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Abstract

In this paper we consider bounded and relatively bounded finite rank perturbations of a Riesz-spectral operator generating
a polynomially stable semigroup of linear operators on a Hilbert space. We concentrate on a commonly encountered
situation where the spectrum of the unperturbed operator is contained in the open left half-plane of the complex plane and
approaches the imaginary axis asymptotically. We present conditions on the perturbing operator such that the spectrum
of the perturbed operator is contained in the open left half-plane of the complex plane and additional conditions for the
strong and polynomial stabilities of the perturbed semigroup. We consider two applications of the perturbation results.
In the first example we apply the results to the perturbation of a polynomially stabilized one-dimensional wave equation.
In the second example we consider perturbation of a closed-loop system consisting of a distributed parameter system and
an observer-based feedback controller solving the robust output regulation problem related to an infinite-dimensional
signal generator.
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1. Introduction

It is well-known that the robustness properties of strong
stability of strongly continuous semigroups are very weak
compared to the robustness properties of exponential sta-
bility. Furthermore, this is the case even if the generator of
the C0-semigroup is a well-behaving operator, for example
a normal operator with a compact resolvent, and the per-
turbations are very simple, such as bounded and of finite
rank. For example, it is well-known that for any exponen-
tially stable C0-semigroup T (t) generated by an operator
A there exists a bound δ > 0 such that for any bounded
perturbation B with norm ‖B‖ < δ the semigroup gener-
ated by the operator A + B is also exponentially stable.
On the other hand, it is easy to find a strongly stable
C0-semigroup T (t) generated by an operator A which is
normal and has compact resolvent such that there exists a
bounded rank one perturbationB of arbitrarily small norm
such that the perturbed semigroup generated by A+B is
unstable.

If X is a Hilbert space, then a concrete example of this
kind of situation can be constructed by defining an oper-
ator A : D(A) ⊂ X → X such that

Ax =

∞∑
k=1

(
−1

k
+ ik

)
〈x, φk〉φk,

D(A) =
{
x ∈ X

∣∣ ∞∑
k=1

k2|〈x, φk〉|2 <∞
}

Email address: lassi.paunonen@tut.fi (L. Paunonen)

where {φk}k ⊂ X is an orthonormal basis of X. The
operator A is normal, has compact resolvent and generates
a strongly stable C0-semigroup onX. For any ε > 0 we can
choose a perturbing operator Bε = 1

n 〈·, φn〉φn with n > 1
ε .

Then in ∈ iR is an eigenvalue of the perturbed operator
A+Bε and thus the perturbed semigroup is unstable, but
on the other hand we clearly have ‖Bε‖ = 1

n < ε.

Even so, results on the robustness properties of strongly
stable semigroups are in great demand. This is the case
in particular in mathematical control theory and in robust
output regulation. In the treatment of this problem it is
often assumed that the used stability type is exponential
stability and thus the well-known robustness properties
of exponential stability can be used to guarantee the ex-
istence of an easily identifiable class of perturbations pre-
serving the stability of the systems. However, if we want to
consider reference signals generated by a signal generator
having an infinite number of eigenvalues on the imaginary
axis [1, 2] it is possible that exponential stability is un-
achievable [3, Cor 3.58]. In this case the robustness prop-
erties of strong stability are required to determine classes
of perturbations preserving the stability of the systems and
the output regulation property.

In this paper we concentrate on the perturbation of
a strongly stable C0-semigroup generated by a Riesz-
spectral operator A : D(A) ⊂ X → X on a Hilbert space
X. We consider a commonly encountered situation where
the spectrum of the generator is contained in the open left
half-plane of C and approaches the unstable half-plane of
the complex plane asymptotically, as was the case in the

Preprint submitted to Systems & Control Letters October 22, 2010



above example. More precisely, we assume that there ex-
ists a curve which from some point on limits the decay of
the real parts of the eigenvalues as a function of the imag-
inary parts. We also assume that this curve approaches
the imaginary axis at a known polynomial rate. These
assumptions imply that in addition to its strong stability
the semigroup generated by A is also polynomially stable
[4, 5].

These kind of spectra most commonly arise from the sta-
bilization of an operator with an infinite number of eigen-
values on the imaginary axis [6]. Nonetheless, we do not
limit our attention to operators obtained this way but con-
sider general operators whose spectra have this property.
An example of a situation where we need this generality
is the perturbation of a composite operator consisting of
a part stabilized strongly by feedback and parts having
spectrum in the open left half-plane of C.

The perturbations we consider in this paper are bounded
and relatively bounded finite rank operators. In the case
of a bounded perturbation the perturbing operator can be
represented as

B =

m∑
j=1

〈·, gj〉bj , (1)

where {gj}j ⊂ X and {bj}j ⊂ X.

We consider two different perturbation problems: The
change of the spectrum of the generator and the preser-
vation of the stability — strong and polynomial — of the
C0-semigroup. We solve the first problem by presenting
conditions under which the spectrum of the perturbed op-
erator is contained in the open left half-plane of C. These
conditions are given as requirements bj ∈ D((−A)β) and
gj ∈ D((−A∗)γ) for some β, γ ≥ 0 and as bounds for the
corresponding graph norms. In these conditions the ap-
propriate constants β and γ

After we have solved the problem of perturbation of the
spectrum the ABLV Theorem [7, 8, 9] implies that in or-
der to solve the problem concerning the strong stability
it is sufficient to find additional conditions for the uni-
form boundedness of the perturbed C0-semigroup. Using
this knowledge we present two sets of conditions for the
preservation of the strong stability of the C0-semigroup.
These conditions are of the same type as the ones pre-
sented for the change of the spectrum. Finally, we present
separate conditions for the preservation of the polynomial
stability of the semigroup. This result uses the result on
the perturbation of the spectrum but is independent of the
result on the preservation of uniform boundedness of the
C0-semigroup.

We consider the perturbation problems separately since
the results on the perturbation of the spectrum are also
useful by themselves. This is because one is not necessar-
ily interested in the preservation of strong stability of the
semigroup but only the perturbation of the spectrum. It is
also possible that in some cases the uniform boundedness

of the perturbed semigroup can be determined by some
other means.

The robustness properties of strong stability have been
studied earlier by Sklyar and Rezounenko [10] who have
considered the robustness of the strongly stabilizing feed-
back A+ 〈·, h〉d when the elements h ∈ X and d ∈ X are
perturbed. Their approach is limited to the case where
the strongly stable semigroup is obtained by stabilizing
a skew-adjoint operator with compact resolvent by rank
one state feedback. Another restriction on the applicabil-
ity of their results is that the spectra of the operators are
assumed to have a uniform gap, i.e.

inf
k 6=l
|λk − λl| > 0

for the set of eigenvalues {λk}k. This condition rules out
eigenvalues with multiplicity larger than one, the existence
of continuous spectrum and the types of spectra where the
eigenvalues approach infinity slowly. All of these limita-
tions are restrictive when considering applications.

The robustness properties of strong stability have also
been studied by Caraman [11] who has presented a result
on the preservation of strong stability of compact semi-
groups. The requirement that the C0-semigroup is com-
pact is a very strict limitation [12, Sec. 2.3] and in par-
ticular it rules out the case where the spectrum of the
generator approaches the imaginary axis asymptotically.
Furthermore, the result by Caraman only concerns pertur-
bations B which commute with the unperturbed operator
A.

To our knowledge the preservation of the polynomial
stability of the semigroup under perturbations of its gen-
erator has not been studied previously in the literature.

The problem of perturbation of a spectrum approaching
the imaginary axis asymptotically also has a connection
to the problem of pole placement of an infinite number of
eigenvalues [6, 13, 14]. In connection to this problem it
is well-known that if {ψk}∞k=1 is the Riesz basis of eigen-
vectors of A∗, then the rate of |〈d, ψk〉| → 0 as k → ∞
determines how much the eigenvalues of A can be moved
asymptotically using a bounded feedback A+ 〈·, h〉d.

After presenting the theoretical results we present three
examples of their application. In the first example we con-
sider an undamped wave equation on an interval (0, 1) re-
sulting in a system with an infinite number of eigenvalues
on the imaginary axis. We first stabilize this equation
polynomially using pole placement of an infinite spectrum
with state feedback [6]. Subsequently, we consider pertur-
bations of this stabilized equation and compute explicit
bounds for the pertubations such that the spectrum of the
perturbed equation remains in the open left half-plane of
C and such that the perturbed semigroup is strongly and
polynomially stable. These conditions on the perturba-
tions are ultimately given as bounds for easily computable
L2(0, 1)-norms of the perturbing functions and their first
derivatives. The presentation of this example requires es-
timation of the bounding constants related to the Riesz
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basis of the strongly stabilized wave operator. In partic-
ular this requires estimation of the norm of an inverse of
a certain infinite matrix. We show that this can be done
by finding a uniform lower bound for the singular values
of finite truncations of this infinite matrix. This uniform
lower bound is then obtained using a generalization of the
Gerschgorin Circle Theorem for block diagonally dominant
matrices [15].

In the second example we apply the theory to the per-
turbation of an observer-based feedback controller solving
a robust output regulation problem related to an infinite-
dimensional signal generator [1]. In this case we are in-
terested in the preservation of the strong stability of the
closed-loop system under finite rank perturbations of the
controller. The example also demonstrates how the meth-
ods presented in this paper can be applied to the study
of perturbations of composite systems. Since the unper-
turbed operator considered in this example is not obtained
by stabilizing a skew-adjoint operator with a rank one feed-
back, the results of Sklyar and Rezounenko are not appli-
cable.

As the third example we briefly demonstrate why the
assumption of the eigenvalues of the unperturbed operator
having a uniform gap can be a limitation in applications.
To this end we consider perturbation of coupled systems.

The paper is organized as follows. In Section 2 we in-
troduce the notation and formulate the main problem of
the paper. In Section 3 we present the main results on the
perturbation of the spectrum. These results are proved in
Section 3.3. The results on the preservation of strong and
polynomial stabilities are presented in Section 4. The ex-
amples on the perturbation of the polynomially stabilized
wave equation, the perturbation of the robust controller
and the perturbation of coupled systems are presented in
Sections 5, 6 and 7, respectively. Section 8 contains con-
cluding remarks.

2. Main Problem

Throughout this paper we denote by X a Hilbert space
with an inner product 〈·, ·〉. The open and closed left half-
planes of C are denoted by C− and C−, respectively, and
similarly the open and closed right half-planes of C are de-
noted by C+ and C+, respectively. The space of bounded
linear operators on X is denoted by L(X). The domain
of a linear operator A is denoted by D(A). The spectrum
and the resolvent set of a linear operator A are denoted
by σ(A) and ρ(A), respectively.

