB‖·‖(−A∗)γC∗‖ < δ
and let λ ∈ ∆α. Then for any x ∈ X with ‖x‖ = 1 we can use the properties
of the fractional powers of sectorial operators [11, Ch. 3] to estimate

‖CR(λ,A)Bx‖ = sup
‖y‖=1

|〈C(−A)γ(−A)−γR(λ,A)(−A)−β(−A)βBx, y〉|

= sup
‖y‖=1

|〈R(λ,A)(−A)−β−γ(−A)βBx, (−A∗)γC∗y〉|

= sup
‖y‖=1

|〈R(λ,A)(−A)−α(−A)α−β−γ(−A)βBx, (−A∗)γC∗y〉|

≤ sup
‖y‖=1

‖R(λ,A)(−A)−α‖‖(−A)α−β−γ‖‖(−A)βB‖‖x‖‖(−A∗)γC∗‖‖y‖

≤M‖(−A)α−β−γ‖ · ‖(−A)βB‖ · ‖(−A∗)γC∗‖
< M‖(−A)α−β−γ‖ · δ = 1,

and thus ‖CR(λ,A)B‖ < 1. In particular we have 1 ∈ ρ(CR(λ,A)B),
and the Sherman-Morrison-Woodbury formula in Lemma 10 implies that
λ ∈ ρ(A+BC).

Since λ ∈ ∆α was arbitrary, we have ∆α ⊂ ρ(A + BC), which finally
concludes σ(A + BC) ⊂ C \ ∆α ⊂ C−. The estimate for the real part of
λ ∈ σ(A+BC) follows directly from Theorem 11.
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At the end of the previous proof we saw that the norm of the operator
CR(λ,A)B could be estimated independently of λ ∈ ∆α. We can further
prove the following lemma which will be used repeatedly in studying the
preservation of stability in the next section.

Lemma 12. If B and C are such that ‖(−A)βB‖ · ‖(−A∗)γC∗‖ < δ in
Theorem 4, then

sup
λ∈∆α

‖(I − CR(λ,A)B)−1‖ <∞.

Proof. Let λ ∈ ∆α. We saw in the proof of Theorem 4 that

‖CR(λ,A)B‖ ≤M‖(−A)α−β−γ‖ · ‖(−A)βB‖ · ‖(−A∗)γC∗‖ < 1,

which in particular implied 1 ∈ ρ(CR(λ,A)B). A standard argument further
shows that

‖(I − CR(λ,A)B)−1‖ =

∥∥∥∥∥
∞∑
n=0

(CR(λ,A)B)n

∥∥∥∥∥ ≤
∞∑
n=0

‖CR(λ,A)B‖n

=
1

1− ‖CR(λ,A)B‖
≤ 1

1−M‖(−A)α−β−γ‖‖(−A)βB‖‖(−A∗)γC∗‖
<∞.

Since the bound is independent of λ ∈ ∆α, this concludes the proof.

Remark 13. It should be noted that if we are only interested in the property
σ(A + BC) ⊂ C−, and not on the asymptotic behavior of the spectrum of
A+BC near the imaginary axis, then Theorem 4 can be proved without the
construction of the domain ∆α. Indeed, in this case we can replace λ ∈ ∆α

by λ ∈ C+ in the proof, and similarly arrive to a conclusion that if

‖(−A)βB‖ · ‖(−A∗)γC∗‖ < 1

M‖(−A)α−β−γ‖
, M = sup

Reλ≥0
‖R(λ,A)(−A)−α‖,

we then have C+ ⊂ ρ(A+BC). Moreover, also the conclusion of Lemma 12
remains valid. �

5. The Preservation of Stability

In this section we study the preservation of strong and polynomial sta-
bility of the semigroup. As was discussed earlier, this can be done by pos-
ing additional conditions under which the perturbed semigroup is uniformly
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bounded and the resolvent operator of A+ BC is polynomially bounded on
the imaginary axis. In particular we will see that under the assumptions of
Theorem 5, the preservation of these properties does not require additional
conditions on the sizes of the perturbations. Instead, it is sufficient to choose
δ > 0 as in Theorem 4.

We use the following resolvent conditions to study the uniform bound-
edness of the perturbed semigroup. The proof of the theorem can be found
in [15, Thm. 2].

Theorem 14. If A generates a semigroup TA(t) on a Hilbert space X and if
σ(A) ⊂ C−, then the following are equivalent.

1. The semigroup TA(t) is uniformly bounded.

2. For all x, y ∈ X

sup
ξ>0

ξ

∫ ∞
−∞
|〈R(ξ + iη, A)2x, y〉|dη <∞. (10)

3. For all x, y ∈ X

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A)x‖2 + ‖R(ξ + iη, A)∗y‖2dη <∞. (11)

We are now in a position to prove Theorem 5. We begin by showing
that the perturbed semigroup is uniformly bounded for general operators B
and C in the perturbation. Subsequently, we show that the resolvent operator
of A + BC is polynomially bounded on the imaginary axis. The proof is
completed by showing that for finite rank perturbations the conclusions of
the theorem remain valid even without the requirement γ ≥ α.

