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ABSTRACT
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Master of Science Thesis, 95 pages, 7 Appendix pages
March 2007
Major: Mathematics
Examiners: Prof. Seppo Pohjolainen and Senior Researcher Timo Hämäläinen
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This thesis is concerned with strongly continuous semigroups of linear operators, called
C0-semigroups, on Banach and Hilbert spaces. In particular, we are interested in how
exponential stability is preserved under additive perturbations of the infinitesimal
generator of the C0-semigroup. We consider both bounded and relatively bounded
perturbations.
The problem is divided into two parts. We will first look for conditions under which
the perturbed generator remains an infinitesimal generator of a C0-semigroup. Subse-
quently, we will impose additional conditions for the stability of the perturbed C0-
semigroup.
To answer the first part of the problem, we present a variety theoretical results found
in the literature. These results provide conditions under which the perturbed operator
generates a C0-semigroup.
As the first approach to the second part of the problem, we introduce additional condi-
tions under which the perturbed C0-semigroup is exponentially stable. This is done
by applying conditions for the stability of a C0-semigroup to the case of the perturbed
C0-semigroup.
As a second approach, we provide conditions under which the stability of the perturbed
C0-semigroup can be determined from the spectrum of the perturbed operator. Some
of these results require certain special properties from the C0-semigroup and some of
them are applicable to the case of general C0-semigroups.
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Tässä diplomityössä käsitellään vahvasti jatkuvia puoliryhmiä, eli C0-puoliryhmiä,
Banach- ja Hilbert-avaruuksissa. Erityisesti olemme kiinnostuneita siitä miten niiden
stabiilisuusominaisuudet muuttuvat infinitesimaaliseen generaattoriin kohdistuvien
häiriöiden vaikutuksesta.
Vahvasti jatkuvien puoliryhmien voidaan ajatella olevan eksponenttifunktion eAt

yleistys ääretönulotteisiin avaruuksiin. Suljettu operaattori Banach-avaruudessa voi
generoida samankaltaisen vahvasti jatkuvan kuvauksen t 7→ T (t) puoliavoimelta
väliltä [0,∞) avaruuteen L(X). Eksponenttifunktion tavoin tämä kuvaus toteuttaa
ehdot T (s + t) = T (s)T (t) ja T (0) = I kun s, t ≥ 0. Toisaalta ääretönulotteisesta
tilanteesta löytyy myös paljon eroavaisuuksia eksponenttifunktion tapaukseen verrat-
tuna. Esimerkiksi yleisessä Banach-avaruudessa jokainen lineaarinen operaattori ei
generoi vahvasti jatkuvaa puoliryhmää.
Selvitämme seuraavaksi mitä puoliryhmän eksponentiaalinen stabiilisuus tarkoittaa.
Vahvasti jatkuvat puoliryhmät liittyvät läheisesti abstraktien Cauchy-ongelmien teo-
riaan: Jos A generoi vahvasti jatkuvan puoliryhmän T (t) Banach-avaruudessa X,
niin yhtälön ẋ(t) = Ax(t) alkuehdolla x(0) = x0 ∈ X ratkaisuksi saadaan
x(t) = T (t)x0. Ratkaisua kutsutaan stabiiliksi, jos se lähestyy nollaa t:n kasvaessa.
Tässä työssä olemme kiinnostuneita erityisesti tapauksesta, jossa kaikilla alkutiloilla
x0 ∈ X yhtälön ratkaisun normi lähenee nollaa eksponentiaalisella nopeudella t:n
kasvaessa. Puoliryhmän T (t) ominaisuuksien avulla ilmaistuna tämä tarkoittaa sitä,
että on olemassa reaaliset vakiot M ≥ 1 ja ω > 0 siten että ‖T (t)‖ ≤ Me−ωt pätee
kaikilla t ≥ 0.
Koska kaikilla alkutiloilla x0 vahvasti jatkuva puoliryhmä T (t) määrää ratkaisun x(t)
käyttäytymisen, voimme nähdä yhtälön ratkaisujen stabiilisuuden puoliryhmän T (t)
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ominaisuutena. Tämän vuoksi kutsumme vahvasti jatkuvaa puoliryhmää T (t) ekspo-
nentiaalisesti stabiiliksi, jos on olemassa reaaliset vakiot M ≥ 1 ja ω > 0 siten
että ‖T (t)‖ ≤ Me−ωt pätee kaikilla t ≥ 0.
Tässä työssä tarkastelemme seuraavaa ongelmaa: Oletetaan, että operaattori A, jonka
määrittelyjoukko on D(A), generoi eksponentiaalisesti stabiilin vahvasti jatkuvan
puoliryhmän Banach- tai Hilbert-avaruudessa X ja B, jonka määrittelyjoukko on
D(B), on lineaarinen operaattori avaruudessa X. Millä ehdoilla operaattori A + B
generoi eksponentiaalisesti stabiilin vahvasti jatkuvan puoliryhmän avaruudessa X?
Ongelma voidaan jakaa kahteen osaan. Koska jokainen lineaarinen operaattori ei ge-
neroi vahvasti jatkuvaa puoliryhmää, on meidän ensin tarkasteltava milloin operaat-
tori A + B on jonkin C0-puoliryhmän infinitesimaalinen generaattori. Tämän jälkeen
etsimme lisäehtoja sille, että häiritty puoliryhmä on eksponentiaalisesti stabiili.
Ongelman ensimmäiseen osaan vastataksemme esittelemme erilaisia ehtoja sille, et-
tä myös häiritty operaattori generoi vahvasti jatkuvan puoliryhmän avaruudessa X.
Tätä aihetta on tutkittu 1950-luvulta lähtien ja teoriaa on kehitetty sekä rajoite-
tuille että ei-rajoitetuille häiriöille. Jo vuonna 1953 R.S. Phillips julkaisi tuloksia,
jotka antavat tyhjentävän vastauksen rajoitettujen häiriöiden tapaukseen. Tämän jäl-
keen tutkimuksen pääpaino on ollut ei-rajoitettujen häiriöiden tapauksessa. Jo hyvin
aikaisessa vaiheessa huomattiin, että tietyt vahvasti jatkuvien puoliryhmien luokat
sietävät toisia paremmin ei-rajoitettuja häiriöitä. Tässä työssä esittämämme tulokset
analyyttisten ja kontraktiivisten puoliryhmien generaattorien häiriöille esiteltiin en-
simmäisen kerran jo 1950-luvun loppupuolella. Näiden häiriötulosten lisäksi esit-
telemme vielä kolme erilaista kokoelmaa ehtoja yleisen vahvasti jatkuvan puoliryhmän
generaattorin häiritsemiselle siten, että myös häiritty operaattori generoi vahvasti
jatkuvan puoliryhmän avaruudessa X. Nämä ehdot voidaan järjestää C0-puoliryhmän
generoinnin säilyttävien häiriöiden luokiksi SDS

t0
, SMV

t0
ja SKW. Eli, jos A generoi

vahvasti jatkuvan puoliryhmän avaruudessa X ja operaattori B kuuluu johonkin
vastaavista luokista SDS

t0
, SMV

t0
tai SKW, niin myös häiritty operaattori generoi

vahvasti jatkuvan puoliryhmän avaruudessa X. Ensimmäinen luokista seuraa W.
Deschin ja W. Schappacherin johtamista ehdoista. Toisen luokan ehdot ovat alun-
perin I. Miyaderan julkaisemia ja myöhemmin J. Voigtin eteenpäin kehittämiä.
Tässä työssä käyttämämme yhtenäistetty lähestymistapa näiden kahden häiriöluokan
käsittelyyn seuraa K-J. Engelin ja R. Nagelin esittelemää menettelyä. Kolmas luokka
seuraa C. Kaiserin ja L. Weisin esittelemistä ehdoista.
Ongelmamme toiseen osaan löytyy kirjallisuudesta vain muutamia suoria vastauksia.
Lisäksi monet näistä tuloksista pätevät vain tietyille vahvasti jatkuvien puoliryhmien
luokille tai tietyn tyyppisille häiriöille. Tässä diplomityössä käytämme useampaa eri-
laista lähestymistapaa.
Ensimmäisessä lähestymistavassa aloitamme esittelemällä erilaisia kirjallisuudesta löy-
tyviä tapoja määrittää vahvasti jatkuvan puoliryhmän stabiilisuus. Vaikka puoliryh-
män stabiilisuuden määrääminen ääretönulotteisessa avaruudessa on monimutkaisem-
paa kuin äärellisulotteisessa tapauksessa, löytyy tähän useita erilaisia menetelmiä.
Soveltamalla joitakin näistä ehdoista häirityn puoliryhmän tapaukseen voimme johtaa
riittäviä ehtoja tämän puoliryhmän eksponentiaaliselle stabiilisuudelle. Johdamme
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ehtoja ensin tapaukselle jossa operaattori B on A-rajoitettu ja häiritty operaatto-
ri A + B, jonka määrittelyjoukko on D(A + B) = D(A), generoi vahvasti jatkuvan
puoliryhmän. Lisäksi esittelemme nämä ehdot erikseen tapauksissa B ∈ SMV

t0
ja

B ∈ SKW. Yleinen ehtomme on sovellettavissa myös rajoitettujen häiriöiden tapauk-
seen. Tässä tapauksessa näemme myös, että rajoitettujen häiriöiden tunnettu ja
yksinkertainen ehto eksponentiaaliselle stabiilisuudelle seuraa tässä työssä johtamis-
tamme ehdoista. Yleistä ehtoamme ei voida käyttää jos B ∈ SDS