Let X be a Hilbert space and consider an operator A :
D(A) ⊂ X → X defined by

Ax =
∑
k∈Z

λk〈x, ψk〉φk, (2a)

D(A) =
{
x ∈ X

∣∣ ∑
k∈Z
|λk|2|〈x, ψk〉|2 <∞

}
(2b)

where {φk}k is a Riesz basis of X and {ψk}k is the corre-
sponding biorthonormal sequence. Throughout this paper
we denote by mσ and Mσ the positive constants such that
for all x ∈ X

mσ

∑
k∈Z
|〈x, ψk〉|2 ≤ ‖x‖2 ≤Mσ

∑
k∈Z
|〈x, ψk〉|2

1

Mσ

∑
k∈Z
|〈x, φk〉|2 ≤ ‖x‖2 ≤

1

mσ

∑
k∈Z
|〈x, φk〉|2

We assume that the set {λk}k is contained in C− and that
it has no accumulation points on iR. As in [16, Sec 2.3] it
can be shown that A generates a uniformly bounded C0-
semigroup T (t) on X. Due to the ABLV Theorem [7, 8,
9] the assumptions on the eigenvalues {λk}k of A further
imply that this semigroup is strongly stable.

We make the following assumption on the asymptotic
behaviour of the eigenvalues {λk}k of the operator A.

Assumption 1 (Geometric assumption on σ(A)). The set
{λk}k is contained in C−, it has no accumulation points
on iR and there exist constants α, cσ > 0 and yσ > 0 such
that

Reλk ≤ −
cσ

|Imλk|α
if |Imλk| ≥ yσ.

Because A is similar to a normal operator Assumption
1 also implies that the semigroup generated by A is poly-
nomially stable. More precisely, if A satisfies Assumption
1 for some α > 0, there exists a constant Cσ > 0 such that

‖T (t)A−1‖ ≤ Cσ
t1/α

for all t > 0 [4, Prop. 4.1]. In general it is possible that a
polynomially stable semigroup is not uniformly bounded,
and because of this, not strongly stable. However, in the
case of semigroups generated by operators of form (2) a
polynomially stable semigroup is also always strongly sta-
ble.

Since {λk}k ⊂ C− and it has no finite accumulation
points on iR the operator −A is an invertible sectorial
operator in the sense of [17]. We can therefore make the
following definitions using the fractional domains of the
operators −A and −A∗. For β ≥ 0 define

Dβ = D((−A)β) =
{
x ∈ X

∣∣ ∑
k∈Z
|λk|2β |〈x, ψk〉|2 <∞

}
D∗β = D((−A∗)β) =

{
x ∈ X

∣∣ ∑
k∈Z
|λk|2β |〈x, φk〉|2 <∞

}
.

The spaces (Dβ , ‖·‖β) and (D∗β , ‖·‖∗,β) are Hilbert spaces
with norms defined by

‖x‖2β =
∑
k∈Z
|λk|2β |〈x, ψk〉|2, ‖y‖2∗,β =

∑
k∈Z
|λk|2β |〈y, φk〉|2

for every x ∈ Dβ and y ∈ D∗β . It is also straight-forward
to verify that under our assumptions for any γ ≥ β ≥ 0 we
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have Dγ ⊂ Dβ and D∗γ ⊂ D∗β and that there exist constants
cβ,γ > 0 and c∗β,γ > 0 such that

‖x‖β ≤ cβ,γ‖x‖γ and ‖y‖∗,β ≤ c∗β,γ‖y‖∗,γ

for all x ∈ Dγ and y ∈ D∗γ .
The main problems of this paper are the following.

Problem 1. Let A satisfy the geometric assumption on
σ(A) for some α > 0. Find conditions on the operator
B : D(B) ⊂ X → X with D(B) ⊃ D(A) such that for the
perturbed operator A+B with domain D(A+B) = D(A)

(a) σ(A+B) ⊂ C−;

(b) A+B generates a strongly stable C0-semigroup on X.

(c) A + B generates a polynomially stable C0-semigroup
on X.

In this paper we consider perturbations B which are
relatively bounded with respect to the operator A (or
A-bounded) and of finite rank, i.e. R(B) is finite-
dimensional. In this case BA−1 ∈ L(X) and there exist
linearly independent sets {bj}mj=1 ⊂ X and {gj}mj=1 ⊂ X
such that

BA−1 =

m∑
j=1

〈·, gj〉bj . (3)

If B is a bounded operator we can also write

B =

m∑
j=1

〈·, g̃j〉b̃j , (4)

where the sets {b̃j}mj=1 ⊂ X and {g̃j}mj=1 ⊂ X are linearly
independent.

The conditions for the perturbation of the spectrum and
the preservation of the strong stability of the C0-semigroup
presented in this paper are given in terms of the elements
{bj}j of the perturbation B belonging to a space Dβ for
some β ≥ 0 and the norms ‖bj‖β being less than a certain
bound δ > 0. Similar conditions are also imposed on the
elements {gj}j or alternatively — in the case of a bounded

perturbation B — on the elements {b̃j}j and {g̃j}j .

3. Results on The Perturbation of The Spectrum

In this Section we consider the perturbation of the spec-
trum of the operator A. Since our main concern in this
paper are the conditions for the preservation of strong
stability of the semigroup, we are only interested in the
property that the spectrum of the perturbed operator is
contained in the open left half-plane of C. The following
Theorem is the main result concerning the perturbation of
the spectrum.

Theorem 1. Let σ(A) satisfy the geometric assumption
for some α > 0. For every m ∈ N and αmax ≥ α+ 1 there
exists a constant δ > 0 such that if β, γ ≥ 0 are such that

α+ 1 ≤ β + γ ≤ αmax and if B is A-bounded and of rank
m with {bj}j ⊂ Dβ and {gj}j ⊂ D∗γ , then

σ(A+B) ⊂ C−

whenever ‖bj‖β · ‖gk‖∗,γ < δ for all j, k ∈ {1, . . . ,m}.

Our second result on the perturbation of the spectrum
concerns the case where B is a bounded operator. It makes
use of the alternative representation (4).

Theorem 2. Let σ(A) satisfy the geometric assumption
for some α > 0. For every m ∈ N and αmax ≥ α there
exists a constant δ > 0 such that if β, γ ≥ 0 are such that
α ≤ β + γ ≤ αmax and if B ∈ L(X) is of rank m with
{b̃j}j ⊂ Dβ and {g̃j}j ⊂ D∗γ , then

σ(A+B) ⊂ C−

whenever ‖b̃j‖β · ‖g̃k‖∗,γ < δ for all j, k ∈ {1, . . . ,m}.

Before proving these results we make a quick remark
concerning the bounds for the norms in the previous The-
orems. If β, γ ≥ 0, then due to the properties of the Riesz
basis we have that for any x ∈ Dβ and y ∈ D∗γ

‖x‖2β =
∑
k∈Z
|λk|2β |〈x, ψk〉|2 =

∑
k∈Z
|〈(−A)βx, ψk〉|2

≤ 1

mσ
‖(−A)βx‖2X

‖y‖2∗,γ =
∑
k∈Z
|λk|2γ |〈y, φk〉|2 =

∑
k∈Z
|〈(−A∗)γy, φk〉|2

≤Mσ‖(−A∗)γy‖2X .

This implies that bounds in Theorems 1 and 2 can
alternatively be given for the norms ‖(−A)βx‖X and
‖(−A∗)γy‖X . This is particularly useful when the con-
stants β and γ can be chosen to be natural numbers. We
make use of this fact in the example presented in Section
5.

3.1. The Weinstein-Aronszajn Determinant

In order to prove Theorems 1 and 2 we recall the defi-
nition of the Weinstein-Aronszajn determinant [18]. This
is a complex-valued function describing the change of the
spectrum of an operator under finite rank perturbations.

If B is A-bounded and of finite rank, then BA−1 ∈ L(X)
is of form (3) and for all λ ∈ ρ(A) and x ∈ X we have

BR(λ,A)x = BA−1AR(λ,A)x =

m∑
j=1

〈AR(λ,A)x, gj〉bj

=

m∑
j=1

〈x, (AR(λ,A))∗gj〉bj .

Now Z = R(BR(λ,A)) = span{bj}mj=1 is a finite-dimen-
sional invariant subspace of the operator BR(λ,A). The
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Weinstein-Aronszajn determinant of the first kind [18, Sec
IV.6] is given by

ω(λ;A,B) = det(IZ −BR(λ,A)|Z)

= det (δjk − 〈bj , (AR(λ,A))∗gk〉)jk
= det (δjk − 〈AR(λ,A)bj , gk〉)jk .

The following Lemma, which is based on the First
Weinstein-Aronszajn Formula [18, Thm IV.6.2], is essen-
tial in the proof of Theorems 1 and 2. The First Weinstein-
Aronszajn Formula states that the Weinstein-Aronszajn
determinant can be used to determine the change of the
spectrum of a closed operator under a relatively bounded
finite rank perturbation. The following less general formu-
lation of the formula is sufficient for our purposes.

Lemma 3. Let B be A-bounded and of finite rank and let
ω(λ;A,B) be the associated Weinstein-Aronszajn determi-
nant of the first kind. If ∆ ⊂ ρ(A) is a domain of C, then
for all λ ∈ ∆

λ ∈ σ(A+B) ⇔ ω(λ;A,B) = 0.

Proof. This is a direct consequence of [18, Thm IV.6.2].

We will use Lemma 3 to prove Theorems 1 and 2. To this
end we will construct a domain ∆ ⊂ C such that it contains
the closed right half-plane of C and the distance of the
spectrum of A from the domain ∆ satisfies certain bounds.
This is done in Section 3.2. The results of this geometrical
consideration are then used together with Lemma 3 to
prove Theorems 1 and 2 in Section 3.3.

3.2. Construction of The Domain ∆

In this Section we construct a domain ∆ of C satisfying
C+ ⊂ ∆ ⊂ ρ(A) such that there exists a constant aσ > 0
for which dist(λk,∆) ≥ aσ|λk|−α for all k ∈ Z. The main
result of the Section is presented in Theorem 6.

Choose δσ > 0 such that Reλk ≤ −δσ for all k ∈ Z for
which |Imλk| < yσ. This is possible since the set {λk} has
no accumulation points on iR. For 0 < κ < 1 denote by C
and Cκ the paths

C =
{
λ ∈ C

∣∣ Reλ = −cσ(Imλ)−α, Imλ > 0
}
,

Cκ =
{
λ ∈ C

∣∣ Reλ = −κcσ(Imλ)−α, Imλ > 0
}
.