Proof of Theorem 5. Let ∆α be as in Theorem 11, and let B and C be such
that (−A)αB ∈ L(Y,X) and (−A∗)αC∗ ∈ L(Y,X). Choose δ > 0 as in
Theorem 4 for β = α and γ = 0, and assume ‖(−A)αB‖ · ‖C∗‖ < δ. By
Theorem 4 we then have C+ ⊂ ∆α ⊂ ρ(A+BC) and Lemma 12 implies

sup
λ∈∆α

‖(I − CR(λ,A)B)−1‖ <∞. (12)

We begin by showing that the semigroup generated by A + BC is uni-
formly bounded. In order to do this, we will show that the perturbed operator
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A+BC satisfies the condition (11) in Theorem 14. The Sherman-Morrison-
Woodbury formula in Lemma 10 shows us that under our assumptions the
resolvent operator R(λ,A+BC) is given by the formulas

R(λ,A+BC) =
[
I +R(λ,A)B(I − CR(λ,A)B)−1C

]
R(λ,A) (13a)

= R(λ,A)
[
I +B(I − CR(λ,A)B)−1CR(λ,A)

]
(13b)

for all λ ∈ C+. Now by (12) and Lemma 9 there exists M1 ≥ 1 independent
of λ ∈ C+ such that

‖I +R(λ,A)B(I − CR(λ,A)B)−1C‖

= ‖I +R(λ,A)(−A)−α(−A)αB(I − CR(λ,A)B)−1C‖

≤ 1 + ‖R(λ,A)(−A)−α‖‖(−A)αB‖‖(I − CR(λ,A)B)−1‖‖C‖ ≤M1.

For any x ∈ X we therefore have

‖R(λ,A+BC)x‖ =
∥∥[I +R(λ,A)B(I − CR(λ,A)B)−1C

]
R(λ,A)x

∥∥
≤M1‖R(λ,A)x‖

for λ ∈ C+, and further

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A+BC)x‖2dη (14a)

≤ M2
1 · sup

ξ>0
ξ

∫ ∞
−∞
‖R(ξ + iη, A)x‖2dη <∞ (14b)

by condition (11) in Theorem 14.
Moreover, since for all x ∈ X with ‖x‖ = 1

‖CR(λ,A)x‖= sup
‖y‖=1

|〈CR(λ,A)x, y〉|= sup
‖y‖=1

|〈C(−A)α(−A)−αR(λ,A)x, y〉|

≤ sup
‖y‖=1

|〈R(λ,A)(−A)−αx, (−A∗)αC∗y〉| ≤ ‖R(λ,A)(−A)−α‖‖(−A∗)αC∗‖,

we have from (12) and Lemma 9 that there exists M2 ≥ 1 independent of
λ ∈ C+ such that∥∥[I +B(I − CR(λ,A)B)−1CR(λ,A)

]∗∥∥
= ‖I +B(I − CR(λ,A)B)−1CR(λ,A)‖

= 1 + ‖B‖‖(I − CR(λ,A)B)−1‖‖R(λ,A)(−A)−α‖‖(−A∗)αC∗‖ ≤M2.
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For all y ∈ X we thus have

‖R(λ,A+BC)∗y‖ =
∥∥[I +B(I − CR(λ,A)B)−1CR(λ,A)

]∗
R(λ,A)∗y

∥∥
≤M2‖R(λ,A)∗y‖

for λ ∈ C+, and again

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A+BC)∗y‖2dη (15a)

≤ M2
2 · sup

ξ>0
ξ

∫ ∞
−∞
‖R(ξ + iη, A)∗y‖2dη <∞, (15b)

by condition (11) in Theorem 14. Together the estimates (14) and (15)
conclude that A+BC satisfies condition (11), and therefore by Theorem 14
the semigroup TA+BC(t) is uniformly bounded.

We continue the proof by showing that the perturbed semigroup TA+BC(t)
is polynomially stable, and that there exists M > 0 such that

‖TA+BC(t)(A+BC)−1‖ ≤ M

t1/α
, t > 0.

For this it is sufficient to show that the resolvent operator of the perturbed
operator satisfies [3, Thm. 2.4]

‖R(iω, A+BC)‖ = O(|ω|α).

This, on the other hand, follows immediately from the fact that for all ω ∈ R
we have iω ∈ C+, and thus as above we can estimate

‖R(iω, A+BC)‖ =
∥∥[I +R(iω, A)B(I − CR(iω, A)B)−1C

]
R(iω, A)

∥∥
≤ ‖I +R(iω, A)B(I − CR(iω, A)B)−1C‖‖R(iω, A)‖
≤M1‖R(iω, A)‖.

Therefore the property ‖R(iω, A + BC)‖ = O(|ω|α) follows directly from
‖R(iω, A)‖ = O(|ω|α). This concludes that under our assumptions the per-
turbed semigroup is polynomially stable.