t0
, mutta käsittelemäl-

lä tapauksen erikseen voimme johtaa vastaavan tuloksen myös näille häiriöille. Lopuksi
esittelemme vielä samankaltaisen mutta erillisen tuloksen kontraktiivisten puoliryh-
mien häiriöille.
Toisena lähestymistapana etsimme osittaista ratkaisua eksponentiaalisen stabiilisuu-
den säilymiselle. Äärellisulotteisissa avaruuksissa puoliryhmän, siis eksponenttifunk-
tion eAt, stabiilisuusominaisuuksien määrittäminen onnistuu määrittämällä matriisin
A ominaisarvot. Puoliryhmä on tällöin stabiili, jos kaikkien ominaisarvojen reaali-
osat ovat aidosti negatiivisia. Joissakin erikoistapauksissa myös ääretönulotteisen
avaruuden puoliryhmän stabiilisuus voidaan päätellä sen infinitesimaalisen generaat-
torin spektristä. Joillekin vahvasti jatkuvien puoliryhmien luokille nimittäin pätee,
että puoliryhmä on eksponentiaalisesti stabiili täsmälleen silloin kun sen generaat-
torin spektrin alkioiden reaaliosat ovat ylhäältäpäin rajoitettuja jollakin negatiivi-
sella luvulla. Tässä työssä etsimme ehtoja sille, että häirityn puoliryhmän sta-
biilisuus voidaan päätellä häirityn operaattorin spektristä. Näitä ehtoja on kahta
tyyppiä. Ensimmäisissä näistä hyödynnetään suoraan sitä, että jos vahvasti jatku-
valla puoliryhmällä on tiettyjä säännöllisyysominaisuuksia, voimme päätellä onko
puoliryhmä eksponentiaalisesti stabiili tarkastelemalla sen generaattorin spektriä. Jos
alkuperäisellä puoliryhmällämme on tällainen ominaisuus ja rajoitumme tarkastele-
maan häiriöitä jotka säilyttävät tämän säännöllisyysominaisuuden, voimme tällöin
päätellä häirityn puoliryhmän stabiilisuuden häirityn operaattorin spektristä. Tämän
käsittelytavan lisäksi voimme saavuttaa vastaavanlaisen tilanteen myös yleisempien
puoliryhmien tapauksessa. Jos alkuperäinen vahvasti jatkuva puoliryhmämme on
eksponentiaalisesti stabiili, on olemassa suoraan häiriöön kohdistuvia ehtoja, joiden
toteutuessa häirityn puoliryhmän stabiilisuus voidaan päätellä häirityn operaattorin
spektristä.
Teoriaa voidaan käyttää esimerkiksi tutkittaessa miten abstraktin Cauchy-ongelman
ẋ(t) = Ax(t) ratkaisujen stabiilisuus muuttuu, jos tämä korvataan yhtälöllä ẋ(t) =
(A + ∆A)x(t) alkuehdon pysyessä samana. Tällaisessa tapauksessa häiriön ∆A voi
aiheuttaa esimerkiksi operaattorin A korvaaminen sen äärellisulotteisella approksi-
maatiolla. Jos A on rajoittamaton operaattori, on selvää ettei operaattori ∆A vält-
tämättä ole rajoitettu. Toisaalta esimerkiksi säätöteoriassa tulee monesti vastaan
tilanteita, joissa operaattorit ovat rajoitettuja tai kompakteja. Tämän vuoksi on hyö-
dyllistä etsiä myös tuloksia, jotka pätevät joissain erityistapauksissa.



Preface

This Master of Science thesis was written at the Department of Mathematics of

Tampere University of Technology. The main part of the work was done during the

autumn of 2006 and the following winter.

I would like to thank Professor Seppo Pohjolainen for providing the interesting subject

of this thesis and for the valuable guidance throughout the process. I am also grateful
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Chapter 1

Introduction

In this thesis we study strongly continuous semigroups of bounded linear operators,

or C0-semigroups, and how their properties change under certain kinds of perturba-

tions. We will start by introducing the operator semigroups and relating them to

familiar structures of finite-dimensional spaces. A more mathematical formulation of

the concepts involved will be given in chapter 2. In this chapter we will also formulate

the main problem, give a brief account of how it has been addressed before and outline

the approach used in this thesis.

In a way, a semigroup of linear operators is a generalization of an exponential function.

Recall that for a matrix A ∈ Cn×n the mapping

t 7→ T (t) = eAt =
∞∑

n=0

(At)n

n!
(1.1)

produces an n×n-matrix for every t ≥ 0. From the basic properties of the exponential

function we also know that this mapping satisfies T (t + s) = T (t)T (s) and T (0) = I.
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In a general infinite-dimensional Banach space X a closed and possibly unbounded

operator

A : X ⊃ D(A) → X

can give rise to a similar structure. If this is the case, then the strongly continuous

semigroup of bounded linear operators generated by A is a strongly continuous mapping

T (·) : [0,∞) → L(X)

satisfying T (t+s) = T (t)T (s) and T (0) = I. However, unlike in the finite-dimensional

case, it is in general not possible to find a formula like the one in (1.1) for T (t) in

infinite-dimensional spaces. A more detailed introduction to the properties of strongly

continuous semigroups and their generators is given in chapter 2. We will now describe

what is meant by the stability of a semigroup.

Semigroups of linear operators are heavily related to the behaviour of dynamical

systems. Let us start with the homogeneous abstract Cauchy equation

ẋ(t) = Ax(t), x(0) = x0 (1.2)

on X where A : D(A) → X is the generator of a strongly continuous semigroup. As

in finite-dimensional case, the solution of this equation can be given in terms of the

semigroup T (t):

x(t) = T (t)x0

If the initial value x0 belongs to D(A), the domain of the operator A, this is the

classical solution of the equation. If this is not the case, the solution is a mild (or

weak) solution of the equation.

The solution x(t) of this equation is called stable if it approaches zero as t grows.

There are several different ways this can happen. In particular we are interested in

the case where the norm of the solution approach zero at an exponential rate with t

for all initial values x0 ∈ X. Expressed in terms of the properties of the semigroup,

this means that we are able to find real constants M ≥ 1 and ω > 0 such that for all

t ≥ 0

‖T (t)‖ ≤ Me−ωt. (1.3)

Since for all initial values x0 the behaviour of x(t) is determined by the strongly

continuous semigroup, we can see that the stability of the solutions is a property
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of the semigroup. To this end, we will call a strongly continuous semigroup T (t)

exponentially stable if there exist real constants M ≥ 1 and ω > 0 such that (1.3)

holds for all t ≥ 0.

In this thesis we consider the preservation of the exponential stability of the semigroup

when its generator A is subjected to an additive perturbation. When considering

abstract Cauchy equations, this means that equation (1.2) is replaced with an equation

of form

ẋ(t) = (A + ∆A) x(t), x(0) = x0. (1.4)

This can happen for example when the operator is not exactly known or when

discretization error occurs in simulations. This kind of situation is also often encoun-

tered in control theory where we have a system described by the equations

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t)

Here y(t) is called the output and u(t) the control of the system. If we apply a feedback

of form u(t) = Ky(t), the state x(t) will be given by the abstract Cauchy equation

ẋ(t) = (A + BKC)x(t), x(0) = x0.

Obviously the operator BKC can be seen as a perturbation.

Our aim is to consider a wide range of perturbations. If A is an unbounded operator

and the perturbation in the abstract Cauchy equation (1.4) is caused by replacing it

with its finite-dimensional approximation, it is clear that the perturbing operator ∆A

does not have to be bounded. On the other hand, in the case of feedback considered

above it is common that some of the operators B, K and C are finite-dimensional and

bounded. In some of these cases the perturbing operator BKC can become compact.

This motivates us not only to consider the most general perturbations, but also to find

particular results for certain special classes of perturbations.

Considering the abstract Cauchy problem (1.4) also gives rise to a question under what

conditions the perturbed equation has a solution. This can, however, be answered

using the theory of strongly continuous semigroups: It turns out that as long as the

operator A + ∆A generates a strongly continuous semigroup, the perturbed equation

has a unique solution for all initial values x0 ∈ X [8, Cor II.6.9.].
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We will now formulate the main problem of the thesis:

Assume that an operator A generates an exponentially stable strongly continuous

semigroup T (t) on a Banach or Hilbert space X and consider a perturbing operator

B : D(B) → X with D(B) ⊂ X. Under what conditions on the operators A and B

does the perturbed operator A + B with domain D(A + B) generate an exponentially

stable strongly continuous semigroup on X?

The problem can be divided into two main parts:

• Under what assumptions does A + B generate a strongly continuous semigroup

on X?

• What additional conditions are needed for this semigroup to be stable?

Answering the first part of the problem is pretty straightforward. This particular

question has been studied actively since the 1950’s and a fair amount of theory has

been developed for both bounded and relatively bounded perturbations. As early as

in 1953, Phillips [21] presented results which give a thorough answer to the problem in

the case B ∈ L(X). Since then the main emphasis has been in the study of relatively

bounded perturbations. In chapter 4 we will introduce different types of conditions

for the perturbed operator to be a generator of a C0-semigroup. At the beginning of

the chapter we will also look at the developement of the theory in more detail.

Literature presents only few answers to the second part of the problem and in this

thesis we will consider different approaches. We will first introduce the theory on

the stability of strongly continuous semigroups. Subsequently, we will apply some of

these criteria to the case of perturbed semigroups in order to formulate an answer

to the second part of the problem. We will first derive sufficient conditions for the

preservation of stability when the perturbed operator generates a C0-semigroup on X.

We will also formulate these conditions for certain classes of perturbations for which

the perturbed operator again generates a semigroup on X. We will also derive separate

sufficient conditions for certain perturbations for which the general conditions are not

applicable. We will also compare the results obtained with this method to existing

ones by Pritchard and Townley [23]. These results are presented in Section 5.1 and

they are by the author.