Also, denote by C∗ and C∗κ their mirror images with respect
to the real axis. Define the domain ∆ ⊂ C and closed sets
Ωi for i = 1, 2, 3 as shown in Figure 1. The boundary of
the domain ∆ consists of the curves Cκ, C∗κ and the line
segment

{
λ ∈ C

∣∣ Reλ = −κδσ, |Imλ| ≤ δασ c−ασ
}

.

Denote Ω = Ω1∪Ω2∪Ω3. Our aim is to show that there
exists a constant aσ > 0 such that

dist(λ,∆) ≥ aσ|λ|−α, ∀λ ∈ Ω.

C Cκ

C∗ C∗
κ

∆

Ω1

Ω2

Ω3

−κδσ−δσ

Figure 1: The domain ∆ and the closed sets Ωi.

Since clearly {λk}k∈Z ⊂ Ω, we then obtain the desired
bound for the distance of the eigenvalues of A from the
domain ∆.

We first present the following Lemma concerning the
distance of the points of the curve C from the curve Cκ.

Lemma 4. For all y0 > 0 there exists a constant a0 > 0
such that for all points (x, y) ∈ C with y ≥ y0 we have
dist((x, y), Cκ) ≥ a0y

−α.

Proof. Let (x, y) ∈ C with y ≥ y0 > 0. Denote by

(x1, y1) = (x, κ
1
α y) and (x2, y2) = (κx, y) the points on

the curve Cκ (see Figure 2).

(x, y) (x2, y2)

(x1, y1)
C Cκ

Figure 2: The distance between the curves C and Cκ.

Since the tangent of curve Cκ has positive slope for all
x < 0, the minimal distance from Cκ to (x, y) must be
from a point between (x1, y1) and (x2, y2) on Cκ. Because
of this, the distance of (x, y) from Cκ must be larger than
the distance of (x, y) from the line between (x1, y1) and
(x2, y2).

Choose a constant b > 0 such that

b =
c2σ(1− κ)2

(1− κ1/α)2y
2(α+1)
0

.

Since y ≥ y0, we then have

b ≥ c2σ(1− κ)2

(1− κ1/α)2y2(α+1)

⇒ b(1− κ1/α)2y2 ≥ (1− κ)2c2σy
−2α.

For the distance |r| of the line between (x1, y1) and (x2, y2)
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we now have

|r| = |(x2 − x1)(y1 − y)− (x1 − x)(y2 − y1)|√
(x2 − x1)2 + (y2 − y1)2

=
(1− κ)cσy

−α · (1− κ1/α)y√
(1− κ)2c2σy

−2α + (1− κ1/α)2y2

≥ (1− κ)cσ(1− κ1/α)y · y−α√
b(1− κ1/α)2y2 + (1− κ1/α)2y2

=
cσ(1− κ)√

1 + b
y−α.

Thus if we choose a0 = cσ(1−κ)√
1+b

we have for all (x, y) ∈ C
with y ≥ y0 that dist((x, y), Cκ) ≥ |r| ≥ a0y

−α.

The next Lemma shows that we have an estimate of the
desired type for the sets Ω1 and Ω2.

Lemma 5. Let the constant a0 > 0 be as in Lemma 4

with y0 = c
1
α
σ δ
− 1
α

σ . Then for all λ ∈ Ω1 ∪ Ω2 we have
dist(λ,∆) ≥ a0|λ|−α.

Proof. Assume that λ ∈ Ω1 and define points µ1 =
(Reλ, (− 1

κcσ
Reλ)−1/α), µ2 = (−κcσ(Imλ)−α, Imλ) and

µb = (−δσ, c
1
α
σ δ
− 1
α

σ ). Let µ0 be the point on the curve
Cκ with the minimum distance from the point λ and let λ0

be the intersection of the line between λ and µ0 and the
curve C (see Figure 3).

λ

λ0

µ1

µ2

µ0

µb

C Cκ

Figure 3: Points λ, λ0 and µ0.

Since the tangent of the curve Cκ has positive slope for
all x < 0, the point µ0 must be between points µ1 and µ2

on Cκ. Because of this, we have Imµb ≤ Imλ0 ≤ Imλ.
Clearly the distance of λ0 from ∆ is greater or equal

to the distance of λ0 from the curve Cκ. Using Lemma
4 we see that for our choice of the constant a0 we have
dist(λ0, Cκ) ≥ a0(Imλ0)−α, since Imλ0 ≥ Imµb.

Combining the previous estimates we see that

dist(λ,∆) ≥ dist(λ0,∆) ≥ dist(λ0, Cκ) ≥ a0(Imλ0)−α

≥ a0(Imλ)−α ≥ a0|λ|−α.

From symmetry we see that the same bound also holds
for λ ∈ Ω2 and thus we have dist(λ,∆) ≥ a0|λ|−α for all
λ ∈ Ω1 ∪ Ω2.

Theorem 6 finally concludes that we have the desired
estimate for the distance of the eigenvalues {λk}k of A
from the domain ∆.

Theorem 6. There exists a constant aσ > 0 such that
dist(λk,∆) ≥ aσ|λk|−α for all k ∈ Z.

Proof. For any λ ∈ Ω3 we have dist(λ,∆) ≥ (1−κ)δσ and
|λ|−α ≤ δ−ασ since |λ| ≥ δσ. Using these estimates we have

dist(λ,∆) ≥ (1− κ)δσ = (1− κ)δ1+α
σ δ−ασ

≥ (1− κ)δ1+α
σ |λ|−α.

Since {λk}k∈Z ⊂ Ω, combining this estimate with Lemma
5 completes the proof.

3.3. The Proofs of Theorems 1 and 2

Proof of Theorem 1. Lemma 3 implies that it is sufficient
to show that for any m ∈ N and αmax ≥ α+ 1 we can find
δ > 0 such that |ω(λ;A,B)| > 0 for all λ ∈ ∆ whenever
α + 1 ≤ β + γ ≤ αmax and B is A-bounded and of rank
m with {bj}j ⊂ Dβ and {gj}j ⊂ D∗γ such that we have
‖bj‖β · ‖gk‖∗,γ < δ for all j, k ∈ {1, . . . ,m}.

Let m ∈ N and αmax ≥ α + 1. For λ ∈ ∆ ⊂ ρ(A) the
Weinstein-Aronszajn determinant ω(λ;A,B) is given by

ω(λ;A,B) = det (δjk − 〈AR(λ,A)bj , gk〉)jk = 1 + h(λ),

where h(λ) is a linear combination of products of terms
〈AR(λ,A)bj , gk〉. Because of this and because

sup
λ∈∆
|h(λ)| < 1 ⇒ sup

λ∈∆
|ω(λ;A,B)| > 0,

it is sufficient to show that for all j, k ∈ {1, . . . ,m}
and for any ε > 0 we can find δ′ > 0 such that
supλ∈∆|〈AR(λ,A)bj , gk〉| < ε if α + 1 ≤ β + γ ≤ αmax,
bj ∈ Dβ , gk ∈ D∗γ and ‖bj‖β · ‖gk‖∗,γ < δ′.

Let ε > 0 be arbitrary. Choose 0 < rσ ≤ 1 such that
|λk| ≥ rσ for all k ∈ Z and

δ′ =
ε · aσ

rα+1−αmax
σ

> 0,

where aσ > 0 is as in Theorem 6.

Let β, γ ≥ 0 be such that α+ 1 ≤ β + γ ≤ αmax and let
b ∈ Dβ and g ∈ D∗γ be such that ‖b‖β · ‖g‖∗,γ < δ′. For

brevity denote bk = 〈b, ψk〉 and gk = 〈φk, g〉 for k ∈ Z.
Now since for any λ ∈ C with |λ| ≥ rσ

|λ|α+1 = |λ|α+1−β−γ |λ|β+γ ≤ rα+1−β−γ
σ |λ|β+γ

≤ rα+1−αmax
σ |λ|β+γ ,
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we have using Theorem 6 that

sup
λ∈∆

|〈AR(λ,A)b, g〉| ≤
∑
k∈Z

sup
λ∈∆

|λk||bk||gk|
|λ− λk|

=
∑
k∈Z

|λk||bk||gk|
dist(λk,∆)

≤
∑
k∈Z

1

aσ
|λk|α+1|bk||gk|

≤ rα+1−αmax
σ

aσ

∑
k∈Z
|λk|β+γ |bk||gk|

≤ rα+1−αmax
σ

aσ

(∑
k∈Z
|λk|2β |bk|2

) 1
2
(∑
k∈Z
|λk|2γ |gk|2

) 1
2

=
rα+1−αmax
σ

aσ
‖b‖β · ‖g‖∗,γ < ε

This concludes the proof of the Theorem.

The proof of Theorem 2 is similar to the proof of Theo-
rem 1. The main difference is that since the perturbation
B is a bounded operator the Weinstein-Aronszajn deter-
minant can be given using the representation (4).

Proof of Theorem 2. If B is bounded and of rank m, for
any λ ∈ ∆ ⊂ ρ(A) the Weinstein-Aronszajn determinant
is given by [18, Sec IV.6]

ω(λ;A,B) = det
(
δjk − 〈R(λ,A)b̃j , g̃k〉

)
jk

and similarly as in the proof of Theorem 1 we have
ω(λ;A,B) = 1 + h(λ), where h(λ) is a linear combina-
tion of products of terms 〈R(λ,A)b̃j , g̃k〉. Using Lemma 3
and following the reasoning of the proof of Theorem 1 we
see that it suffices to show that for all j, k ∈ {1, . . . ,m}
and for any ε > 0 we can find δ′ > 0 such that
supλ∈∆|〈R(λ,A)b̃j , g̃k〉| < ε if α ≤ β+ γ ≤ αmax, b̃j ∈ Dβ ,

g̃k ∈ D∗γ and ‖b̃j‖β · ‖g̃k‖∗,γ < δ′.
Let ε > 0 be arbitrary. Again choose 0 < rσ ≤ 1 such

that |λk| ≥ rσ for all k ∈ Z, let aσ > 0 be as in Theorem
6 and choose

δ′ =
ε · aσ
rα−αmax
σ

> 0.

Let β, γ ≥ 0 be such that α ≤ β+γ ≤ αmax and let b̃ ∈ Dβ
and g̃ ∈ D∗γ be such that ‖b̃‖β · ‖g̃‖∗,γ < δ′. For brevity

denote bk = 〈b̃, ψk〉 and gk = 〈φk, g̃〉 for k ∈ Z. Since for
any λ ∈ C with |λ| ≥ rσ
|λ|α = |λ|α−β−γ |λ|β+γ ≤ rα−β−γσ |λ|β+γ ≤ rα−αmax

σ |λ|β+γ ,

similarly as in the proof of Theorem 1 we have using The-
orem 6 that

sup
λ∈∆

|〈R(λ,A)b̃, g̃〉| ≤
∑
k∈Z

|bk||gk|
dist(λk,∆)

≤
∑
k∈Z

1

aσ
|λk|α|bk||gk| ≤

rα−αmax
σ

aσ

∑
k∈Z
|λk|β+γ |bk||gk|

≤ rα−αmax
σ

aσ
‖b‖β · ‖g‖∗,γ < ε.