It now only remains to show that if Y = Cm, then the requirement γ ≥ α
may be omitted, and the conclusions of the theorem remain valid for any
C ∈ L(X,Cm). We may notice that in proving ‖R(iω, A+BC)‖ = O(|ω|α)
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we made no use of the assumption γ ≥ α. This property is indeed indepen-
dent of the value of γ ≥ 0, and it is therefore sufficient to show that the
semigroup generated by A + BC is uniformly bounded. In order to accom-
plish this, we this time show that the resolvent operator of A+BC satisfies
condition (10) in Theorem 14.

Let x, y ∈ X. The Sherman-Morrison-Woodbury formula in Lemma 10
shows that under our assumptions the resolvent operator R(λ,A + BC) is
given by the formula (7) for all λ ∈ C+. For brevity we denote R(λ,A) = Rλ

and Dλ = I − CR(λ,A)B. By Lemma 12 there exists MD ≥ 1 such that
‖D−1

λ ‖ ≤ MD for all λ ∈ C+, and using the scalar inequality 2ab ≤ a2 + b2

we can estimate

|〈R(λ,A+BC)2x, y〉| =
∣∣〈R2

λx, y〉+ 〈R2
λBD

−1
λ CRλx, y〉

+〈RλBD
−1
λ CR2

λx, y〉+ 〈RλBD
−1
λ CR2

λBD
−1
λ CRλx, y〉

∣∣
≤ |〈R2

λx, y〉|+ ‖RλB‖‖D−1
λ ‖‖CRλ‖‖x‖‖R∗λy‖

+ ‖RλB‖‖D−1
λ ‖‖CRλ‖‖Rλx‖‖y‖

+ ‖RλB‖‖D−1
λ ‖‖CRλ‖‖RλB‖‖D−1

λ ‖‖CRλ‖‖x‖‖y‖

≤ |〈R2
λx, y〉|+

MD

2
‖x‖

(
‖RλB‖2‖CRλ‖2 + ‖R∗λy‖2

)
(16a)

+
MD

2
‖y‖

(
‖RλB‖2‖CRλ‖2 + ‖Rλx‖2

)
(16b)

+M2
D‖x‖‖y‖‖RλB‖2‖CRλ‖2. (16c)

To show uniform boundedness of the semigroup generated by A + BC it is
now sufficient to show that for those terms on the right-hand side of (16) that
depend on λ = ξ+iη, the integrals in Theorem 14 are uniformly bounded with
respect to ξ > 0. This is immediately true for the integrals over the terms
|〈R2

λx, y〉|, ‖R∗λy‖2, and ‖Rλx‖2 by conditions (10) and (11) in Theorem 14.
It remains to show that the integrals over the terms ‖RλB‖2‖CRλ‖2 are

finite. Similarly as earlier in the proof, Lemma 9 implies that there exists
MB ≥ 1 such that

‖RλB‖ ≤ ‖Rλ(−A)−α‖‖(−A)αB‖ ≤MB

for all λ ∈ C+. Using Lemma 3 we can therefore see that the integrals over
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the terms ‖RλB‖2‖CRλ‖2 on the right-hand side of (16) satisfy

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A)B‖2‖CR(ξ + iη, A)‖2dη

≤ M2
B · sup

ξ>0
ξ ·

m∑
j=1

∫ ∞
−∞
‖R(ξ + iη, A)∗cj‖2dη

≤ M2
B ·

m∑
j=1

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A)∗cj‖2dη <∞.

again by condition (11) in Theorem 14. Together these estimates and the fact
that x, y ∈ X were arbitrary conclude that the operator A+BC satisfies (10),
and by Theorem 14 the perturbed semigroup TA+BC(t) is uniformly bounded.

As was discussed earlier in the paper, the fundamental difference be-
tween the conditions for the change of the spectrum in Theorem 4 and for
the preservation of strong and polynomial stability types in Theorem 5 arises
from the conditions on the exponents β and γ. The following theorem shows
that under certain additional assumptions on the unperturbed operator A,
the requirements for the magnitudes of the exponents can be distributed be-
tween the operators B and C also when studying the preservation of stability.
In Section 5.1 we will show that these additional assumptions are satisfied in
particular for all Riesz-spectral operators.

Theorem 15. Assume dimY <∞ and let A, B, and C satisfy the conditions
of Assumption 1 for some α > 0 and β, γ ≥ α/2. Assume further that

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A)x‖2‖R(ξ + iη, A)∗y‖2dη <∞ (17)

for all x ∈ D((−A)
α
2 ) and y ∈ D((−A∗)α

2 ). Choose δ > 0 as in Theorem 4 for
β = γ = α/2. Then for all B and C satisfying ‖(−A)

α
2B‖ · ‖(−A∗)α

2C∗‖ < δ
the semigroup generated by A+BC is strongly stable.