As a second approach to the problem we look for a partial answer to the question.

In finite-dimensional spaces the semigroup of linear operators (the exponential func-

tion), is exponentially stable exactly when the spectrum of its generator is contained

in the open left half-plane of the complex plane C. Even though the case is far

more complicated in infinite-dimensional spaces, we will learn in chapter 3 that if the
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semigroup has certain regularity properties we can achieve a characterization which is

similar to the one in finite-dimensional case. More precisely, for some classes of regular

semigroups it holds that the strongly continuous semigroup is exponentially stable if

the real part of the spectrum of the generator is bounded from above by a negative

constant. A more detailed description of what we mean by a ”regular semigroup” is

given in section 2.1.3. Using this theory we will in section 5.2 formulate conditions

under which the exponential stability of the perturbed semigroup is determined by

the spectrum of the perturbed operator. In the same section we will also characterize

some perturbations which lead to the same situation without additional assumptions

on the unperturbed semigroup.

Pandolfi and Zwart [19] have considered this problem in Hilbert spaces for relatively

bounded perturbations satisfying certain special assumptions. They use the fact that

the exponential stability of a strongly continuous semigroup can be characterized by

the existence of a positive self-adjoint solution to a certain Lyapunov equation (see [5]

or [4, Thm 5.1.3]). We will present the main results of this theory in section 5.3.

This thesis is arranged as follows:

Chapter 2 introduces mathematical concepts used in this thesis. We will give a

detailed formulation of the strongly continuous semigroups of linear operators and

introduce their most important properties. We will also introduce theory on Sobolev

towers and Favard spaces, both of which will be used throughout the thesis.

Chapter 3 discusses the stability of strongly continuous semigroups. This is more

complicated in infinite-dimensional spaces than in finite-dimensional ones. The first

part of the chapter discusses characterization of general strongly continuous semi-

groups on Banach and Hilbert spaces. The latter part of the chapter shows that in

case the strongly continuous semigroups has certain special properties, its stability is

completely determined by the spectrum of its infinitesimal generator.

Chapter 4 studies conditions under which the perturbed operator again generates

a strongly continuous semigroup. Before considering more general perturbations, we

will give a brief account of the theory on bounded perturbations and perturbations of

certain special classes of semigroups. The rest of the chapter is used to introduce three

classes of relatively bounded perturbations relating to general strongly continuous

semigroups.

Chapter 5 contains derivation of conditions for the stability of the perturbed semi-

group. The first part of the chapter presents direct conditions for the stability of

a general strongly continuous semigroup. In the second part, we present conditions

under which the stability of the perturbed semigroup is determined by the spectrum

of the perturbed generator. Finally, we present conditions obtained by Pandolfi and
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Zwart for the stability of the perturbed strongly continuous semigroups under certain

type of perturbations.

Chapter 6 contains concluding remarks.

Appendix A lists some helpful results from functional analysis and integration theory.



Chapter 2

Mathematical Background

In this chapter we will present some mathematical results which we will use later in

the thesis. For the purposes of this thesis, the most important part is Section 2.1

where we define a strongly continuous semigroup of linear operators. More thorough

introductions to this topic can be found for example in [20, 4, 8]. We will also use

some more advanced concepts related to strongly continuous semigroups. The theory

on the essential growth bound [8, 15] and the critical growth bound [17, 3] are needed

when considering particular classes of perturbations in Section 5.2. Sobolev towers and

Favard spaces are used for a unified treatment of two classes of unbounded perturba-

tions in chapter 4. The introduction to this theory follows the one given in [8].

2.1 Semigroup Theory

In this section we will define the strongly continuous semigroups mathematically and

introduce their most important properties. As we already stated, this structure can be

seen as a generalization of the exponential function from finite-dimensional spaces to

Banach spaces. Because of this, it is useful to compare the properties of the strongly
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continuous semigroups introduced here to the corresponding properties of exponential

functions. The following two definitions formulate the concepts of strongly continuous

semigroups and their generators.

Definition 2.1. A semigroup of bounded linear operators is an operator-valued func-

tion T (t) from R+ to L(X) having the properties

(i) T (t + s) = T (t)T (s) for t, s ≥ 0,

(ii) T (0) = I.

Furthermore, if the function satisfies

(iii) ‖T (t)x0 − x0‖ → 0 as t → 0+, ∀x0 ∈ X,

it is called a strongly continuous semigroup. The term strongly continuous semigroup

is often abbreviated as C0-semigroup. �

Definition 2.2. The infinitesimal generator A of a C0-semigroup on a Banach space

X is defined by

Ax = lim
t→0+

T (t)x− x

t

D(A) = {x ∈ X | lim
t→0+

T (t)x− x

t
exists }.

�

The infinitesimal generator of a C0-semigroup T (t) is sometimes simply called the

generator and we say that ”A generates T (t)”.

It is now easy to see that if X = Cn, then for a matrix A ∈ Cn×n the exponential

function

T (t) = eAt

is a C0-semigroup and its infinitesimal generator is the matrix A (which is an operator

on X).
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Before stating properties of C0-semigroups, we will consider their asymptotic behav-

iour. Strongly continuous semigroups have a property that the growth of their norm

is at most exponential with respect to t. This means that for any C0-semigroup T (t)

we can find real constants M ≥ 1 and ω such that

‖T (t)‖ ≤ Meωt

holds for all t ≥ 0 [8, Prop I.5.5]. Of course, since this estimate is only an upper

bound for the growth, we are naturally interested in finding a bound which is as strict

as possible. Because of this, we will define the growth bound of a C0-semigroup as

follows.

Definition 2.3. The growth bound ω0(T (t)) of a C0-semigroup T (t) is defined as

ω0(T (t)) = inf
{

ω ∈ R
∣∣ ∃M ≥ 1 : ‖T (t)‖ ≤ Meωt, ∀t ≥ 0

}
.

�

As we already mentioned, we are interested in the kind of stability where the norm of

the C0-semigroup decays exponentially with respect to t. We will now give a precise

definition of this property. This definition also immediately leads us to the character-

ization of this kind of stability in terms of the growth bound of the C0-semigroup.

Definition 2.4. A C0-semigroup T (t) on a Banach space X is exponentially stable if

there exist positive constants M and ω such that

‖T (t)‖ ≤ Me−ωt, for all t ≥ 0.

In other words, for the growth bound of the C0-semigroup holds ω0(T (t)) < 0. �

In finite-dimensional spaces, the ”growth bound” of an exponential function is equal to

the largest real part of the generator’s eigenvalues. This does not hold in the infinite-

dimensional space, but we have the following relation between the growth bound of a

C0-semigroup and the spectral bound of its generator

Theorem 2.5. Let A generate a C0-semigroup T (t) on a Banach space X. Then the

following holds:

−∞ ≤ s(A) ≤ ω0(T (t)) < ∞.
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Also, the spectral radius of the C0-semigroup is given by

r(T (t)) = eω0(T (t))t, for all t ≥ 0.

Proof. [8, Prop IV.2.2]

The following theorem gives some properties of C0-semigroups and their infinitesimal

generators. These results are frequently used throughout the thesis.

Theorem 2.6. Let T (t) be a C0-semigroup on a Banach space X with infinitesimal

generator A. The following results hold:

(i) ‖T (t)‖ is bounded on every finite subinterval of [0,∞),

(ii) T (t) is strongly continuous for all t ∈ [0,∞),

(iii) A is a closed densely defined linear operator,

(iv) If λ ∈ C and Re λ > ω0(T (t)), then λ ∈ ρ(A) and R(λ, A)x =
∫∞

0
e−λtT (t)xdt

for all x ∈ X,

(v) If x0 ∈ D(A), then T (t)x0 ∈ D(A) for all t ≥ 0,

(vi) dn

dtn
(T (t)x0) = AnT (t)x0 = T (t)Anx0 for x0 ∈ D(An), t > 0.

Proof. [20],[8],[4]

Although expressing the C0-semigroup in terms of its infinitesimal generator is gener-

ally not as straight-forward as it was in finite-dimensional spaces, we can determine

when a closed linear operator on a Banach space is a generator of a C0-semigroup. The

following well-known theorem presents a complete characterization of the generators

of C0-semigroups on a Banach space.

Theorem 2.7 (Hille-Yosida). A closed, densely defined, linear operator A on a Banach

space X is the infinitesimal generator of a strongly continuous semigroup T (t) if and

only if there exist real numbers M and ω such that for all λ with Re λ > ω it follows

that λ ∈ ρ(A) and

‖R(λ, A)n‖ ≤ M

(Re λ− ω)n
, for all n ∈ N.
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The C0-semigroup then satisfies

‖T (t)‖ ≤ Meωt.

Proof. [20], [8], [4]

We will now define another concept frequently used in this thesis. Let the operator

A with domain D(A) be the generator of a C0-semigroup T (t) on a Banach space

X. If β ∈ C and α ∈ R with α > 0, then the operator B = αA + βI with domain

D(B) = D(A) is the generator of a rescaled C0-semigroup eβtT (αt) on X [8, Par II.2.2].

Clearly, since for all ω > ω0(T (t))

‖eβtT (αt)‖ = eRe βt‖T (αt)‖ ≤ MeRe βteωαt = Me(αω+Re β)t,

the rescaled C0-semigroup has the growth bound ω0(e
βtT (αt)) = αω0(T (t)) + Re β.

Before moving on, we will give a simple example of an exponentially stable C0-

semigroup.

Example 2.8. Consider the space X = `2(C) and an unbounded operator A

A(xk) = (−kxk), D(A) =
{

x ∈ X
∣∣ Ax ∈ X

}
.