This concludes the proof of the Theorem.

Remark 7. If σ(A) consists only of isolated eigenvalues
with finite multiplicities, the proof of Theorem 1 can be
greatly simplified. In this case the construction of the do-
main ∆ is unnecessary. This follows from a more general
form of the first Weinstein-Aronszajn formula [18, Thm
IV.6.2], which under these assumptions holds in the whole
of C. As in the previous proof we could in this case de-
termine bounds for ‖bj‖β and ‖gk‖∗,γ such that for some
constant c > 0 we have ω(λ;A,B) ≥ c for all λ ∈ C+. The
First Weinstein-Aronszajn Formula would then imply that
C+ ⊂ ρ(A+B) and further, since the Weinstein-Aronszajn
determinant is continuous on ρ(A), that iR ⊂ ρ(A + B).
This would conclude that σ(A+B) ⊂ C−.

Remark 8. From the proofs of Theorems 1 and 2 it is
easy to see that if |λk| ≥ 1 for all k ∈ Z we can then
choose rσ = 1 and the bound δ > 0 is independent of the
value of αmax.

4. Results on The Perturbation of Strong and
Polynomial Stability

In this Section we present conditions for the preserva-
tion of the strong and polynomial stabilities of the C0-
semigroup. The following Theorem concerning the preser-
vation of the strong stability under a bounded finite rank
perturbation B is the first main result of this Section. The
proof of this result uses a result by Casarino and Piazzera
[19] concerning the preservation of uniform boundedness
of a C0-semigroup.

Theorem 9. Let σ(A) satisfy the geometric assumption
for some α > 0. The following hold.

(a) For every m ∈ N there exists δ > 0 such that if
B ∈ L(X) is of rank m with {b̃j}j ⊂ Dα such that

‖b̃j‖α · ‖g̃k‖X < δ for all j, k ∈ {1, . . . ,m}, then the
semigroup generated by A+B is strongly stable;

(b) For every m ∈ N there exists δ > 0 such that if
B ∈ L(X) is of rank m with {g̃j}j ⊂ D∗α such that

‖b̃j‖X · ‖g̃k‖∗,α < δ for all j, k ∈ {1, . . . ,m}, then the
semigroup generated by A+B is strongly stable.

The proof of the Theorem is based on the following
Lemma.

Lemma 10. Let σ(A) satisfy the geometric assumption
for some α > 0. For every m ∈ N there exists δ > 0
such that if B ∈ L(X) is of rank m with {g̃j}j ⊂ D∗α such

that ‖b̃j‖X · ‖g̃j‖∗,α < δ for all j ∈ {1, . . . ,m}, then the
C0-semigroup generated by A+B is uniformly bounded.

Proof. Let m ∈ N and choose δ =
aσ
√
mσ

2m where aσ > 0
is as in Theorem 6. Assume B ∈ L(X) is of rank m with
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{b̃j}j ⊂ X and {g̃j}j ⊂ D∗α such that ‖b̃j‖X · ‖g̃j‖∗,α < δ
for all j ∈ {1, . . . ,m}. We will show that∫ ∞

0

‖BT (t)x‖dt ≤ 1

2
‖x‖, ∀x ∈ X.

We then have from [19, Cor. 2.2] that the C0-semigroup
generated by A + B is uniformly bounded. Let x ∈ X
and for brevity denote xk = 〈x, ψk〉 and gkj = 〈φk, g̃j〉 for
k ∈ Z. Now∫ ∞

0

|〈T (t)x, g̃j〉|dt ≤
∫ ∞

0

∑
k∈Z
|eλktxkgkj |dt

=

∫ ∞
0

∑
k∈Z

eReλkt|xk||gkj |dt

For all k ∈ Z we have |Reλk| ≥ dist(λk,∆) ≥ aσ|λk|−α
and thus∫ ∞

0

eReλktdt =

[
eReλkt

Reλk

]∞
t=0

=
1

|Reλk|
≤ |λk|

α

aσ
.

Since ∑
k∈Z

∫ ∞
0

eReλktdt|xk||gkj | ≤
1

aσ

∑
k∈Z
|λk|α|xk||gkj |

≤ 1

aσ

(∑
k∈Z
|xk|2

) 1
2
(∑
k∈Z
|λk|2α|gkj |2

) 1
2

=
1

aσ
√
mσ
‖x‖ · ‖g̃j‖∗,α,

we can conclude using the Dominated Convergence Theo-
rem that∫ ∞

0

|〈T (t)x, g̃j〉|dt ≤
∫ ∞

0

∑
k∈Z

eReλkt|xk||gk|dt

=
∑
k∈Z

∫ ∞
0

eReλktdt|xk||gk| ≤ 1

aσ
√
mσ
‖x‖ · ‖g̃j‖∗,α.

Using this we get∫ ∞
0

‖BT (t)x‖dt ≤
∫ ∞

0

m∑
j=1

|〈T (t)x, g̃j〉|‖bj‖dt

=

m∑
j=1

‖b̃j‖
∫ ∞

0

|〈T (t)x, g̃j〉|dt

≤
m∑
j=1

‖b̃j‖ · ‖g̃j‖∗,α
aσ
√
mσ

‖x‖ < 1

2
‖x‖.

This concludes the proof of the Lemma.

Proof of Theorem 9. The ABLV Theorem [7] states that if
σ(A+B) ⊂ C− and if A+B generates a uniformly bounded
C0-semigroup, then this C0-semigroup in strongly stable.
Because of this the part (b) of Theorem 9 follows from
Theorem 2 and Lemma 10.

If B ∈ L(X) is of form (4), then its adjoint is given by

B∗ =

m∑
j=1

〈·, b̃j〉g̃j .

Clearly the operator A∗ satisfies the geometric assump-
tion for some α > 0 whenever A does. Because of this
and because an operator on a Hilbert space generates a
uniformly bounded C0-semigroup if and only if its adjoint
does, the sufficiency of the part (a) of Theorem 9 follows
from Theorem 2 and Lemma 10 applied to the operators
A∗ and B∗.

The second main result of the Section concerns the
preservation of the polynomial stability of the semigroup.
It is given in the following Theorem.

Theorem 11. Assume that the conditions of Theorem 1
or Theorem 2 are satisfied and that there exists an isomor-
phism T ∈ L(X) such that

T (A+B)T−1 =

[
Ae

An

]
where Ae generates an exponentially stable semigroup and
An is a normal operator. The perturbed semigroup S(t) is
then polynomially stable and there exists a constant Cσ > 0
such that

‖S(t)(A+B)−1‖ ≤ Cσ
t1/α

for all t ≥ 0.

Proof. Denote by Te(t) and Tn(t) the semigroups gener-
ated by Ae and An, respectively. The proofs of Theorems
1 and 2 guarantee that σ(An) ⊂ σ(A + B) ⊂ C \∆. The
construction of ∆ then implies that the spectrum of An
satisfies Assumption 1 for the same α > 0 as the unper-
turbed operator and for some constants cσ, yσ > 0. We
thus have from [4, Prop. 4.1] that Tn(t) is polynomially
stable and that there exists a constant Cn > 0 such that
for all t > 0

‖Tn(t)A−1
n ‖ ≤

Cn
t1/α

.

Using this we can see that there exists a constant Cσ > 0
such that for all t > 0

‖S(t)(A+B)−1‖ =

∥∥∥∥T [Te(t)A−1
e

Tn(t)A−1
n

]
T−1

∥∥∥∥
≤ ‖T‖ · ‖T−1‖ ·max

{
‖Te(t)‖ · ‖A−1

e ‖,
Cn
t1/α

}
≤ Cσ
t1/α

.

Remark 12. The conclusion of Theorem 11 of course also
holds if T (A+B)T−1 = An, i.e. if the eigenvectors of A+B
form a Riesz basis of X.
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5. Perturbation of a Polynomially Stabilized Wave
Equation

In this Section we consider an example of application
of the perturbation results presented earlier. To this end
we consider a one-dimensional wave equation on the in-
terval (0, 1). We first use one-dimensional state feedback
to stabilize this equation polynomially in such a way that
the system operator of the stabilized equation is a Riesz-
spectral operator whose spectrum satisfies the geometric
assumption. We then consider perturbations of this stabi-
lized equation. We will complete the stabilization part of
the example in such a way that it is ultimately possible to
compute concrete bounds δ > 0 for the perturbations such
that the spectrum of the perturbed equation remains in
the open left half-plane of C and such that the perturbed
equation is strongly and polynomially stable.

Consider the following one-dimensional wave equation
on (0, 1).

∂2w

∂t2
(z, t) =

∂2w

∂z2
(z, t) + b0(z)u(t) (5a)

w(0, t) = w(1, t) = 0 (5b)

w(z, 0) = w0,
∂w

∂t
(z, 0) = w1, (5c)

where b0(z) =
√

3(1− z). It is well-known that this equa-
tion can be written as a first order linear system on a
Hilbert space in the following way. Define the operator

A0 : D(A0) ⊂ L2(0, 1) → L2(0, 1) to be A0 = − d2

dz2 with
domain

D(A0) =
{
x ∈ L2(0, 1)

∣∣ x, x′ abs. cont.

x′′ ∈ L2(0, 1), x(0) = x(1) = 0
}
.

The operator A0 has a positive self-adjoint square root

A
1/2
0 and the space X = D(A

1/2
0 )×L2(0, 1) equipped with

an inner product 〈x, y〉X = 〈A1/2
0 x1, A

1/2
0 y1〉L2 +〈x2, y2〉L2

is a Hilbert space. Choosing

x =

[
w
dw
dt

]
, A =

[
0 I
−A0 0

]
, D(A) = D(A0)×D(A

1/2
0 ),

Bu = bu =

[
0
b0

]
u, x0 =

[
w0

w1

]
the wave equation (5) can be written as

ẋ = Ax+Bu, x(0) = x0. (6)

The eigenvalues of A are λk = ikπ for k ∈ Z \ {0} and

the corresponding eigenvectors ϕk(z) = 1
λk

[
sin(kπz)
λk sin(kπz)

]
form an orthonormal basis of X.