Proof. Let Y = Cm and let B and C satisfy ‖(−A)
α
2B‖ · ‖(−A∗)α

2C∗‖ < δ.
Then by Lemma 12 there exists MD ≥ 1 such that

sup
λ∈∆α

‖D−1
λ ‖ ≤MD,
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and Theorem 4 implies σ(A + BC) ⊂ C−. To prove the strong stability of
the semigroup TA+BC(t) it is sufficient to show that it is uniformly bounded.

We prove the uniform boundedness of the perturbed semigroup by show-
ing that the resolvent operator of A + BC satisfies (10) in Theorem 14. To
this end, we let x, y ∈ X and use the estimate (16).

The integrals in Theorem 14 over the terms |〈R2
λx, y〉|, ‖R∗λy‖2 and ‖Rλx‖2

on the right-hand side of (16) are again finite by (10) and (11), since A gen-
erates a uniformly bounded semigroup. Furthermore, since the perturbation
satisfies {bj}mj=1 ⊂ D((−A)

α
2 ) and {cj}mj=1 ⊂ D((−A)

α
2 ), Lemma 3 implies

that the integrals over the terms ‖RλB‖2‖CRλ‖2 satisfy

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A)B‖2‖CR(ξ + iη, A)‖2dη

≤ sup
ξ>0

ξ

∫ ∞
−∞

(
m∑
j=1

‖R(ξ + iη, A)bj‖2

)(
m∑
l=1

‖R(ξ + iη, A)∗cl‖2

)
dη

≤
m∑
j=1

m∑
l=1

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A)bj‖2‖R(ξ + iη, A)∗cl‖2dη <∞,

due to our assumption (17). Since x, y ∈ X were arbitrary, this concludes
that the resolvent operator of A+BC satisfies (10), and thus the perturbed
semigroup TA+BC(t) is uniformly bounded.

5.1. Preservation of Stability for Riesz-Spectral Operators

In this section we prove Theorem 7. To this end, we first show that the ad-
ditional condition in Theorem 15 is satisfied if A is a Riesz-spectral operator.
This allows us to use the theorem to conclude uniform boundedness of the
perturbed semigroup TA+BC(t). The proof of Theorem 7 is then completed
by studying behavior of the resolvent operator of A+BC on the imaginary
axis, and in this way showing that the perturbed semigroup is polynomially
stable.

Lemma 16. Assume that A is a Riesz-spectral operator satisfying the con-
ditions of Assumption 1 for some α > 0. Then

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A)x‖2‖R(ξ + iη, A)∗y‖2dη <∞

for all x ∈ D((−A)
α
2 ) and y ∈ D((−A∗)α

2 ).
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Proof. The scalar inequality 2ab ≤ a2 +b2 implies that it is sufficient to show

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A)x‖4dη <∞, sup

ξ>0
ξ

∫ ∞
−∞
‖R(ξ + iη, A)∗y‖4dη <∞

whenever x ∈ D((−A)
α
2 ) and y ∈ D((−A∗)α

2 ). We prove that A satisfies first
condition. Since A is a Riesz-spectral operator, the remaining condition can
be shown in an analogous way.

We first remark that we can without loss of generality assume there exists
c > 0 such that for all k ∈ N0 we have Imλk 6= 0 and Reλk ≤ −c|Imλk|−α.
Indeed, if this is not the case, then under the standing assumptions we can
decompose A into an operator generating an exponentially stable semigroup
and a Riesz-spectral operator whose eigenvalues satisfy the above condition.
It is then fairly easy to see that A satisfies the integral condition if and only
if it is satisfied for the non-exponentially stable part of the operator.

Let x ∈ D((−A)
α
2 ) and for brevity denote xk = 〈x, ψk〉, ak = Reλk < 0,

and bk = Imλk 6= 0. For all λ ∈ ρ(A) we have

‖R(λ,A)x‖4 =

∥∥∥∥∥
∞∑
k=0

〈x, ψk〉
λ− λk

φk

∥∥∥∥∥
4

≤M2
σ

(
∞∑
k=0

|xk|2

|λ− λk|2

)2

= M2
σ

∞∑
n=0

n∑
k=0

(
|xk|2

|λ− λk|2
· |xn−k|2

|λ− λn−k|2

)
by the Cauchy product formula, since the series are absolutely convergent.
Let ξ > 0. If λk 6= λn−k, then the integral of a single term in the series can
be estimated∫ ∞

−∞

|xk|2

|ξ + iη − λk|2
· |xn−k|2

|ξ + iη − λn−k|2
dη

= |xk|2|xn−k|2
∫ ∞
−∞

dη

[(ξ − ak)2 + (η − bk)2] · [(ξ − an−k)2 + (η − bn−k)2]

= |xk|2|xn−k|2
π(2ξ − ak − an−k)

(ξ − ak)(ξ − an−k) [(2ξ − ak − an−k)2 + (bk − bn−k)2]