The operator A generates a C0-semigroup T (t) on X with

T (t)x = (e−ktxk), x ∈ X.

Since we have for all x ∈ X with ‖x‖ = 1

‖T (t)x‖2 =
∞∑

k=1

|e−ktxk|2 =
∞∑

k=1

e−2kt|xk|2 ≤
∞∑

k=1

e−2t|xk|2 = e−2t‖x‖ = e−2t,

the C0-semigroup satisfies ‖T (t)‖ ≤ Me−ωt with M = 1 and ω = 1.

In sections 2.1.1 and 2.1.2 we will define quantities which can be used together with

the spectral bound of a generator to determine the stability of a C0-semigroup.
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2.1.1 The Essential Growth Bound

Let A be a bounded linear operator on a Banach space X. The operator A is called a

Fredholm operator if

dim ker A < ∞ and dim
(
X�ran A

)
< ∞.

For an operator B ∈ L(X) a Fredholm domain is defined as

ρF (B) =
{

λ ∈ C
∣∣ λI −B is a Fredholm operator

}
and the essential spectrum of B is defined as its complement,

σess(B) = C \ ρF (B).

Consider the quotient space L(X)�K(X) where K(X) ⊂ L(X) is the set of all compact

operators on X. For an operator

Â ∈ L(X)�K(X)

where Â = A + K, K ∈ K(X), we have the quotient norm (see definition A.1)

‖Â‖ = dist(A,K(X)) = inf
{
‖A−K‖

∣∣ K ∈ K(X)
}
.

Now the Fredholm domain and the essential spectrum are given by [8, Par IV.1.20]

ρF (A) = ρ(Â)

σess(A) = σ(Â).

We also define the essential norm by ‖A‖ess = ‖Â‖. Finally, the essential growth bound

of a C0-semigroup T (t) is defined as

ωess(T (t)) = inf
{

ω ∈ R
∣∣ ∃M ≥ 1 : ‖T (t)‖ess ≤ Meωt, ∀t ≥ 0

}
.

The following theorem states the relation between the growth bound and the essential

growth bound of a C0-semigroup.
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Theorem 2.9. Let T (t) be a C0-semigroup on a Banach space with generator A. Then

the growth bound of T (t) is given by

ω0(T (t)) = max {ωess(T (t)), s(A)} .

Proof. [8, Cor IV.2.11]

2.1.2 The Critical Growth Bound

We will go on to define the critical growth bound introduced in [17]. Define first a

(not necessarily strongly continuous) semigroup T̃ (t) in the space X̃ = l∞(X) by

T̃ (t)x̃ = (T (t)xn), x̃ = (xn) ∈ X̃.

For this semigroup, consider the subspace of strong continuity

X̃T (t) = { x̃ ∈ X̃ | lim
t→0+

‖T̃ (t)x̃− x̃‖ = 0 }.

Denote by T̂ (t) the quotient semigroup induced by T̃ (t) in the space X̂ = X̃�X̃T (t)
:

T̂ (t)x̂ = T̃ (t)x̃ + X̃T (t) where x̂ = x̃ + X̃T (t).

The critical growth bound of a C0-semigroup T (t) is now defined as

ωcrit(T (t)) = ω0(T̂ (t)).

Similarly to the case of the essential growth bound in Section 2.1.1, we have the

following result which states the relation between the growth bound and the critical

growth bound of a C0-semigroup T (t).

Theorem 2.10. Let A be the generator of a C0-semigroup T (t). Then the growth

bound of T (t) is given by

ω0(T (t)) = max {s(A), ωcrit(T (t))} .

Proof. [17]
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2.1.3 Special Classes of Semigroups

In this section we will define C0-semigroup classes based on certain special properties.

We will see in chapter 3 that this classification will be helpful when determining the

stability of a C0-semigroup.

Definition 2.11. A C0-semigroup T (t) is called a C0-semigroup of contractions if

‖T (t)‖ ≤ 1 holds for all t ≥ 0. �

Definition 2.12. A C0-semigroup T (t) is called eventually compact if T (t) is a

compact operator for t > t0 for some t0 ≥ 0. The C0-semigroup T (t) is called imme-

diately compact if we can choose t0 = 0. �

Definition 2.13. A C0-semigroup T (t) is called eventually differentiable if for some

t0 ≥ 0 and for every x ∈ X the maps t 7→ T (t)x are differentiable for t > t0. The

C0-semigroup T (t) is called immediately differentiable if we can choose t0 = 0. �

Definition 2.14. A C0-semigroup T (t) is called eventually norm-continuous if T (t)

is norm-continuous for t > t0, that is,

lim
h→0+

‖T (t + h)− T (t)‖ = 0, for t > t0.

The C0-semigroup is called immediately norm-continuous if we can choose t0 = 0. �

In the previous definition, the limit is only required to be zero when approaching 0

from the positive side. However, in this case the properties of the C0-semigroups imply

that T (s) converges uniformly to T (t) whenever s → t. The same holds for the the

next definition.

Definition 2.15. A C0-semigroup is called uniformly continuous if T (t) is uniformly

continuous for t ≥ 0, that is,

lim
h→0+

‖T (t + h)− T (t)‖ = 0, ∀t ≥ 0.

�
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Uniformly continuous C0-semigroups are a relatively restricted class, because they

are exactly those C0-semigroups whose infinitesimal generators are bounded linear

operators on X [20, Thm 1.1.2].

As the last special class, we will define analytic semigroups. The name comes from

the property that the mapping

t 7→ T (t)

can be continued from the positive real axis to an analytic function on a certain part

of the complex plane. We denote a sector in C by

Σδ =
{

λ ∈ C
∣∣ |arg λ| < δ

}
\ {0}.

Definition 2.16. A family of linear operators T (z), z ∈ Σδ∪{0}, is called an analytic

semigroup if

(i) T (0) = I and T (z1 + z2) = T (z1)T (z2) for z1, z2 ∈ Σδ,

(ii) The map z → T (z) is analytic in Σδ,

(iii) For all x ∈ X and 0 < δ′ < δ

lim
z→0

z∈Σδ′

T (z)x = x.

Analytic semigroup T (z) is called a bounded analytic semigroup if ‖T (z)‖ is bounded

in Σδ′ for all 0 < δ < δ′. �

We will need the the following characterization of analytic semigroups later in the

thesis.

Theorem 2.17. For an operator A on a Banach space X the following properties are

equivalent:

(i) A generates a bounded analytic semigroup T (z) on X.

(ii) A generates a bounded C0-semigroup on X and there exists a constant M > 0

such that

‖R(r + is, A)‖ ≤ M

|s|
for all r, s ∈ R with r > 0 and s 6= 0.
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Proof. [8, Thm II.4.6], [20, Thm 2.5.2]

Throughout the thesis we will use terms such as ”regular C0-semigroup” or speak of

”regularity properties” of the C0-semigroup. By this we mean that the C0-semigroup in

question belongs to some of the special classes of semigroups introduced in definitions

2.12, 2.13, 2.14 or 2.16.

2.2 Interpolation and Extrapolation Spaces

We will now introduce Sobolev towers and Favard spaces. These concepts allow

unified treatment of certain classes of perturbations and they help us simplify notation

throughout the thesis. The spaces are constructed by extending and reducing the orig-

inal Banach space X and the set of spaces is always related to a specific C0-semigroup

on X.

We assume that A generates an exponentially stable C0-semigroup on a Hilbert space

X. If this is not the case, we can carry out the construction by considering a rescaled

C0-semigroup e−ωtT (t) generated by the operator A− ωI for some ω > ω0(T (t)) (see

Section 2.1).

We will present the construction of Sobolev spaces Xn and Favard spaces Fα for all

n ∈ Z and α ∈ R even though we will mainly use these spaces for values n = −1, 0, 1

and α = 0, 1.

A more detailed account of the concepts presents here can be found in [8].

2.2.1 Sobolev Towers

Define X0 = X, T0(t) = T (t), A0 = A and ‖x‖n = ‖Anx‖. Now the Sobolev space of

order n ∈ N is defined as

Xn = (D(An), ‖·‖n) .

With this definition, Xn are Banach spaces for all n ∈ N [8, Prop II.5.2]. We define

the C0-semigroup Tn(t) as the restriction of T (t) to Xn,

Tn(t)x = T (t)x for x ∈
{

x ∈ Xn

∣∣ T (t)x ∈ Xn

}
.
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It turns out that the generator of the C0-semigroup Tn(t) is given by the part of A in

Xn,

Anx = Ax for x ∈ D(An)

D(An) =
{

x ∈ Xn

∣∣ Ax ∈ Xn

}
= D(An+1) = Xn+1

For negative integers n, the norms are defined recursively as ‖x‖−n = ‖A−1
−n+1x‖−n+1.

The Sobolev space of order −n is now defined as completion of Sobolev space of order

−n + 1 with respect to the norm ‖·‖−n.

It can now be shown that the space Xn with norm ‖·‖n is a Banach space for all

n ∈ Z [8, Thm II.5.5]. For n ∈ N, the C0-semigroup T−n(t) is the continuous extension

of T−n+1(t) to the space X−n and the generator A−n of T−n(t) is then the unique

continuous extension of

A−n+1 : X−n+2 → X−n+1

to an isometry A−n : X−n+1 → X−n. We will now introduce some important properties

which will be useful for us later in the thesis.

The first important result is that the C0-semigroups Tn(t) are bounded similar for

n ∈ Z (corollary II.5.3 and theorem II.5.5 in [8]) and thus their growth bounds coincide.

For comparison of perturbations and spaces we will need to know the relationships

between certain norms. The results are stated in the next lemma.