The next Theorem gives us a stabilizing feedback law
u = Kx = 〈x, h〉 for the system (6) and establishes the
fact that the stabilized system operator A+BK is a Riesz
spectral operator. Then, since the spectrum of A + BK

satisfies Assumption 1, the stabilized semigroup is poly-
nomially stable. In addition the Theorem gives us the
constants mσ > 0 and Mσ > 0 related to the Riesz basis
of eigenvectors of A+BK. These constants are essential in
computing explicit perturbation bounds later in the Sec-
tion.

The Theorem incorporates a parameter 0 < ν ≤ 1,
which allows us to control how much we shift the spec-
trum of A from the imaginary axis. We will show later in
the Section that this parameter can be used to control the
size of the norm ‖K‖ of the feedback. This is required in
our approach of using perturbation theory of normal oper-
ators to study the strong and polynomial stabilities of the
perturbed semigroup.

Theorem 13. Choose K = 〈·, h〉 ∈ L(X,C) with

h = −νπ
2

√
3

∑
k 6=0

αk
k
ϕk, where αk =

∏
l 6=0,k

(
1 + i

ν

l2(l − k)

)

and 0 < ν ≤ 1. Then A + BK is a strongly stable Riesz-
spectral operator with σ(A + BK) = {−ν π

k2 + ikπ}k 6=0.
For ν = 1

10 the Riesz basis {φk}k 6=0 of eigenfunctions of
the operator A+BK satisfies

1

Mσ

∑
k 6=0

|〈x, φk〉|2 ≤ ‖x‖2X ≤
1

mσ

∑
k 6=0

|〈x, φk〉|2 (7)

with mσ = 3
5 and Mσ = 5

3 .

Proof. Let 0 < ν ≤ 1 and denote µk = −ν π
k2 + ikπ for

k 6= 0. Using

〈b, ϕk〉X = 〈b0, sin(kπ·)〉L2 =

√
3

kπ

we see that for any λ ∈ C with dist(λ, σ(A)) ≥ π
3 and for

any l 6= 0

∑
k 6=0

|〈b, ϕk〉|2
|λ− λk|2

≤ 3

π2 dist(λ, σ(A))2

∑
k 6=0

1

k2

≤ 18

π4
· π

2

3
=

9

π2
(8a)∑

k 6=0
k 6=l

|〈b, ϕk〉|2
|λk − λl|2

≤ 3

π2

∑
k 6=0
k 6=l

1

k2π2
=

3

π4
· π

2

3
=

1

π2
(8b)

∑
k 6=0

|µk − λk|2
|〈b, ϕk〉|2

=
∑
k 6=0

ν2 π2

k4

3
π2k2

= ν2π
4

3

∑
k 6=0

1

k2

= ν2π
4

3
· π

2

3
= ν2π

6

3
. (8c)

We thus have from [6, Thm. 1] that there exists a feedback
K = 〈·, h〉 ∈ L(X,C) such that σ(A+BK) = {µk}k 6=0 and
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that h ∈ X is given by

h =
∑
k 6=0

µk − λk
〈ϕk, b〉

αkϕk =
∑
k 6=0

−ν π
k2√
3

kπ

αk = −νπ
2

√
3

∑
k 6=0

αk
k
ϕk,

αk =
∏
l 6=0,k

λk − µl
λk − λl

=
∏
l 6=0,k

i(k − l) + ν
l2

i(k − l)

=
∏
l 6=0,k

(
1 + i

ν

l2(l − k)

)
.

It remains to prove that the eigenfunctions of A+BK form
a Riesz basis of X. It is fairly easy to verify that for every
k 6= 0 we have 〈R(µk, A)b, h〉 = 1 since µk is an eigenvalue
of A + 〈·, h〉b and that R(µk, A)b is an eigenfunction of
A+ 〈·, h〉b corresponding to µk. We will show that the set
{φk}k 6=0 of eigenfunctions of the operator A + BK forms
a Riesz basis of X when

φk =
µk − λk
bk

R(µk, A)b =
π2

√
3

− ν
k2

1
k

∑
l 6=0

〈b, ϕl〉
µk − λl

ϕl

= −ν
k

∑
l 6=0

1
l

− ν
k2 − i(l − k)

ϕl =
∑
l 6=0

νk

νl − ik2l(k − l)ϕl.

Define a mapping T : X → X so that φk = Tϕk for all
k 6= 0. It is well-known (see for example [16, Exer 2.21])
that the set {φk}k 6=0 is a Riesz basis if T is a bounded
isomorphism on X. Furthermore, in this case (7) is sat-
isfied for any mσ and Mσ such that ‖T‖2 ≤ 1

mσ
and

‖T−1‖2 ≤Mσ. If we denote

ckl =
νk

νl − ik2l(k − l) ,

then since ckk = 1 for k 6= 0 we have that for any x ∈ X

‖Tx‖ = ‖
∑
k 6=0

〈x, ϕk〉Tϕk‖ = ‖
∑
k 6=0

〈x, ϕk〉(ϕk +
∑
l 6=0,k

cklϕl)‖

≤ ‖x‖+
∑
k 6=0

|〈x, ϕk〉| · ‖
∑
l 6=0,k

cklϕl‖

= ‖x‖+ ‖x‖(
∑
k 6=0

∑
l 6=0,k

|ckl|2)
1
2 .

Because

|ckl|2 =
ν2k2

ν2l2 + k4l2(k − l)2
,

we have |c−k,−l| = |ckl| and a straight-forward estimation
gives

∑
k 6=0

∑
l 6=0,k

|ckl|2 =
∑
k 6=0

( −1∑
l=−∞

|ckl|2 +

k−1∑
l=1

|ckl|2 +

∞∑
l=k+1

|ckl|2
)

≤ 6ν2
∞∑
k=1

1

k2

∞∑
l=1

1

l4
≤ 6ν2π

2

6
· π

4

90
=
π6

90
ν2.

This concludes that T ∈ L(X) and ‖T‖ ≤ 1 + π6

90 ν
2. For

ν = 1
10 we have ‖T‖2 ≤

(
1 + π2

90·100

)2

< 5
3 . Thus we can

choose mσ = 3
5 .

It remains to find a bound for ‖T−1‖. This is equivalent
to finding γ > 0 such that ‖Tx‖ ≥ γ‖x‖ for all x ∈ X.
Since T ∈ L(X), this is satisfied for all x ∈ X if it is
satisfied for every x in a dense subset of X. To this end
define

XF =
{
x ∈ X

∣∣ ∃N ∈ N : 〈x, ϕk〉 = 0 whenever |k| > N
}
.

This subset is dense in X. Let x ∈ XF and let N ∈ N be
such that 〈x, ϕk〉 = 0 whenever |k| > N . We then have

‖Tx‖2 = ‖
∑
k 6=0

〈x, ϕk〉Tϕk‖2 = ‖
∑
k 6=0

〈x, ϕk〉
∑
l 6=0

cklϕl‖2

=
∑
l 6=0

|
∑
k 6=0

〈x, ϕk〉ckl|2 =
∑
l 6=0

|
N∑

k=−N
k 6=0

〈x, ϕk〉ckl|2

≥
N∑

l=−N
l 6=0

|
N∑

k=−N
k 6=0

〈x, ϕk〉ckl|2 = ‖TN (〈x, ϕk〉)k‖22N

≥ (σNs )2 · ‖(〈x, ϕk〉)k‖22N = (σNs )2 · ‖x‖2

where ‖·‖2N is the Euclidean norm in C2N , TN denotes a
2N × 2N matrix TN = (ckl)kl where k, l ∈ {−N, . . . , N} \
{0} and σNs denotes the smallest singular value of TN .
This estimate implies that if we choose γ > 0 such that

γ ≤ inf
N∈N

σNs ,

then ‖Tx‖2 ≥ γ2‖x‖2 for all x ∈ XF and hence also for all
x ∈ X.

For N ∈ N let HN = 1
2 (TN + T ∗N ) be the Hermi-

tian part of TN . We now have from [20, Cor 3.1.5] that
σNs ≥ λmin(HN ), where λmin(HN ) denotes the smallest
eigenvalue of HN . Thus it suffices to find a uniform lower
bound γ > 0 for the eigenvalues of matrices HN .

In order to find this uniform lower bound we will use a
generalization of the Gerschgorin Circle Theorem for block
matrices [15]. Fix N ∈ N and let n ∈ {1, . . . , N}. Recall
that hkk = 1

2 (ckk + ckk) = 1 for k 6= 0. We can partition
the matrix HN into

1 · · · h−N,−n H−N,0 h−N,n · · · h−N,N
...

. . .
...

...
h−n−1,−N 1 H−1,0 h−n−1,N

H0,−N · · · H0,−1 Hn
00 H01 · · · H0N

hn+1,−N H10 1 hn+1,N

...
...

. . .
...

hN,−N · · · hN,−n−1 HN0 hN,n+1 · · · 1


.

Since the center block Hn
00 ∈ C2n×2n is Hermitian and

invertible, we have from [15, Thm. 2] that each eigenvalue

10



λ of HN satisfies

dist(λ, σ(Hn
00)) ≤

N∑
k=−N
k 6=0

‖H0,k‖2 (9a)

or

|λ− 1| ≤ ‖Hl,0‖2 +
∑

n<|k|≤N
k 6=l

|hlk| (9b)

for at least one j ∈ {−N, . . . ,−n− 1} ∪ {n+ 1, . . . , N}.
A direct computation yields that for all k 6= l we have

|hkl|2 =
ν2

4
· ν2(k4 + 2k2l2 + l4) + 4k4l4(k − l)2

(ν2l2 + k4l2(k − l)2)(ν2k2 + l4k2(k − l)2)

≤ ν2

4
· ν

2(k4 + 2k2l2 + l4) + 4k4l4(k − l)2

k4l2(k − l)2l4k2(l − k)2

≤ ν2(ν2 + 1)

k2l2(k − l)2
.

Using this we can estimate and the Hölder’s inequality for
p = 10 and q = p

p−1 = 10
9 we have

N∑
k=−N
k 6=0

‖H0,k‖2 ≤
∑
|k|>n

(

n∑
l=−n
l 6=0

|hlk|2)
1
2

≤ ν
√

1 + ν2
∑
|k|>n

1

|k| (
n∑

l=−n
l 6=0

1

l2(k − l)2
)

1
2

≤ 2ν
√

1 + ν2

∞∑
k=n+1

1

k(k − n)
(

n∑
l=−n
l 6=0

1

l2
)

1
2

≤ 2πν
√

1 + ν2

√
3

( ∞∑
k=n+1

1

k10

) 1
10
( ∞∑
k=1

1

k
10
9

) 9
10

=: Rn1 .