≤ π|xk|2|xn−k|2
2ξ − ak − an−k

|ak| · |an−k| · (2ξ − ak − an−k)2

≤ π

c2
|xk|2|xn−k|2

|bk|α · |bn−k|α

2ξ − ak − an−k
≤ π

2c2

1

ξ
|xk|2|xn−k|2|λk|α · |λn−k|α,
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where we have used |ak| ≥ c|bk|−α. On the other hand, if λn−k = λk, the
integral over the term in the Cauchy product satisfies∫ ∞

−∞

|xk|2|xn−k|2

|ξ + iη − λk|4
dη = |xk|2|xn−k|2

∫ ∞
−∞

dη

[(ξ − ak)2 + (η − bk)2]2

=
π

2
|xk|2|xn−k|2

1

(ξ − ak)(ξ − ak)2
≤ π

2
|xk|2|xn−k|2

1

ξ · a2
k

≤ π

2c2
|xk|2|xn−k|2

|bk|2α

ξ
≤ π

2c2
|xk|2|xn−k|2

|λk|2α

ξ
.

Combining these estimates we therefore have∫ ∞
−∞

|xk|2

|ξ + iη − λk|2
· |xn−k|2

|ξ + iη − λn−k|2
dη ≤ π

2c2ξ
|xk|2|xn−k|2|λk|α · |λn−k|α

for all n ∈ N0 and k ∈ {0, . . . , n}. Since the integrals over the terms in the
series are finite, and since the series
∞∑
n=0

n∑
k=0

∫ ∞
−∞

|xk|2

|ξ + iη − λk|2
· |xn−k|2

|ξ + iη − λn−k|2
dη

≤ π

2c2ξ

∞∑
n=0

n∑
k=0

(
|xk|2|xn−k|2|λk|α · |λn−k|α

)
=

π

2c2ξ

(
∞∑
k=0

|λk|α · |xk|2
)2

converges due to the fact that x ∈ D((−A)
α
2 ), we have

ξ

∫ ∞
−∞

(
∞∑
k=0

|xk|2

|λ− λk|2

)2

dη = ξ
∞∑
n=0

n∑
k=0

∫ ∞
−∞

|xk|2

|ξ + iη − λk|2
· |xn−k|2

|ξ + iη − λn−k|2
dη

≤ πξ

2c2ξ

(
∞∑
k=0

|λk|α· |xk|2
)2

≤ π

2c2
· 1

m2
σ

‖(−A)
α
2 x‖4.

Using this estimate we can see that

sup
ξ>0

ξ

∫ ∞
−∞
‖R(ξ + iη, A)x‖4dη ≤M2

σ · sup
ξ>0

ξ

∫ ∞
−∞

(
∞∑
k=0

|〈x, ψk〉|2

|ξ + iη − λk|2

)2

dη

≤ π

2c2
· M

2
σ

m2
σ

‖(−A)
α
2 x‖4 <∞.

Since x ∈ D((−A)
α
2 ) was arbitrary, this concludes the proof.
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Theorem 7 can now be proved using Theorem 15 and Lemma 16.

Proof of Theorem 7. Let Y = Cm, and assume the operators B and C sat-
isfy ‖(−A)

α
2B‖ · ‖(−A∗)α

2C∗‖ < δ. The strong stability of the semigroup
generated by A+BC follows from Theorem 15 together with Lemma 16. It
therefore remains to show ‖R(iω, A + BC)‖ = O(|ω|α), which will conclude
that the perturbed semigroup is polynomially stable.

Lemma 12 implies that there exists M > 0 such that

sup
ω∈R
‖(I − CR(iω, A)B)−1‖ ≤M.

This together with Lemma 3 and the Sherman-Morrison-Woodbury formula
in Lemma 10 allow us to estimate

‖R(iω, A+BC)‖ =
∥∥R(iω, A) +R(iω, A)B(I − CR(iω, A)B)−1CR(iω, A)

∥∥
≤ ‖R(iω, A)‖+M‖R(iω, A)B‖‖CR(iω, A)‖

≤ ‖R(iω, A)‖+M

( m∑
j=1

‖R(iω, A)bj‖2

) 1
2
( m∑
l=1

‖R(iω, A)∗cl‖2

) 1
2

≤ ‖R(iω, A)‖+M

( m∑
j=1

m∑
l=1

‖R(iω, A)bj‖2‖R(iω, A)∗cl‖2

) 1
2

.

Since ‖R(iω, A)‖ = O(|ω|α), we can now prove ‖R(iω, A + BC)‖ = O(|ω|α)
by showing that

‖R(iω, A)b‖2 = O(|ω|α), and ‖R(iω, A)∗c‖2 = O(|ω|α)

whenever b ∈ D((−A)
α
2 ) and c ∈ D((−A∗)α

2 ). We will show that A satisfies
the first one of these conditions. Since A is a Riesz-spectral operator, the
second one can be verified analogously.

If we let rA > 0 be as in the proof of Theorem 4, then by construction
of ∆α there exists c1 > 0 such that if |ω| ≥ rA, then for any eigenvalue λk
of A we have

|iω − λk| ≥ c1|ω|−α.