Lemma 2.18. For two elements of the resolvent, λ, µ ∈ ρ(A), the following hold

(i) The norm ‖·‖1 is equivalent to the graph norm of A (see definition A.2),

(ii) The norms defined by ‖(λI − A)x‖ and ‖(µI − A)x‖ on X1 are equivalent,

(iii) The norms defined by ‖R(λ, A)x‖ and ‖R(µ, A)x‖ on X are equivalent.

Proof. (i): Let x ∈ D(A). Then

‖x‖2
1 = ‖Ax‖2 ≤ ‖x‖2

A = ‖Ax‖2 + ‖x‖2 = ‖Ax‖2 + ‖A−1Ax‖2 ≤ (1 + ‖A−1‖2)‖x‖2
1
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(ii): Let x ∈ X1 and λ, µ ∈ ρ(A). Using the resolvent equation (equation (A.1)) we

get

‖(λI − A)x‖ = ‖(λI − A)(µI − A)R(µ, A)x‖ = ‖(µI − A)(λI − A)R(µ, A)x‖
res.eq.
= ‖(µI − A)(λI − A)R(λ, A)(I + (λ− µ)R(µ, A))x‖
= ‖(µI − A)(I + (λ− µ)R(µ, A))x‖
= ‖(I + (λ− µ)R(µ, A))(µI − A)x‖
≤ (1 + |λ− µ|‖R(µ, A)‖)‖(µI − A)x‖

Likewise,

‖(µI − A)x‖ ≤ (1 + |µ− λ|‖R(λ, A)‖)‖(λI − A)x‖

(iii): Let x ∈ X and λ, µ ∈ ρ(A). Using the resolvent equation again, we get

‖R(λ, A)x‖ = ‖R(λ, A)(µI − A)R(µ, A)x‖ =
res.eq.
= ‖(I + (µ− λ)R(λ, A))R(µ, A)(µI − A)R(µ, A))x‖
= ‖(I + (µ− λ)R(λ, A))R(µ, A))x‖
≤ (1 + |µ− λ|‖R(λ, A)‖)‖R(µ, A)x‖

Similarly,

‖R(µ, A)x‖ ≤ (1 + |λ− µ|‖R(µ, A)‖)‖R(λ, A)x‖

To clarify the meaning of these concepts, we present the following simple example.

Example 2.19. Let X = `2(C). Then x ∈ X is a sequence x = (xk) with xk ∈ C for

all k ∈ N. Let Ax = (−kxk) with domain

D(A) =
{

x ∈ X
∣∣ Ax ∈ X

}
=
{

(xk) ∈ X
∣∣ ∞∑

k=1

k2|xk|2 < ∞
}
.

We saw in example 2.8 that A generates a C0-semigroup on X. Now for n ∈ Z, the

Sobolev space (Xn, ‖·‖n) is defined by

Xn =
{

(xk) ∈ X
∣∣ ∞∑

k=1

k2n|xk|2 < ∞
}

‖x‖n =

√√√√ ∞∑
k=1

k2n|xk|2
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2.2.2 Favard Spaces

Finally, we will briefly introduce Favard spaces. This concept helps us formulate some

perturbation results in chapter 4.

For 0 < α ≤ 1 we define the Favard space of order α as (Fα, ‖·‖Fα), where

Fα =
{

x ∈ X
∣∣ sup

t>0

∥∥∥∥ 1

tα
(T (t)x− x)

∥∥∥∥ < ∞
}

and

‖x‖Fα = sup
t>0

∥∥∥∥ 1

tα
(T (t)x− x)

∥∥∥∥ .

For a general α ∈ R, we define Fα as follows: Choose k ∈ Z and 0 < γ ≤ 1 so

that α = k + γ. The Favard space Fα is then defined as the Favard space of order γ

associated to the C0-semigroup Tk(t).

It follows directly from the previous definition that if n is an integer, the Favard space

of order n is given by

Fn =
{

x ∈ Xn−1

∣∣ sup
t>0
‖1

t
(Tn−1(t)x− x)‖n−1 < ∞

}
and the corresponding norm is defined as

‖x‖Fn = sup
t>0
‖1

t
(Tn−1(t)x− x)‖n−1.

We list a couple of useful properties of Favard spaces in the following lemma.

Lemma 2.20. Let A be a generator of a C0-semigroup on a Banach space X. Then

the following properties hold.

(i) Let n ∈ Z. Then An−1Fn+1 = Fn.

(ii) If X is reflexive, then F1 = D(A). In particular this holds if X is a Hilbert space.

(iii) For all n ∈ Z we have Xn ⊂ Fn.
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Proof. part (i):

An−1Fn+1 ⊂ Fn:

Let x ∈ Fn+1. This means that x ∈ Xn and

sup
t>0
‖1

t
(Tn(t)x− x)‖n < ∞

Since An−1 : Xn → Xn−1 and x ∈ Xn = D(An−1), we have An−1x ∈ Xn−1. Now

sup
t>0
‖1

t
(Tn−1(t)An−1x− An−1x)‖n−1 = sup

t>0
‖A−1

n−1An−1
1

t
(

∈D(An−1)︷ ︸︸ ︷
Tn−1(t)x−x)‖n

= sup
t>0
‖1

t
(Tn(t)x− x)‖n < ∞

and thus An−1x ∈ Fn. Since x ∈ Fn+1 was arbitrary, we have An−1Fn+1 ⊂ Fn.

An−1Fn+1 ⊃ Fn:

Let x ∈ Fn. This means that x ∈ Xn−1 and

sup
t>0
‖1

t
(Tn−1(t)x− x)‖n−1 < ∞

We need to show that x = An−1y for some y ∈ Fn+1. Since An−1 is invertible,

y = A−1
n−1x. Since A−1

n−1 : Xn−1 → Xn, we have that y ∈ Xn. It follows that

sup
t>0
‖1

t
(Tn(t)

∈Xn︷ ︸︸ ︷
A−1

n−1x−A−1
n−1x)‖n = sup

t>0
‖An−1

1

t
(Tn−1(t)A

−1
n−1x− A−1

n−1x)‖n−1

= sup
t>0
‖1

t
(Tn−1(t)An−1A

−1
n−1x− An−1A

−1
n−1x)‖n−1

= sup
t>0
‖1

t
(Tn−1(t)x− x)‖n−1 < ∞.

This means that y ∈ Fn+1 and thus Fn ⊂ An−1Fn+1.

part (ii): [8, Cor II.5.21]

part (iii): Follows directly from the definition.



Chapter 3

Stability of C0-Semigroups

In chapter 2 we saw that the exponential stability of a C0-semigroup T (t) means that

we can find real constants M ≥ 1 and ω > 0 such that for all t ≥ 0

‖T (t)‖ ≤ Me−ωt.

In this chapter we will study different characterizations of this kind of stability of a

C0-semigroup. As we already mentioned, the problem is more complicated in infinite-

dimensional spaces than in finite-dimensional ones. In the general case, the stability

of a general C0-semigroup isn’t always characterized by the spectrum of its generator.

However, for certain special classes of semigroups this holds even in Banach and Hilbert

spaces. Even though these are special cases, some of the semigroups most frequently

encountered in applications belong to some of these classes. For example, the second

order partial differential operator d2

dz2 with homogeneous Dirichlet boundary conditions

x(0) = x(1) = 0 and an appropriate domain generates an analytic semigroup on

X = L2([0, 1], C) [8, Ex II.4.8].
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In section 3.1 we will present various means of characterizing exponential stability

of C0-semigroups without additional assumptions on its behaviour. The stability of

classes of regular C0-semigroups will be studied separately in section 3.2.

3.1 Criteria for Exponential Stability

In this section we will present some necessary can sufficient conditions for exponential

stability of a general C0-semigroup. Some of these involve the generator and some the

C0-semigroup. As mentioned earlier, we will present the theory in its most general

form as opposed to restricting our attention to Hilbert spaces.

For our purposes in this thesis, the most useful characterization of exponential stability

will be the one presented in theorem 3.4. In a Hilbert space this result allows us to

characterize the stability of the C0-semigroup generated by A through the behaviour

of the resolvent R(·, A) on the open right half-plane of the complex plane C.

We will first state a few properties equivalent to exponential stability. This result

should demonstrate the effect of the semigroup property T (t + s) = T (s)T (t) on the

asymptotic behaviour ‖T (t)‖.

Theorem 3.1. Let A generate a C0-semigroup T (t) on a Banach space X. The

following properties are equivalent

(i) T (t) is exponentially stable

(ii) limt→∞‖T (t)‖ = 0

(iii) There exists a t0 > 0 such that ‖T (t0)‖ < 1.

Proof.

(i) ⇒ (ii): We can make a direct estimate limt→∞‖T (t)‖ ≤ limt→∞ Me−ωt = 0.

(ii) ⇒ (iii): This is obvious.

(iii) ⇒ (i): Let t ≥ 0. Choose n ∈ N0 and t1 ∈ [0, t0) such that t = nt0 + t1. Since

theorem 2.6 tells us that ‖T (t)‖ is bounded on every finite subinterval of [0,∞), we

can choose M1 such that

M1 = sup
t∈[0,t0)

‖T (t)‖.
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By assumption we have ‖T (t0)‖ ≤ q for some q < 1. Since

q = e−ωt0 ⇔ ω = − ln q

t0
> 0,

we can make an estimate

‖T (t)‖ = ‖T (nt0 + t1)‖ = ‖T (t0)
nT (t1)‖ ≤ ‖T (t0)‖n‖T (t1)‖ ≤ M1q

n

= M1e
−ωnt0 = M1e

ωt1e−ωt1e−ωnt0 = M1e
ωt1e−ω(nt0+t1)

≤ M1e
ωt0e−ωt = Me−ωt

The following theorem gives a characterization for exponential stability through inte-

grability of the mappings t 7→ T (t)x for x ∈ X. It was first proved by Datko for the

case p = 2 and later extended by Pazy for other values of p. The property (3.1) is

often referred to as Lp-stability.