On the other hand, if l ∈ {−N, . . . ,−n−1}∪{n+1, . . . , N},
we have ‖Hl,0‖2 = max0<|k|≤n|hlk| and thus

‖Hl,0‖2 +
∑

n<|k|≤N
k 6=l

|hlk| ≤
∑
k 6=0,l

|hlk|

≤ ν
√

1 + ν2
∑
k 6=0,l

1

|k| · |l| · |k − l|

≤ ν
√

1 + ν2

|l| (
∑
k 6=0,l

1

k2
)

1
2 (
∑
k 6=0,l

1

(k − l)2
)

1
2

≤ ν
√

1 + ν2

n
· π

2

3
=: Rn2 .

The conditions (9) now imply that for any n ≤ N the
spectrum of HN belongs to a Gerschgorin set

Gn = B(1, Rn2 ) ∪
⋃

µ∈σ(Hn00)

B(µ,Rn1 )

where Rn1 and Rn2 are decreasing functions of n. The sets
Gn are independent of the value of N . This implies that
for any n ∈ N the union of the spectra of the matrices
{HN}N∈N is contained in the set

Σntot = Gn ∪
⋃
N≤n

σ(HN ).

Thus we can choose the required lower bound to be any
γ > 0 such that γ ≤ inf

{
Reλ

∣∣ λ ∈ Σntot

}
for some n ∈ N

for which the infimum is positive. It is also clear that this
bound can be computed explicitly. Figure 4 shows the
set Σntot for ν = 1

10 and n = 50. In this case we have
Rn1 ≈ 0.06558 and Rn2 ≈ 0.006613. The light and dark
grey areas denote the two parts of the Gerschgorin set Gn
and the black dots denote the spectra of the matrices HN

for N ≤ n.

0

0.8 1 1.2

Figure 4: The set Σntot for n = 50.

This computation shows that if we choose γ2 = 3
5 , we

then have ‖Tx‖2 ≥ γ2‖x‖2 for all x ∈ X. This concludes
that T−1 ∈ L(X), ‖T−1‖2 ≤ 5

3 and finally that we can
choose Mσ = 5

3 .

It is now clear that the spectrum of the stabilized oper-
ator A+BK satisfies the geometric assumption for values
α = 2, cσ = νπ3 and yσ = π and we can choose δσ = νπ
(Section 3.2) and rσ = 1 (proof of Theorem 1 in Section
3.3). We can now use the perturbation results presented
earlier to study the perturbation of the polynomially sta-
bilized wave equation. The perturbations we consider are
of form

∂2w

∂t2
(z, t) =

∂2w

∂z2
(z, t) + b0(z)u(t)

+ d0(z)

(
〈w(·, t), g1〉L2 + 〈∂w

∂t
(·, t), g2〉L2

)
where d0, g2 ∈ D(A0) and g1 ∈ L2(0, 1). If we denote

d =

[
0
d0

]
, g =

[
A−1

0 g1

g2

]
,

then the perturbed equation can be written as

ẋ = (A+BK)x+ 〈x, g〉Xd, x(0) = x0,

11



with d, g ∈ D(A0) × D(A0) ⊂ D(A0) × D(A
1/2
0 ) = D(A)

and A+BK is a Riesz-spectral operator. Since A is skew-
adjoint and since D(A+BK) = D(A), Theorem 2 implies
that there exists a constant δ > 0 such that the spectrum
of the operator (A + BK) + 〈·, g〉Xd belongs to the open
left half-plane of C whenever

‖d‖1 <
√
δ and ‖g‖∗,1 <

√
δ.

As in Section 3 we can see that

‖d‖1 ≤
1√
mσ
‖(A+BK)d‖X ,

‖g‖∗,1 ≤
√
Mσ‖(A+BK)∗g‖X .

Using this we can conclude that if we choose δ > 0 as
above, then the spectrum of the perturbed system operator
(A+BK) + 〈·, g〉Xd remains C− whenever

‖(A+BK)d‖X <
√
mσδ, ‖(A+BK)∗g‖X <

√
δ

Mσ
.

From the proof of Thereom 2 we see that we can choose
any δ > 0 such that δ ≤ aσ and from the construction of
the domain ∆ in Section 3.2 we obtain

aσ = min

 (1− κ)(1− κ 1
α )c

α+1
α

σ√
(1− κ 1

α )2c
2
α
σ + δ

α+1
α

σ (1− κ)2

, (1− κ)δ1+α
σ


= min

 (1− κ)(1−√κ)ν
3
2π

9
2√

(1−√κ)2νπ3 + π
3
2 (1− κ)2

, (1− κ)π3


= (1− κ)π3 ·min

 ν
√
νπ

3
4√

νπ
3
2 + (1 +

√
κ)2

, 1


=

ν
3
2 (1− κ)π

15
4√

νπ
3
2 + (1 +

√
κ)2

and where 0 < ν ≤ 1 and κ ∈ (0, 1). Clearly aσ is a
decreasing function of κ and if we choose κ = 1

100 we get
for ν = 1

10

aσ =
0.99 ·

(
1
10

) 3
2 π

15
4√

1
10π

3
2 + 1.21

>
5

3
.

Thus we can choose δ = 5
3 . Computing

√
mσδ = 1 and√

δ/Mσ = 1 we see that the condition for the perturbation
of the spectrum becomes

‖(A+BK)d‖ < 1, ‖(A+BK)∗g‖X < 1.

We clearly have ‖B‖ = ‖b‖X = ‖b0‖L2 = 1 and

‖K‖2 = ‖h‖2X = ‖−νπ
2

√
3

∑
k 6=0

αk
k
ϕk‖2X =

ν2π4

3

∑
k 6=0

|αk|2
k2

≤ ν2π6

9
· sup
k 6=0
|αk|2

since the set {ϕk} is orthonormal. For k 6= 0

|αk|2 =
∏
l 6=0,k

|1 + i
ν

l2(l − k)
|2 =

∏
l 6=0,k

(
1 +

ν2

l4(l − k)2

)
.

Since log(1 + x) ≤ x for any x ≥ 0, we have

log|αk|2 =
∑
l 6=0,k

log

(
1 +

ν2

l4(l − k)2

)
≤
∑
l 6=0,k

ν2

l4(l − k)2

≤ 2ν2

( ∞∑
l=1

1

l8

) 1
2
( ∞∑
l=1

1

l4

) 1
2

=
2ν2π5

9
√

1050
.

This allows us to conclude that the bound for the norm
‖K‖ of the feedback depends continuously on ν and can
be made arbitrarily small. For ν = 1

10 we have

‖K‖ ≤ νπ3

3
e
ν2π5

9
√

1050 <
π

3
.

We have A
−1/2
0 =

∑∞
k=1

1
kπ 〈·, sin(kπ·)〉L2 sin(kπ·) and thus

‖A−1/2
0 ‖ = 1

π . Using this we have for the norms of the
elements d, g, Ad and A∗g that ‖d‖X = ‖d0‖L2 and

‖g‖2X = ‖A1/2
0 A−1

0 g1‖2L2 + ‖g2‖2L2 ≤ 1

π2
‖g1‖2L2 + ‖g2‖2L2

‖Ad‖2X =

∥∥∥∥[ 0 I
−A0 0

] [
0
d0

]∥∥∥∥2

X

= 〈A1/2
0 d0, A

1/2
0 d0〉L2

= 〈A0d0, d0〉L2 =

∫ 1

0

−d′′0(z) · d0(z)dz

=

∫ 1

0

d′0(z) · d′0(z)dz = ‖d′0‖2L2

‖A∗g‖2X = ‖Ag‖2X =

∥∥∥∥[ 0 I
−A0 0

] [
A−1

0 g1

g2

]∥∥∥∥2

X

=

∥∥∥∥[ g2

−g1

]∥∥∥∥2

X

= 〈A1/2
0 g2, A

1/2
0 g2〉L2 + 〈−g1,−g1〉

= ‖g′2‖2L2 + ‖g1‖2L2

and we can estimate

‖(A+BK)d‖X ≤ ‖Ad‖X + ‖B‖‖K‖‖d‖

≤ ‖d′0‖L2 +
π

3
‖d0‖L2

and

‖(A+BK)∗g‖X ≤ ‖A∗g‖X + ‖K∗‖‖B∗‖‖g‖X

≤
√
‖g1‖2L2 + ‖g′2‖2L2 +

π

3

√
1

π2
‖g1‖2L2 + ‖g2‖2L2 .

Combining these estimates we see that if d0, g2 ∈ D(A0)
and g1 ∈ L2(0, 1) are such that the L2-norms of d0, d′0,
g1, g2 and g′2 are small enough, then the spectrum of the
operator A + BK + 〈·, g〉d is contained in the open left
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half-plane of C. For example for functions

d0(z) = c1 sin(πz) cos(2πz),

g1(z) = c2(χ[0,.25](z) + iχ[0,.5](z)),

g2(z) = c3e
− tan(πz+π

2 )2

this is true whenever c1, c2, c3 ≤ 1
5 .

To use Theorem 9 to study the preservation of the strong
stability of the C0-semigroup we would now need that
either d ∈ D(A + BK)2 or g ∈ D((A+BK)∗)2. How-
ever, this is a difficult requirement to satisfy because
R(B) 6⊂ D(A). In order to overcome this difficulty we
could choose B in such a way that R(B) ⊂ D(A). This
can be done by simply choosing a smoother function b0,

more precisely any b0 ∈ D(A
1/2
0 ). However, if we do this,

then in order to satisfy the conditions (8) for the existence
of the bounded feedback completing the pole placement we
would need to choose the target set {µk}k of eigenvalues
in such a way that its members approach the imaginary
axis faster. This, in turn, would lead to larger α in the
geometric assumption and consequently to a requirement
that d ∈ D(A + BK)α or g ∈ D((A + BK)∗)α for α > 2.
Because of this, the conditions for the preservation of the
strong stability presented in Section 4 are not very useful
in this example.

We can, however, use Theorem 11 to determine condi-
tions for the uniform boundedness and the stability of the
semigroup generated by the perturbed operator. The next
Theorem concludes that if the L2-norms of the functions
d0, g1 and g2 are small enough, then the semigroup gener-
ated by A+BK + 〈·, g〉Xd is polynomially stable.

Theorem 14. If in addition to the bounds presented above
the norms of the functions d0, g1 and g2 satisfy

‖d0‖2L2 ·
(
‖g1‖2L2 + π2‖g2‖2L2

)
<
π4

36
,

the perturbed operator A + BK + 〈·, g〉Xd generates a
strongly and polynomially stable C0-semigroup.

Proof. Writing

A+ (BK + 〈·, g〉Xd)

we can consider the perturbed operator as a perturbation
of the operator A. The operator A is normal, has compact
resolvent, its eigenvalues λk = ikπ lie on the imaginary
axis and have a uniform gap

inf
k 6=l
|λk − λl| = π > 0.