Moreover, we can also choose c2 > 0 in such a way that for all k ∈ N0

Reλk ≤
{

−c2 if |Imλk| < rA,
−c2|Imλk|−α if |Imλk| ≥ rA.
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Denote by I ⊂ N0 the set of indices k for which |Imλk| < rA, and let ω ∈ R
be such that |ω| ≥ rA. We then have

‖R(iω, A)b‖2 ≤Mσ

∞∑
k=0

|〈b, ψk〉|2

|iω − λk|2

≤ Mσ

infk∈N0 |iω − λk|
·
∞∑
k=0

|〈b, ψk〉|2√
(Reλk)2 + (ω − Imλk)2

≤ Mσ

c1|ω|−α
·
∞∑
k=0

|〈b, ψk〉|2

|Reλk|
≤ |ω|αMσ

c1

·

(∑
k∈I

|〈b, ψk〉|2

|Reλk|
+
∑
k/∈I

|〈b, ψk〉|2

|Reλk|

)

≤ |ω|αMσ

c1

·

(
1

c2

∑
k∈I

|〈b, ψk〉|2 +
1

c2

∑
k/∈I

|Imλk|α|〈b, ψk〉|2
)

≤ |ω|αMσ

c1c2

·

(
∞∑
k=0

|〈b, ψk〉|2 +
∞∑
k=0

|λk|α|〈b, ψk〉|2
)

≤ |ω|α Mσ

mσc1c2

·
(
‖b‖2 + ‖(−A)

α
2 b‖2

)
.

This shows that we indeed have ‖R(iω, A)b‖2 = O(|ω|α), and thus concludes
the proof.

6. Robustness of a Polynomially Stable Wave Equation

We conclude the paper by applying the perturbation results in Section 3
to analyzing robustness of a strongly stable partial differential equation with
respect to rank one perturbations. To this end, we consider a one-dimensional
wave equation with distributed control. We begin by using state feedback
to stabilize the system polynomially, and then consider perturbations to this
stabilized equation.

The same system was considered earlier in [9], where it was used to
demonstrate a method for converting the norm conditions in the perturba-
tion results into easily verifiable criteria involving L2-norms of the perturbing
functions and their derivatives. However, it was remarked that the available
results on preservation of uniform boundedness and polynomial stability be-
came difficult to check and led to impractical conditions on the perturbations.

In this section we complete the study of the example by improving the
conclusions in [9] with the aid of the new results presented in this paper.
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We show that a direct application of Theorem 7 makes it possible to derive
easily verifiable conditions for the preservation of the strong and polynomial
stability of the wave equation. In particular this approach allows us to avoid
posing any restrictions on the stabilizing feedback. This, in turn, greatly
increases the applicability of the resulting conditions on the perturbations.

We begin by considering a one-dimensional controlled wave equation

∂2w

∂t2
(z, t) =

∂2w

∂z2
(z, t) + g0(z)u(t) (18a)

w(0, t) = w(1, t) = 0 (18b)

w(z, 0) = w0(z),
∂w

∂t
(z, 0) = w1(z), (18c)

on (0, 1) with g0(z) =
√

3(1− z). It is well-known that the equation can be
written as a first order linear system on a Hilbert space. To this end, define
A0 : D(A0) ⊂ L2(0, 1)→ L2(0, 1) as A0 = − d2

dz2
with the domain

D(A0) =
{
x ∈ L2(0, 1)

∣∣ x, x′ abs. cont., x′′ ∈ L2(0, 1), x(0) = x(1) = 0
}
.

The operator A0 has a positive self-adjoint square root A
1/2
0 , and the space

X = D(A
1/2
0 ) × L2(0, 1) is a Hilbert space when equipped with an inner

product 〈x, y〉X = 〈A1/2
0 x1, A

1/2
0 y1〉L2 + 〈x2, y2〉L2 . Choosing

x =

[
w
dw
dt

]
, A =

[
0 I
−A0 0

]
, D(A) = D(A0)×D(A

1/2
0 ),

Gu = gu =

[
0
g0

]
u, x0 =

[
w0

w1

]
,

the wave equation (18) can be written as

ẋ = Ax+Gu, x(0) = x0. (19)

The eigenvalues of the operator A are λk = ikπ for k ∈ Z \ {0}, and the
corresponding eigenvectors

ϕk(z) =
1

λk

[
sin(kπz)
λk sin(kπz)

]
form an orthonormal basis of X.
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In the following theorem we choose a feedback law u = Kx = 〈x, h〉 in
such a way that A+GK is a Riesz-spectral operator generating a polynomi-
ally stable semigroup on X. The theorem also gives us the constants mσ > 0
and Mσ > 0 related to the Riesz basis of eigenvectors of A + GK. These
constants are essential in computing explicit perturbation bounds later in
the section. The proof of the theorem can be found in [9, Thm. 13].

Theorem 17. Choose K = 〈·, h〉 ∈ L(X,C) in such a way that

h = − π2

10
√

3

∑
k 6=0

αk
k
ϕk, where αk =

∏
l 6=0,k

(
1 + i

1

10l2(l − k)

)
.