Theorem 3.2. Let A generate a C0-semigroup T (t) on a Banach space X. The

semigroup T (t) is exponentially stable if and only if for one/all p ∈ [1,∞)

∫ ∞

0

‖T (t)x‖pdt < ∞ for all x ∈ X. (3.1)

This is equivalent with condition

T (·)x ∈ Lp([0,∞), X) for all x ∈ X

Proof. It is easy to see that exponential stability of T (t) implies (3.1). The proof of

the converse implication can be found in [20, Thm 4.1 p. 116], [8, Thm V.1.8] or [15,

Thm 3.28].

In a Hilbert space a weaker property, weak Lp-stability (the condition in (3.2)), is

equivalent to exponential stability. This was first proved by Huang Falun for the case

p = 1 and later extended by Weiss in [28] for other values of p.
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Theorem 3.3. Let A generate a C0-semigroup T (t) on a Hilbert space X. The semi-

group T (t) is exponentially stable if and only if for some p ∈ [1,∞)

∫ ∞

0

|〈T (t)x, y〉|pdt < ∞ ∀x, y ∈ X. (3.2)

Proof. [28]

The next theorem tells us that in a Hilbert space the exponential stability can be

determined from the behaviour of the resolvent operator R(λ, A) on the right half-

plane of C. The proof of this theorem uses Plancherel’s Theorem, ([8, Thm C.14])

which only holds in Hilbert spaces. This theorem is due to Gearhart, Prüss and

Greiner.

Theorem 3.4. Let A generate a C0-semigroup T (t) on a Hilbert space X. The semi-

group T (t) is exponentially stable if and only if
{

λ ∈ C
∣∣ Re λ > 0

}
⊂ ρ(A) and

sup
Re λ>0

‖R(λ, A)‖ < ∞. (3.3)

Proof. [8, Thm V.1.11], [15, Thm 3.35]

Remark 3.5. It follows from the properties of the resolvent operator that if (3.3) holds,

then

sup
Re λ≥0

‖R(λ, A)‖ = sup
Re λ>0

‖R(λ, A)‖ < ∞ and
{

λ ∈ C
∣∣ Re λ ≥ 0

}
⊂ ρ(A).

To see this, let

M = sup
Re λ>0

‖R(λ, A)‖.

Using lemma A.18 we see that for every λ ∈ C+

dist(λ, σ(A)) ≥ 1

‖R(λ, A)‖
≥ 1

M

and thus
{

λ ∈ C
∣∣ Re λ ≥ 0

}
⊂ ρ(A). It now suffices to show that ‖R(λi, A)‖ ≤ M

for all λ ∈ R. For this purpose, choose ε > 0. From the properties of the resolvent
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operator (see [14, Thm IV.3.15]) it follows that for every λ ∈ R there exists a real

constant δλ > 0 such that

‖R(λi, A)−R(λi + δλ, A)‖ < ε.

Because Re(λi + δλ) > 0, we can make an estimate

‖R(λi, A)‖ = ‖R(λi, A)−R(λi + δλ, A) + R(λi + δλ, A)‖
≤ ‖R(λi, A)−R(λi + δλ, A)‖+ ‖R(λi + δλ, A)‖ < ε + M.

Since ε > 0 was arbitrary, this implies that ‖R(λi, A)‖ ≤ M for all λ ∈ R.

If we already know that the C0-semigroup is uniformly bounded, it suffices to know the

behaviour of the resolvent operator on the imaginary axis. We can use this condition

for example when dealing with C0-semigroups of contractions. We will see in section 4.3

that under certain assumptions when a C0-semigroup of contractions is perturbed, the

perturbed semigroup is also contractive and hence also uniformly bounded.

Corollary 3.6. Let A generate a C0-semigroup T (t) on a Hilbert space X. If T (t) is

uniformly bounded, iR ⊂ ρ(A) and

sup
λ∈R

‖R(iλ, A)‖ < ∞

holds, then T (t) is exponentially stable.

Proof. [15, Cor 3.36]

The next theorem is due to Datko [5]. It characterizes the exponential stability of

a C0-semigroup in a Hilbert space by the existence of a certain type of solution to a

Lyapunov equation. This result in a Hilbert space is a generalization of a corresponding

result by Lyapunov in finite-dimensional spaces. This theorem is used in the theory

presented in section 5.3

Theorem 3.7. Let A generate a C0-semigroup T (t) on a Hilbert space X. The semi-

group T (t) is exponentially stable if and only if the Lyapunov equation

〈Ax, Πy〉+ 〈x, ΠAy〉 = −〈x, y〉 ∀x, y ∈ D(A) (3.4)

has a self-adjoint positive solution Π ∈ L(X).
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Proof. We will first show that Lyapunov equation in (3.4) is equivalent to

〈Ax, Πx〉+ 〈x, ΠAx〉 = −〈x, x〉 ∀x ∈ D(A). (3.5)

By this we mean that a self-adjoint positive operator Π ∈ L(X) is a solution of (3.4)

if and only if it is a solution of (3.5). The actual theorem is proved in [4, Thm 5.1.3]

for the Lyapunov equation of form (3.5).

It is clear that if operator Π ∈ L(X) is a solution of (3.4) then it is also a solution of

(3.5) since we can choose y = x.

Now, let x, y ∈ D(A) and assume Π ∈ L(X) satisfies (3.5). For all α ∈ C we have

x + αy ∈ D(A) and

〈A(x + αy), Π(x + αy)〉+ 〈x + αy, ΠA(x + αy)〉
= 〈Ax, Πx〉+ α〈Ay, Πx〉+ α〈Ax, Πy〉+ |α|2〈Ay, Πy〉

+〈x, ΠAx〉+ α〈y, ΠAx〉+ α〈x, ΠAy〉+ |α|2〈y, ΠAy〉
= −〈x, x〉+ α (〈Ay, Πx〉+ 〈y, ΠAx〉) + α (〈Ax, Πy〉+ 〈x, ΠAy〉)− |α|2〈y, y〉.

By our assumption, this is equal to

−〈x + αy, x + αy〉 = −〈x, x〉 − α〈y, x〉 − α〈x, y〉 − |α|2〈y, y〉.

Combining these we get

α (〈Ay, Πx〉+ 〈y, ΠAx〉) + α (〈Ax, Πy〉+ 〈x, ΠAy〉) = −α〈y, x〉 − α〈x, y〉
⇔ α (〈Ay, Πx〉+ 〈y, ΠAx〉+ 〈y, x〉)︸ ︷︷ ︸

= cyx

+α (〈Ax, Πy〉+ 〈x, ΠAy〉+ 〈x, y〉)︸ ︷︷ ︸
= cxy

= 0.

This holds for all α ∈ C. In particular, this holds for α = 1 and α = i. This implies

cyx + cxy = 0

i(cyx − cxy) = 0

}
⇒ cxy = cyx = 0

and thus

〈Ax, Πy〉+ 〈x, ΠAy〉 = −〈x, y〉 ∀x, y ∈ D(A).

As we already mentioned, the theorem is proved in [4, Thm 5.1.3].
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3.2 Stability of Regular Semigroups

The special property which guarantees that the spectrum (and hence also the stability

properties) of a C0-semigroup is determined by the spectrum of its generator is called

the Spectral Mapping Theorem (SMT) which claims

σ(T (t)) \ {0} = etσ(A), ∀t ≥ 0. (3.6)

If the Spectral Mapping Theorem holds for a given C0-semigroup T (t), we are able to

determine the growth bound of T (t) directly from the spectral bound of its generator

[8, Lem V.1.9]. This result is presented in the next lemma.

Lemma 3.8. Let T (t) be a C0-semigroup with generator A on a Banach space X. If

the Spectral Mapping Theorem (3.6) holds, then the growth bound of the T (t) equals

the spectral bound of its generator, that is,

s(A) = ω0(T (t)).

We refer to this property as the spectrum determined growth condition.

Proof. The proof is taken from [8, Lem V.1.9]. The growth bound of a C0-semigroup

can expressed as [8, Prop IV.2.2]

ω0(T (t)) =
1

t
log r(T (t)), for all t > 0

By theorem 2.5 we have −∞ ≤ s(A) ≤ ω0(T (t)), and thus the equality holds if

ω0(T (t)) = −∞. Assume that ω0 > −∞. Then

ω0(T (t)) =
1

t
log r(T (t)) =

1

t
log sup{ |µ| | µ ∈ σ(T (t)) }

=
1

t
log sup{ |etλ| | λ ∈ σ(A) } =

1

t
log sup{ et Re λ | λ ∈ σ(A) }

= sup{ 1

t
log et Re λ | λ ∈ σ(A) } = sup{Re λ | λ ∈ σ(A) } = s(A)

Our motivation for the study of this theory is that if the C0-semigroup has certain

regularity properties, then the spectrum determined growth condition holds automat-
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ically. On Banach spaces we have the following result for eventually norm-continuous

C0-semigroups.

Theorem 3.9. Let T (t) be an eventually norm-continuous C0-semigroup with gener-

ator A on a Banach space X. Then the Spectral Mapping Theorem (3.6) holds and

thus s(A) = ω0(T (t)).

Proof. First part is given in the proof of [8, Thm IV.3.10] and s(A) = ω0(T (t)) follows

directly from lemma 3.8.

By considering specific subclasses of eventually norm-continuous semigroups, we obtain

a corresponding result for other regular semigroups as well. The diagram in figure 3.1

illustrates the relations between special classes of C0-semigroups [8, p. 119].