Theorem 6.2 and Remark 6.3 in [21] state that the gen-
eralized eigenvectors of A + BK + 〈·, g〉Xd form a Riesz
basis of X and all but a finite number of its eigenvalues
are simple provided that

‖BK + 〈·, g〉Xd‖ <
π

2
.

This is satisfied, since we have using our assumption that

‖BK + 〈·, g〉Xd‖ ≤ ‖B‖‖K‖+ ‖g‖X‖d‖X

≤ π

3
+ ‖d0‖L2 ·

√
1

π2
‖g1‖2L2 + ‖g2‖2L2 <

π

3
+
π

6
=
π

2
.

Since σ(A + BK + 〈·, g〉Xd) ⊂ C− the fact that the gen-
eralized eigenvectors A + BK + 〈·, g〉Xd form a Riesz ba-
sis of X and the infinite part of the spectrum consists of
simple eigenvalues concludes that it generates a uniformly
bounded semigroup. This in turn concludes that the semi-
group generated by A+BK + 〈·, g〉Xd is strongly stable.

The above conclusion also means that the perturbed op-
erator is of the form of Theorem 11. Thus the perturbed
semigroup S(t) is polynomially stable and there exists a
constant Cσ > 0 such that for all t > 0

‖S(t)(A+BK + 〈·, g〉Xd)−1‖ ≤ Cσ
t1/α

.

6. Perturbation of a Robust Controller

In this Section we consider an example related to the ro-
bust output regulation of distributed parameter systems
with infinite-dimensional exosystems [1, 2]. The results
in [1, 2] state that under certain conditions the robust
controller achieves output regulation regardless of the per-
turbations to the systems parameters provided that the
closed-loop remains strongly stable. We consider a closed-
loop system consiting of a plant and a robust observer-
based controller and study the preservation of its strong
stability under finite rank perturbations of the infinite-
dimensional internal model in the controller. Although the
results on robustness of output regulation in [1, 2] are not
directly applicable to perturbations of the internal model,
the preservation of the stability of the closed-loop system
is still an interesting problem. Also, these types of per-
turbations can be considered in the context of practical
output regulation [22], where the aim is to regulate the
reference signal with a given finite accuracy. Even more
importantly, this example illustrates how the perturbation
of composite systems can be handled with the techniques
presented in this paper.

Since in this case the unperturbed operator is not ob-
tained by feedback stabilization of a skew-adjoint opera-
tor, the methods presented in [10] cannot be applied to
this example.

For simplicity we consider a stable single input, single
output system and rank one perturbations of the internal
model.

The aim of this example is to demonstrate the appli-
cation of the perturbation results to problems of control
theory and robust output regulation. Because of this, we
do not compute the bounds for the perturbations explic-
itly, as was done in the previous example. Instead, we
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simplify things by choosing the parameters in such a way
that we can reuse the computations carried out in Section
5.

Consider a linear time-invariant distributed parameter
system

ẋ = Ax+Bu, x(0) ∈ X
y = Cx+Du

on a Hilbert space X, where x is the state of the system,
u the control, y the output. The operator A generates an
exponentially stable analytic semigroup and B ∈ L(C, X),
C ∈ L(X,C) and D ∈ C \ {0}. For s ∈ ρ(A) we denote by
P (s) = CR(s,A)B +D the transfer function of the plant.

We consider signals generated by an infinite-dimensional
exosystem

v̇ = Sv, v(0) ∈W,
yref = Fv

on a separable Hilbert space W = span{ϕk}k 6=0. The sys-
tem operator S of the exosystem is chosen to be

Sv =
∑
k 6=0

ikπ〈v, ϕk〉ϕk,

v ∈ D(S) =
{
v ∈W

∣∣ ∑
k 6=0

k2|〈v, ϕk〉|2 <∞
}
.

We denote by TS(t) the group generated by S and choose
F =

∑
k 6=0

1
k 〈·, ϕk〉. An example of a reference signal gen-

erated by this exosystem can be given by choosing the
initial state v(0) ∈W of the exosystem to be

v(0) = − 1

2π

∑
k 6=0

(eikπ − 1)2

k
ϕk.

The corresponding reference signal is then given by

yref (t) = Fv(t) = FTS(t)v(0) =
∑
k 6=0

eikπt〈v(0), ϕk〉Fϕk

= − 1

2π

∑
k 6=0

(eikπ − 1)2

k2
eikπt.

This is precisely the Fourier series representation of the
sawtooth signal depicted in Figure 5.

0

2π 4π 6π

Figure 5: Example of a signal generated by the exosystem.

The robust output regulation problem consists of finding
a feedback controller such that for all inital states of the

original system, the signal generator and the controller the
output of the plant satisfies

lim
t→∞

|y(t)− yref (t)| = 0

and such that this property is robust with respect to a
class of perturbations preserving the strong stability of
the closed-loop system.

The system operator of the closed-loop system consist-
ing of the plant and the robust observer-based controller
solving the robust output regulation problem is given by
[1, Thm. 13]

Ae =

 A BKH BK
−LC A+BKH + LC BK
G2C G2DKH S +G2DK


where L ∈ L(X,C) is such that A + LC is exponentially
stable, G2 = g2 ∈ W , and the operator H ∈ L(X,W ) is
such that H(D(A)) ⊂ D(S) and it is the unique solution
of the Sylvester equation SH = HA+G2C. We have from
[1, Lem. 19] that such an operator always exists and that

〈Hx,ϕk〉 = 〈g2, ϕk〉CR(iωk, A)x (10)

for all x ∈ X and k 6= 0. In the controller the copy of the
system operator S of the exosystem is called the internal
model of the exosystem. In this example we consider the
perturbations of this particular operator in Ae.

We will first show how to choose G2 ∈ L(C,W ) and
K ∈ L(W,C) in such a way that the closed-loop system is
strongly stable. For this we will use the method presented
in [1]. To do this we will need the standard assumption
that the transfer function of the plant satisfies

sup
k 6=0
|P (ikπ)| <∞, inf

k 6=0
|P (ikπ)| > 0.

6.1. Stabilization of The Closed-Loop System

Choose

Te =

 I 0 0
0 0 I
−I I 0

 , T−1
e =

I 0 0
I 0 I
0 I 0


and define Ãe = TeAeT

−1
e . We then have

Ãe =

 A+BKH BK BKH
G2(C +DKH) S +G2DK G2DKH

0 0 A+ LC


and since A + LC is exponentially stable, Ãe is strongly
stable if

Ãe1 =

[
A+BKH BK

G2(C +DKH) S +G2DK

]
is strongly stable [1, Lem. 20]. Choose Te1 ∈ L(X ×W )
such that

Te1 =

[
−I 0
H I

]
.
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Now T−1
e1 = Te1 and using the properties stated above we

obtain

Ae1 = Te1Ãe1T
−1
e1 =

[
A −BK
0 S +B1K

]
where B1 = HB + G2D ∈ L(U,W ). Since A is exponen-
tially stable, Ae1 is strongly stable if S +B1K is strongly
stable [1, Lem. 20]. Using (10) we can see that for u ∈ C

〈B1u, ϕk〉 = 〈HBu,ϕk〉+ 〈G2Du,ϕk〉
= 〈g2, ϕk〉CR(iωk, A)Bu+ 〈g2, ϕ〉Du
= 〈g2, ϕk〉P (iωk)u,

where P (s) is the transfer function of the plant. To sim-
plify things, we choose g2 ∈ W in such a way that we
can use the stabilizing feedback given in Theorem 13 to
also stabilize S +B1K. Our assumptions imply that if we

choose 〈g2, ϕk〉 =
√

3
kπP (iωk) , then g2 ∈W and

〈B1, ϕk〉 =

√
3

kπP (iωk)
P (iωk) =

√
3

kπ
.

With this choice we can use Theorem 13 to choose a feed-
back operator K = 〈·, h〉 ∈ L(W,C) in such a way that
S + B1K is a Riesz-spectral operator with eigenvalues
{µk}k 6=0 = {−νπk2 + ikπ}, i.e.

(S +B1K)v =
∑
k 6=0

µk〈v, ψk〉φk,

v ∈ D(S +B1K) =
{
v ∈W

∣∣ ∑
k 6=0

|µk|2|〈v, ψk〉|2 <∞
}
.

The above reasoning now concludes that the closed-loop
system is strongly stable.

6.2. Perturbation of The Internal Model

We can now consider the preservation of the strong sta-
bility of the closed-loop system under bounded rank one
perturbations ∆S of the internal model S in the system op-
erator Ae of closed-loop system. This means that we want
to consider the strong stability of the operator Ae + ∆e

given by A BKH BK
−LC A+BKH + LC BK
G2C G2DKH S + ∆S +G2DK

 .
This is equivalent to considering the strong stability of the
operator Ãe + ∆̃e = Te(Ae + ∆e)T

−1
e given by A+BKH BK BKH

G2(C +DKH) S + ∆S +G2DK G2DKH
0 0 A+ LC

 ,
which is strongly stable whenever

Ãe1 + ∆̃e1 =

[
A+BKH BK

G2(C +DKH) S + ∆S +G2DK

]

is strongly stable. Finally, this operator is strongly stable
if and only if the operator

Ae1 + ∆e1 = Te1(Ãe1 + ∆̃e1)T−1
e1

=

[
A −BK

∆SH S + ∆S +B1K

]
is strongly stable. Since Ae1 is not in general a Riesz-
spectral operator we cannot apply Theorems 2 and 9 di-
rectly to determine the preservation of its strong stability.
Instead, we can exploit the block operator structure of
Ae1 and use similar geometric methods as before to deter-
mine bounds for the perturbations such that the spectrum
of Ae1 + ∆e1 is contained in the open left half-plane of
C. Subsequently we can again determine additional con-
ditions for the preservation of the strong stability as was
done in Section 5.

Let ∆S = 〈·, ηS〉δS where δS , ηS ∈W . The perturbation
∆e1 is a bounded rank one operator given by

∆e1 =

[
0 0

δS〈H·, ηS〉 δS〈·, ηS〉

]
=

[
0
δS

]〈
·,
[
H∗ηS
ηS

]〉
.

Since A generates an exponentially stable analytic semi-
group, there exist constants ω < 0 and M ≥ 1 such that
for every λ ∈ C with Reλ > ω we have

‖R(λ,A)‖ ≤ M

|λ− ω| . (11)

The operator S + B1K satisfies Assumption 1 for α = 2
and for some cσ, yσ > 0. We can thus construct the corre-
sponding domain ∆ such that C+ ⊂ ∆ ⊂ ρ(S+B1K) and
such that the conclusion of Theorem 6 holds. Choosing
δσ < |ω| we also have that ∆ ⊂ ρ(A). This concludes that
∆ ⊂ ρ(A) ∩ ρ(S + B1K) ⊂ ρ(Ae1) and the estimate (11)
holds for all λ ∈ ∆.