Then A + GK is a strongly stable Riesz-spectral operator with eigenvalues
σ(A + GK) = {− π

10k2
+ ikπ}k 6=0. The Riesz basis {φk}k 6=0 of eigenfunctions

of the operator A+GK satisfies

1

Mσ

∑
k 6=0

|〈x, φk〉|2 ≤ ‖x‖2
X ≤

1

mσ

∑
k 6=0

|〈x, φk〉|2

for mσ = 3
5

and Mσ = 5
3
.

The spectrum of the stabilized system operator consists of simple eigen-
values and satisfies σ(A + GK) ⊂ C−, and thus the strong stability of the
semigroup follows immediately from the fact that A+GK is a Riesz-spectral
operator. Moreover, for all ω ∈ R we have

‖R(iω, A+GK)x‖2 ≤Mσ

∑
k 6=0

|〈x, ψk〉|2

|iω − µk|2
≤ Mσ

mσ

‖x‖2

dist(iω, σ(A+GK))2
.

If ω ≥ 1, then properties of the spectrum σ(A+GK) = {µk}k 6=0 imply

dist(iω, σ(A+GK)) ≥ dist(idωe, σ(A+GK)) =

∣∣∣∣idωe−(− π

10dωe2
+ idωe

)∣∣∣∣
=

π

10
· 1

dωe2
≥ π

10
· 1

ω2
· inf
ω≥1

(
ω

dωe

)2

=
π

40
· 1

ω2
,

where dωe = k if ω ∈ (k−1, k]. Since σ(A+GK) is symmetrical with respect
to the real axis, we have dist(iω, σ(A + GK)) ≥ (π/40)|ω|−2 for all ω ∈ R
with |ω| ≥ 1. Therefore for all such ω ∈ R we also have

‖R(iω, A+GK)x‖ ≤
√
Mσ

mσ

40

π
|ω|2‖x‖ =

200

3π
|ω|2‖x‖,
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which concludes ‖R(iω, A + GK)‖ = O(|ω|2), and A + GK satisfies the
conditions of Assumption 1 for α = 2. In particular, the wave equation with
state feedback u = Kx is strongly and polynomially stable.

We can now use the perturbation results in Section 3 to study the ro-
bustness properties of the stabilized wave equation. The perturbations we
consider are of the form

∂2w

∂t2
(z, t) =

∂2w

∂z2
(z, t) + g0(z)u(t) (20a)

+ b0(z)

(
〈w(·, t), c1〉L2 + 〈∂w

∂t
(·, t), c2〉L2

)
, (20b)

where b0, c2 ∈ D(A0) and c1 ∈ L2(0, 1). If we denote

b =

[
0
b0

]
, c =

[
A−1

0 c1

c2

]
,

then the perturbed equation can be written as

ẋ = (A+GK)x+ 〈x, c〉Xb, x(0) = x0,

and b, c ∈ D(A0) × D(A0) ⊂ D(A0) × D(A
1/2
0 ) = D(A). The operators

B = b ∈ L(C, X) and C = 〈·, c〉 ∈ L(X,C) therefore satisfy the conditions
of Assumption 1 for Y = C and for β = γ = 1.

In the following we use Theorem 7 to determine classes of functions b0,
c1, and c2 for which the perturbed wave equation (20) remains strongly and
polynomially stable. Since we now have β = γ = 1 = α/2, Theorem 7
states that there exists δ > 0 such that the the semigroup generated by
the operator (A+GK) + BC is strongly and polynomially stable whenever
‖(A+GK)B‖·‖(A+GK)∗C∗‖ < δ. In the case of the rank one perturbation
BC = 〈·, c〉b, it is sufficient to require

‖(A+GK)b‖ <
√
δ and ‖(A+GK)∗c‖ <

√
δ.

In order to choose an appropriate δ > 0, we need to estimate the behavior of
‖R(λ,A+GK)(−A−GK)−2‖ for λ ∈ C+. Since we now have α−β−γ = 0,
by Remark 13 we can choose any δ > 0 satisfying

δ ≤ 1

supReλ≥0 ‖R(λ,A+GK)(−A−GK)−2‖
.
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For any λ ∈ C+ and any k ∈ Z we can estimate

|µk|4|λ− µk|2 =
(
(Reµk)

2 +(Imµk)
2
)2(

(Reλ− Reµk)
2 +(Imλ− Imµk)

2
)

≥ (Imµk)
4(Reλ− Reµk)

2 ≥ (Imµk)
4(Reµk)

2 = π4k4 · π2

100k4
=

π6

100
.

Therefore, for all λ ∈ C+ and for all x ∈ X we have

‖R(λ,A+GK)(−A−GK)−2x‖2 ≤Mσ

∑
k 6=0

|〈x, ψk〉|2

|µk|4|λ− µk|2

≤ Mσ

mσ

‖x‖2 · sup
k 6=0

1

|µk|4|λ− µk|2
≤ Mσ

mσ

‖x‖2 100

π6
.