Analytic ⇒ Immediately differentiable ⇒ Eventually differentiable

Immediately norm cont. ⇒ Eventually norm cont.

Immediately compact ⇒ Eventually compact

⇓ ⇓

⇑ ⇑

Figure 3.1: Relations between semigroup classes

These relations combined with theorem 3.9 lead to the following result.

Corollary 3.10. The spectrum determined growth condition holds for the following

classes of C0-semigroups on a Banach space X:

• Analytic semigroups

• Eventually compact C0-semigroups

• Eventually differentiable C0-semigroups

• Eventually norm-continuous C0-semigroups

• Uniformly continuous C0-semigroups



Chapter 4

Robustness of C0-Semigroup

Generation

Let a linear operator A be an infinitesimal generator of a C0-semigroup T (t) on a

Banach or Hilbert space X and let B be a linear operator on X. In this chapter we

will introduce conditions under which the the perturbed operator A+B is a generator

of a C0-semigroup on X. This problem has been studied since the early 1950’s and

theory exists for both bounded and unbounded perturbations.

Throughout this chapter, we will assume that the unperturbed C0-semigroup T (t) is

exponentially stable. This assumption simplifies certain matters, but is not essential

to the development of the theory. The results can be extended to a more general case

by considering the rescaled C0-semigroup generated by the operator A− ωI for some

ω > ω0(T (t)) (see rescaled semigroups in section 2.1).

We will start with theory for bounded perturbations in section 4.1. We will see from the

beginning that considering these perturbations is very straightforward: The perturbed

operator remains a generator for all bounded perturbations and we even get an upper

bound for the growth of the perturbed semigroup in terms of the norm of the perturbing

operator. These results were formulated as early as 1953 by Phillips [21]. Although
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the results are exhaustive, the estimate of the growth bound given by this theory is

generally not optimal. Because of this, we will go on to analyse the preservation of

certain regularity properties under bounded perturbations. This theory will be used

in section 5.2 where we derive spectral conditions for the stability of the perturbed

C0-semigroup.

Particular perturbation theory for analytic and contractive semigroups is presented in

sections 4.2 and 4.3, respectively. We will see that these particular classes of semi-

groups can deal with perturbations with a degree of unboundedness. In a way this

means that if we impose more conditions on the unperturbed C0-semigroup, we can

relax the ones on the perturbing operator. Perturbation of these particular classes of

semigroups was first considered by Hille and Phillips [11].

Sections 4.4, 4.5 and 4.6 deal with general unbounded perturbations. This is meant

in the sense that we do not need any regularity assumptions for the unperturbed C0-

semigroup T (t). We will characterize the classes of perturbations considered in the

first two of these sections using abstract Volterra operators as was done by Engel and

Nagel in [8]. This treatment allows us to deal with unboundedness by considering

bounded operators between Sobolev spaces of different orders. The class of perturba-

tions considered in section 4.4 results from the perturbation theorems of Desch and

Schappacher. The unboundedness of these perturbations is handled by considering

operators belonging to L(X, X−1). The class considered in section 4.5 follows from

theory presented by Miyadera and later extended by Voigt. Similarly to the previous

class of perturbations, the unboundedness of the perturbations is dealt with by consid-

ering perturbations belonging to L(X1, X). As extensions of the class of bounded

operators on X, the classes L(X, X−1) and L(X1, X) of operators are natural and we

will in remark 4.19 see that an operator B belongs to L(X1, X) if and only if it is

A-bounded.

The perturbation theorem presented in section 4.6 is relatively new compared to the

other theory considered in this chapter. The theorem allows unboundedness of a closed

perturbing operator B by imposing special conditions on operators BR(λ, A) : X → X

and R(λ, A)B : D(B) → X. The conditions are very simple and the theorem is

independent of the other results presented in this chapter. However, unlike most of

the theory presented in this chapter, the results are only applicable in Hibert spaces.

4.1 Bounded Perturbations

In this section we consider the case where the perturbing operator B is a bounded

operator on X. The following is a well-known result formulated by R. S. Phillips in

[21].
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Theorem 4.1. Let A be an infinitesimal generator of a C0-semigroup T (t) on a

Banach space X, satisfying ‖T (t)‖ ≤ Meωt. If B ∈ L(X), then A + B generates

a C0-semigroup S(t) on X such that

‖S(t)‖ ≤ Me(ω+M‖B‖)t

For every x ∈ X we have

S(t)x = T (t)x +

∫ t

0

T (t− s)BS(s)xds

T (t)x = S(t)x +

∫ t

0

S(s)BT (t− s)xds

Proof. [20, Sec 3.1], [4, Thm 3.2.1], [8, Sec III.1]

The previous theorem shows us that the perturbed operator A + B is a generator of

a C0-semigroup on X for all bounded perturbations B. The theorem only expresses

the perturbed C0-semigroup implicitly, but we can also derive a formula for it using a

Dyson-Phillips -series.

Theorem 4.2. The semigroup S(t) in theorem 4.1 can be expressed as

S(t) =
∞∑

n=0

Sn(t) (4.1)

where S0(t) = T (t) and for n ≥ 1

Sn(t)x =

∫ t

0

T (t− s)BSn−1(s)xds ∀x ∈ X (4.2)

Proof. [8, Thm III.1.10]

The series in (4.1) converges in uniform operator topology on compact intervals of

[0,∞) [8, p. 163]. We will now present a simple example of a bounded perturbation

Example 4.3. Consider again the space X = `2(C) and an unbounded operator A

such that

A(xk) = (−kxk), D(A) =
{

x ∈ X
∣∣ Ax ∈ X

}
.
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The operator A generates a C0-semigroup T (t) on X with

T (t)x = (e−ktxk), x ∈ X.

We already saw in example 2.8 that the semigroup satisfies ‖T (t)‖ ≤ Me−ωt with

M = 1 and ω = 1. Consider now a perturbation B such that for x ∈ X we have

Bx = (βxk) with some β ∈ C. Now, for x ∈ X with ‖x‖ = 1, we have

‖Bx‖2 =
∞∑

k=1

|βxk|2 = |β|2‖x‖2 = |β|2.

This means that B ∈ L(X) with norm ‖B‖ = |β|. Theorem 4.1 now tells us that

operator A + B for which (A + B)x = ((−k + β)xk) for all x ∈ D(A + B) = D(A)

generates C0-semigroup S(t) satisfying

‖S(t)‖ ≤ Me(−ω+M |β|)t = e−(1−|β|)t.

It can also be seen from the last expression that S(t) is exponentially stable whenever

|β| < 1.

Theorem 4.1 guarantees that the growth bound of the perturbed C0-semigroup is at

most −ω + M‖B‖. In some cases this can be used to determine the stability of the

perturbed C0-semigroup. However, this bound is not always optimal and the growth

bound of the perturbed C0-semigroup can even be smaller than the growth bound of

the unperturbed C0-semigroup. The possibility of obtaining sharper bounds motivates

us to further address the preservation of exponential stability in the case of bounded

perturbations.

For the rest of the section we will consider the regularity properties of the perturbed C0-

semigroup. For some classes of C0-semigroups, the regularity properties are preserved

under all bounded perturbations. These results are summarized in the following

theorem.

Theorem 4.4. Let A be a generator of an (analytic, immediately compact, immedi-

ately norm-continuous) C0-semigroup on a Banach space X and let B ∈ L(X). Then

A + B with domain D(A + B) = D(A) generates an (analytic, immediately compact,

immediately norm-continuous) C0-semigroup on X.

Proof. See [20, Cor 3.2.2] for preservation of analyticity and [8, Thm III.1.16] for the

preservation of the other regularity properties.
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Furthermore, if certain additional conditions are satisfied, also other regularity prop-

erties of the C0-semigroup are inherited by the perturbed C0-semigroup [16]:

Theorem 4.5. Let X denote the space of all strongly continuous functions from [0,∞)

to L(X) and let B ∈ L(X). Define an abstract Volterra operator on space X by

(V F )(t)x =

∫ t

0

T (t− s)BF (s)xds, F ∈ X , t ≥ 0 and x ∈ X.

If A generates an eventually (differentiable, compact, norm-continuous) C0-semigroup

and for some n ∈ N

ran V n ⊂
{
F ∈ X

∣∣ F is immediately (differentiable,

compact, norm-continuous) for t ≥ 0}

then the C0-semigroup generated by A + B is also eventually (differentiable, compact,

norm-continuous).

Proof. [16, Thms 6.1, 6.3 & 6.5].

The previous results can be used with the theory presented in section 3.2 to derive

sufficient conditions for the stability of the perturbed C0-semigroup. This is done in

section 5.2.

We will now move on to consider unbounded perturbations.

4.2 Perturbation of Analytic Semigroups

In this section we will present some results concerning analytic semigroups and

unbounded perturbations. It should be noted that in all the cases the perturbed

semigroups remain analytic. As stated earlier, this can be helpful when analysing

the stability of the perturbed C0-semigroup. Later in sections 4.4, 4.5 and 4.6 we

will see that analytic semigroups remain analytic under even more general unbounded

perturbations.

Theorem 4.6. Let A be the generator of an analytic semigroup. Let B be a closed

linear operator and let B be A-bounded with A-bound a0. There exists a constant δ > 0

such that if 0 ≤ a0 < δ then A + B is the generator of an analytic semigroup.
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Proof. [20, Thm 2.1 p. 80], [8, Thm III.2.10]

The previous theorem also gives rise to the following corollary. For the definition of

the powers Aα for 0 < α < 1, see [20, Sec 2.6].