The Weinstein-Aronszajn determinant for the perturbed
operator Ae1 + ∆e1 is now given by [18, Sec IV.6]

ω(λ;Ae1,∆e1) = 1−
〈
R(λ,Ae1)

[
0
δS

]
,

[
−H∗ηS
ηS

]〉
.

In order to obtain bounds for the Weinstein-Aronszajn
determinant we need two estimates. First of all, we have
from Theorem 6 that there exists aσ > 0 such that

|λ− µk| ≥ aσ|µk|−2

for all λ ∈ ∆. We will also need to show that there exists
another constant ãσ > 0 such that

|λ− ω| · |λ− µk| ≥ ãσ|µk|−1 (12)

for all λ ∈ ∆. Due to the symmetry it is sufficient to show
this for k ≥ 1.

Let k ≥ 1. Denote by λ0(k) ∈ ∆ the point at which
λ 7→ |λ − ω| · |λ − µk| achieves its minimum in the closed
set ∆. It can be shown that there exists Nσ ∈ N such
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that for k > Nσ we have that k − 1 ≤ Imλ0(k) ≤ k. For
k > Nσ

|λ− ω| · |λ− µk| ≥ |λ0(k)− ω| · |λ0(k)− µk|

≥ Imλ0(k) · aσ
|µk|2

≥ k − 1

|µk|
· aσ|µk|

≥ aσ

2
√

2
|µk|−1,

since for all k ≥ 2 we have

k − 1

|µk|
=

(
(k − 1)2

1
k4 + k2

) 1
2

≥ 1√
2
· k − 1

k
≥ 1

2
√

2
.

On the other hand, for 1 ≤ k ≤ Nσ there exists c > 0 such
that

|λ− ω| · |λ− µk| ≥ min
1≤k≤Nσ

(|λ0(k)− ω| · |λ0(k)− µk|)

= c > 0

and thus

|λ− ω| · |λ− µk| ≥ c ·
|µk|
|µk|

≥
(
c min

1≤k≤Nσ
|µk|

)
· |µk|−1.

This concludes that there exists a constant ãσ > 0 such
that the condition (12) holds for all λ ∈ ∆ and k 6= 0.

Lemma 3 again implies that it is sufficient to find bounds
for ‖δS‖β and ‖ηS‖∗,γ such that |ω(λ;Ae1,∆e1)| > 0 for
all λ ∈ ∆. For λ ∈ ∆ we have

R(λ,Ae1) =

[
R(λ,A) −R(λ,A)BKR(λ, S +B1K)

0 R(λ, S +B1K)

]

and thus the inner product in the Weinstein-Aronszajn
determinant is given by〈

R(λ,Ae1)

[
0
δS

]
,

[
H∗ηS
ηS

]〉
=

〈[
−R(λ,A)BKR(λ, S +B1K)δS

R(λ, S +B1K)δS

]
,

[
H∗ηS
ηS

]〉
= 〈−R(λ,A)BKR(λ, S +B1K)δS , H

∗ηS〉
+ 〈R(λ, S +B1K)δS , ηS〉.

The second term can be estimated as in the proof of The-
orem 2 by

|〈R(λ, S +B1K)δS , ηS〉| ≤
∑
k 6=0

|〈δS , ψk〉| · |〈φk, ηS〉|
|λ− µk|

≤ 1

aσ

∑
k 6=0

|µk|2|〈δS , ψk〉| · |〈φk, ηS〉| ≤
1

aσ
‖δS‖1 · ‖ηS‖∗,1.

For the first term we can use the estimate (12) to obtain

|〈−R(λ,A)BKR(λ, S +B1K)δS , H
∗ηS〉|

≤ ‖R(λ,A)‖ · ‖B‖ · |KR(λ, S +B1K)δS | · ‖H∗ηS‖

≤ M

|λ− ω| ‖B‖ · ‖H
∗‖ · ‖ηS‖ ·

∣∣∣∣∣∣
∑
k 6=0

〈φk, h〉〈δS , ψk〉
λ− µk

∣∣∣∣∣∣
≤ M‖B‖ · ‖h‖ · ‖ηS‖ ·

∑
k 6=0

|〈φk, h〉||〈δS , ψk〉|
|λ− ω||λ− µk|

≤ M

ãσ
‖B‖ · ‖h‖ · ‖ηS‖ ·

∑
k 6=0

|µk||〈φk, h〉||〈δS , ψk〉|

≤ M
√
Mσ

ãσ
‖B‖ · ‖h‖2 · ‖ηS‖ · ‖δS‖1.

These estimates show that if we have δS ∈ D1 = D(S) and
ηS ∈ D∗1 = D(S), i.e.∑

k 6=0

k2|〈δS , ϕk〉|2 <∞,
∑
k 6=0

k2|〈ηS , ϕk〉|2 <∞,

and if the norms ‖δS‖1, ‖ηS‖ and ‖ηS‖∗,1 are small enough
we have that infλ∈∆|ω(λ;Ae1,∆e1)| > 0. Lemma 3 then
concludes that σ(Ae1 + ∆e1) ⊂ C \∆ ⊂ C−.

Under suitable assumptions the uniform boundedness
of the semigroup generated by Ae1 + ∆e1 can again be
shown using the results in [21] as was done in Theorem 14
of Section 5. In particular this is possible if A is similar
to a normal operator with compact resolvent and if its
spectrum has a uniform gap and lies on a finite number
of rays starting from the origin. An important case of an
infinite-dimensional system satisfying these conditions is
the heat equation. In this case we can write

Ae1 + ∆e1 =

[
A 0
0 S

]
+

[
0 −BK
0 B1K

]
+

[
0 0

∆SH ∆S

]
.

The results of [21] can now be applied to the first block di-
agonal operator. This way we can see that if the norms of
the two other operators are small enough, we have that the
generalized eigenvectors of Ae1 + ∆e1 form a Riesz basis
and all but a finite number of the corresponding eigen-
values are simple. Also — since the norm ‖K‖ can be
made arbitrarily small by a proper choice of the parame-
ter 0 < ν ≤ 1 — this can always be achieved if ν, ‖δS‖
and ‖ηS‖ are small enough. As in the proof of Theorem 14
we can then again conclude that the perturbed semigroup
is uniformly bounded and thus strongly stable. This fi-
nally concludes that under these conditions the perturbed
closed-loop system remains strongly stable.

7. Coupled Systems

As a third example we will show that when applying the
theory to coupled systems, the requirement of the uniform
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spectral gap can often be a limitation. This can be seen,
for example, by consider the interconnected systems

ẋ = Ax+ Cy

ẏ = By,

on Hilbert spaces X and Y . Let A and B be Riesz-spectral
operators such that A : D(A) ⊂ X → X is exponentially
stable and B : D(B) ⊂ Y → Y generates a strongly stable
C0-group satisfying Assumption 1. The composite system
operator

Ac =

[
A C

B

]
then generates a strongly stable semigroup [1, Lem. 20].
Since A is exponentially stable and B generates a C0-
group, we have that if the growth bound ω0(A) < 0 of
A is small enough, there exists an operator H ∈ L(Y,X)
such that H(D(B)) ⊂ D(A) and H is the unique solution
of the Sylvester equation

AH = HB + C

on D(B) [23]. If we choose

T =

[
I H
−I

]
,

then T−1 = T and

T

[
A C

B

]
T−1 =

[
A

B

]
.

The operator on the right-hand side is clearly a Riesz-
spectral operator, and the same is thus also true for Ac.

It is clear that if the spectrum of A does not have a uni-
form gap, the same applies to the spectrum of Ac. Exam-
ples of these kinds of operators encountered in applications
are all operators and matrices A having eigenvalues of mul-
tiplicity larger than one and operators whose spectra have
a finite accumulation point. The latter can happen for
example if A = K − aI, where K is an integral operator

(Kx)(t) =

∫ 1

0

k(t, s)x(s)ds

on Y = L2(0, 1) with k(·, ·) ∈ L2((0, 1)× (0, 1)) such that
k(t, s) = k(s, t). The operator K is self-adjoint and com-
pact and thus has a representation

K =

∞∑
k=1

λk〈·, ϕk〉ϕk

where {ϕk}∞k=1 is orthonormal set and the eigenvalues
{λk} ⊂ R are such that |λ1| ≥ · · · ≥ |λn| → 0 as n → 0
[24, Ch. 6]. For a large enough a > 0 the operator A gen-
erates an exponentially stable semigroup and its spectrum
has a finite accumulation point in C−.

We can now consider the preservation of the strong sta-
bility of the interconnected systems when a coupling in
the other direction is added to the system. For example
we can consider the case where the state of the first equa-
tion is inserted into the second equation through a rank
one operator ∆ = 〈·, g〉b. The systems then become

ẋ = Ax+ Cy

ẏ = ∆x+By.

Expressed using composite operators, we need to study the
strong stability of the operator

Ac + ∆c =

[
A C
∆ B

]
.

It is possible to study this kind of perturbation in the same
way as in Section 6, but our results can also be applied
directly to the perturbed operator

T (Ac + ∆c)T
−1 =

[
A

B

]
+

[
H∆ H∆H
−∆ −∆H

]
=

[
A

B

]
+

〈
·,
[
g

H∗g

]〉[
Hb
−b

]
.

As was stated above, the unperturbed operator is now a
Riesz-spectral operator clearly satisfying Assumption 1,
but since the spectrum of A does not have a uniform gap,
neither does the spectrum of Ac.

8. Conclusions

In this paper we considered finite rank perturbations of
Riesz-spectral operators generating strongly and polyno-
mially stable C0-semigroups. We presented conditions un-
der which the spectrum of the perturbed operator remains
in the open left half-plane of C, conditions for the preser-
vation of the uniform boundedness of the semigroup and
conditions for the polynomial stability of the perturbed
semigroup.

As the first example we considered perturbation of a
polynomially stabilized wave equation. It was observed in
the example that the results on the perturbation of the
spectrum were applicable to the case but the results on
the preservation of the uniform boundedness of the C0-
semigroup were not. This illustrates a fundamental differ-
ence between results of otherwise similar type. This dif-
ference is the fact that in the results on the perturbation
of the spectrum the requirements of b ∈ Dβ and g ∈ D∗γ
can be distributed between the elements b and g whereas
in the results concerning the preservation of the uniform
boundedness of the C0-semigroup all of the requirements
are imposed on only one of these elements.
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