This concludes that we can choose δ > 0 in Theorem 4 as

δ =

√
mσ

Mσ

π3

10
=

3π3

50
.

We clearly have ‖G‖ = ‖g‖X = ‖g0‖L2 = 1 and ‖b‖X = ‖b0‖L2 . It was
further shown in [9, Sec. 5] that

‖K‖ ≤ π

3
, ‖c‖2

X ≤
1

π2
‖c1‖2

L2 + ‖c2‖2
L2

‖Ab‖2
X = ‖b′0‖2

L2 , ‖A∗c‖2
X = ‖c1‖2

L2 + ‖c′2‖2
L2 .

We can therefore estimate

‖(A+GK)b‖X ≤ ‖Ab‖X + ‖G‖‖K‖‖b‖ ≤ ‖b′0‖L2 +
π

3
‖b0‖L2 ,

and

‖(A+GK)∗c‖X ≤ ‖A∗c‖X + ‖K∗‖‖G∗‖‖c‖X

≤
√
‖c1‖2

L2 + ‖c′2‖2
L2 +

π

3

√
1

π2
‖c1‖2

L2 + ‖c2‖2
L2

≤
√

2 (‖c1‖L2 + ‖c′2‖L2) +
π
√

2

3

(
1

π
‖c1‖L2 + ‖c2‖L2

)
=

4
√

2

3
‖c1‖L2 +

√
2
(π

3
‖c2‖L2 + ‖c′2‖L2

)
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Combining these estimates we arrive at the following conditions for the
preservation of the strong and polynomial stability of the wave equation.
In particular, the theorem shows that the perturbed semigroup is stable
whenever the norms of the functions b0, b′0, c1, c2 and c′2 are small enough.

Theorem 18. The perturbed wave equation (20) with the system operator
A+GK +BC is strongly and polynomially stable whenever

b0, c2 ∈ D(A0) =
{
x ∈ L2(0, 1)

∣∣ x, x′ abs. cont.,

x′′ ∈ L2(0, 1), x(0) = x(1) = 0
}
,

and c1 ∈ L2(0, 1) are such that the L2-norms of the functions b0, b′0, c1, c2

and c′2 satisfy

π

3
‖b0‖L2 + ‖b′0‖L2 <

3π3

50
, ‖c1‖L2 <

9π3

400
√

2
,

π

3
‖c2‖L2 + ‖c′2‖L2 <

3π3

100
√

2
.

For example for functions

b0(z) = a1 sin(πz) cos(
√

2πz),

c1(z) = a2(χ[.25,.75](z) + iz),

c2(z) = a3e
− tan(πz+π

2
)2

the conditions in Theorem 18 are satisfied whenever a1, a2, a3 ≤ 1
5
.

7. Conclusions

In this paper we have studied the preservation of strong and polynomial
stability of a semigroup under perturbations to its infinitesimal generator.
In particular we saw that polynomial stability of a semigroup is robust with
respect to a large class of perturbations. We demonstrated that the well-
known difficulties in studying the preservation of non-exponential stability
can be overcome by measuring the sizes of the perturbations using the graph
norms of the operators (−A)β and (−A∗)γ, instead of the norm of the under-
lying Hilbert space. This approach produced easily characterizable classes of
perturbations preserving properties of the spectrum of the generator and the
stability of the semigroup.

The conditions on the perturbations are very simple, but their usefulness
and the ease of verifying them for actual operators depend on several factors.
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This is well illustrated by the example considered in Section 6. There the
theoretic results presented in Section 3 were used to derive concrete and easily
checkable conditions on the perturbing functions b0, c1 and c2. Existence of
such conditions was, most of all, a consequence of the possibility to choose
the appropriate exponents as β = γ = 1. First of all, the identities

D((−A−GK)β) = D(−A−GK) = D(A),

D(((−A−GK)∗)γ) = D((−A−GK)∗) = D(−A∗ −K∗G∗) = D(A∗),

made the conditions

b ∈ D((−A−GK)β), and c ∈ D(((−A−GK)∗)γ) (21)

very straightforward to verify. In particular, they could be expressed as
simple boundary conditions and using the differentiability properties of the
component functions b0, c1, and c2. Furthermore, the choices β = γ = 1 also
made it possible to derive estimates for the graph norms in the conditions
by simply estimating ‖(−A−GK)b‖ and ‖(−A−GK)∗c‖.

However, as was already remarked in [9], the conditions in (21) become
much more restrictive and much more complicated to verify as soon as we
have either β > 1 or γ > 1. Indeed, even in the case β = 2 the usefulness of
the results is greatly diminished by the fact that the elements in the domain

D((−A−GK)2) =
{
x ∈ D(A)

∣∣ (A+GK)x ∈ D(A)
}

are required to satisfy conditions that are more sophisticated than simply
having continuous derivatives of high enough order. Difficulties like this mo-
tivate especially the search for conditions with lowest possible requirements
for the exponents β and γ, as well as for conditions providing maximal free-
dom in choosing these parameters.
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