Corollary 4.7. Let A be the generator of an analytic semigroup. Let B be closed and

suppose that for some 0 < α < 1, D(B) ⊃ D(Aα). Then A + B is the generator of an

analytic semigroup.

Proof. [20, Cor 2.4 p. 81]

We will note here that the conditions in previous corollary require that B is A-bounded.

Since A is a closed operator as a generator of a C0-semigroup and B is closed, this

follows from lemma A.9 and the fact that D(A) ⊂ D(Aα) ⊂ D(B) for 0 < α < 1.

The last result for analytic semigroups concerns perturbing with A-compact operators

defined in section A.2.

Theorem 4.8. Let A be the generator of an analytic semigroup and let the operator

B be A-compact. Then the operator A+cB with domain D(A+cB) = D(A) generates

an analytic semigroup on X for all c ∈ C.

Proof. See [8, Cor III.2.17] for the case where B is closable or X is reflexive and [6]

for the general case.

The following example makes use of the theory presented in this section.

Example 4.9. Consider Hilbert space X = L2([0, 1], C) and the operator

A =
d2

dz2
,

D(A) =
{

x ∈ X
∣∣ x,

d

dz
x, abs. cont.,

d2

dz2
x ∈ X, x(0) = x(1) = 0

}
.

It is shown in [8, Ex II.4.8] that A generates an analytic semigroup on X. Now consider

an unbounded perturbation

B =
d

dz
,

D(B) =
{

x ∈ X
∣∣ x abs. cont.,

d

dz
x ∈ X

}
.
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Operator B is closed and A-bounded with A-bound a0 = 0 [8, Ex III.2.2]. Thus, by

theorem 4.6 we know that operator A + B with domain D(A + B) = D(A) generates

an analytic semigroup on X.

4.3 Perturbation of Semigroups of Contractions

Before moving on to perturbation of more general C0-semigroups we will consider the

case of C0-semigroups of contractions. This special class has a few simple and well-

known results stated here. They all consider A-bounded and dissipative perturbing

operators. Similarly to the case of perturbation of analytic semigroups, all the results

presented here guarantee that the perturbed C0-semigroup is again contractive. Even

though contractive C0-semigroups are not regular in the same sense as analytic or

norm-continuous semigroups, they are automatically uniformly bounded. This is an

advantage for us since we have a particular result concerning exponential stability of

uniformly bounded C0-semigroups (see corollary 3.6).

Theorem 4.10. Let A generate a C0-semigroup of contractions and let B be dissipative

with D(B) ⊃ D(A). If B is A-bounded with A-bound a0 < 1 then A + B, D(A + B) =

D(A) generates a C0-semigroup of contractions.

Proof. [8, Thm III.3.7], [20, Cor 3.3 p. 82]

If the underlying space is a reflexive Banach space, we do not need the A-bound of B

to be less than one. In particular this holds if X is a Hilbert space, since the Riesz

representation theorem states that every Hilbert space is reflexive.

Theorem 4.11. Let X be a reflexive Banach space (or a Hilbert space) and let A be the

generator of a C0-semigroup of contractions. Let B be dissipative with D(B) ⊃ D(A)

and

‖Bx‖ ≤ ‖Ax‖+ b‖x‖ for x ∈ D(A)

where b ≥ 0. Then then the closure A + B of A+B is the generator of a C0-semigroup

of contractions.

Proof. [8, Cor III.2.9], [20, Cor 3.5 p. 84]

We will now give an example of an unbounded perturbation of a contractive C0-

semigroup.
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Example 4.12. Consider again the Hilbert space X = `2(C) and the unbounded

operator A such that

A(xk) = (−kxk), D(A) =
{

x ∈ X
∣∣ Ax ∈ X

}
.

The operator A generates a C0-semigroup T (t) on X with

T (t)x = (e−ktxk), x ∈ X

We showed in example 2.8 that the semigroup satisfies ‖T (t)‖ ≤ e−ωt ≤ 1 and hence

it is contractive. Consider now a perturbing operator B such that for β ∈ C with

Re β ≤ 0 and |β| < 1,

Bx = (βkxk), D(B) =
{

x ∈ X
∣∣ Bx ∈ X

}
Since β is a constant, we clearly have D(A) ⊂ D(B). For x ∈ D(B), we have

‖Bx‖ = ‖βAx‖ = |β|‖Ax‖

and hence B is A-bounded with A-bound a0 = |β| < 1. For every x ∈ D(B)

Re〈Bx, x〉 = Re

(
∞∑

k=1

βk|xk|2
)

= Re β ·
∞∑

k=1

k|xk|2︸ ︷︷ ︸
≥ 0

≤ 0

This means that B is a dissipative operator. Theorem 4.10 now tells us that A + B

with domain D(A + B) = D(A) generates a C0-semigroup of contractions.

The perturbations considered in the rest of the chapter do not need any additional

assumptions concerning the regularity properties of the unperturbed C0-semigroup.

4.4 Desch-Schappacher Perturbations

The perturbation results presented here were formulated by Desch and Schappacher.

The perturbations considered are bounded linear operators from a Banach space X to

the extrapolation space X−1. We will follow the manner of representation proposed

by Engel and Nagel [8]. This approach using abstract Volterra operators results in



CHAPTER 4. ROBUSTNESS OF C0-SEMIGROUP GENERATION 37

simple characterization of the considered class of perturbations and provides a nice

link between the theory in this section and the next one.

We begin by defining the abstract Volterra operator related to the perturbing operator

B ∈ L(X,X−1). Denote by Xt0 the space of all strongly continuous, L(X)-valued

functions,

Xt0 = C ([0, t0],Ls(X)) , with norm ‖F‖∞ = sup
0≤s≤t0

‖F (s)‖L(X).

The space (Xt0 , ‖·‖∞) is a Banach space [8, Prop A.7]. For an operator B ∈ L(X, X−1)

we define an abstract Volterra operator VB : Xt0 → Xt0 by

(VBF )(t)x =

∫ t

0

T−1(t− s)BF (s)xds for all t ∈ [0, t0], F ∈ Xt0 and x ∈ X

It is clear from the definition that (VBF )(t) ∈ L(X, X−1) for all t ∈ [0, t0]. The set of

Desch-Schappacher perturbations SDS
t0

is then defined by

SDS
t0

=
{

B ∈ L(X, X−1)
∣∣ VB ∈ L(Xt0), ‖VB‖ < 1

}
For this class of perturbations we have the following result:

Theorem 4.13. Let A be the generator of a C0-semigroup T(t) on a Banach space

X. If B ∈ SDS
t0

for some t0 > 0, then the operator

(A−1 + B)|X , D ((A−1 + B)|X) =
{

x ∈ X
∣∣ A−1x + Bx ∈ X

}

generates a C0-semigroup on X.

Proof. [8, Thm III.3.1]

The C0-semigroup S(t) generated by (A−1 + B)|X is then given by the variation of

parameters -formula

S(t)x = T (t)x +

∫ t

0

T−1(t− s)BS(s)xds, for all t ≥ 0 and x ∈ X
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or the Dyson-Phillips -series

S(t) =
∞∑

n=0

Sn(t)

where S0(t) = T (t) and for n ≥ 1

Sn(t)x =

∫ t

0

T−1(t− s)BSn−1(s)xds, for all t ≥ 0 and x ∈ X

The series representation of S(t) converges uniformly in L(X) on compact intervals of

R+ [8, Cor III.3.2].

The theory of Desch-Schappacher perturbations can be used for example in the case

when the boundary conditions of a generator of a C0-semigroup are subjected to pertur-

bations (see [8, Ex III.3.5]). However, also ”simpler” perturbations belong to this class.

The following lemma states that bounded perturbations are also Desch-Schappacher

perturbations.

Lemma 4.14. Let A be a generator of a C0-semigroup T (t) on a Banach space X. If

B ∈ L(X), then B ∈ SDS
t0

.

Proof. Operator B ∈ L(X) can be seen as an operator B : X → X−1. Since for x ∈ X

we have

‖Bx‖−1 = ‖A−1Bx‖ ≤ ‖A−1‖‖B‖‖x‖

we see that B ∈ L(X,X−1). Let x ∈ X. Since ‖T−1(t)‖ ≤ Me−ωt for some M ≥ 1 and

ω > 0, we have for the abstract Volterra operator

‖(VBF )(t)x‖ = ‖
∫ t

0

T−1(t− s)BF (s)xds‖ ≤
∫ t

0

‖T−1(t− s)BF (s)x‖ds

≤
∫ t

0

‖T−1(t− s)‖ · ‖B‖ · ‖F‖∞‖x‖ds

= ‖B‖ · ‖F‖∞‖x‖
∫ t

0

‖T−1(s)‖ds

≤ M‖B‖ · ‖F‖∞‖x‖
∫ t

0

e−ωsds =
M

ω
(1− e−ωt)‖B‖ · ‖F‖∞‖x‖
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We see that VB is bounded for every t0 ≥ 0. Finally, we will show that we can choose

t0 > 0 such that ‖VB‖ < 1. We have

M
ω

(1− e−ωt)‖B‖ < 1

⇔ 1− e−ωt < ω
M‖B‖

⇔ e−ωt > 1− ω
M‖B‖

If ω
M‖B‖ ≥ 1, then the last inequality holds for all t > 0 and B ∈ SDS

t0
for all t0 > 0. If

ω
M‖B‖ < 1, then

e−ωt > 1− ω
M‖B‖

⇔ −ωt > ln
(
1− ω

M‖B‖

)
⇔ t < − 1

ω
ln
(
1− ω

M‖B‖

)
and B ∈ SDS

t0
for all 0 < t0 < − 1

ω
ln
(
1− ω

M‖B‖

)
.

In the previous lemma, the form of the perturbing operator can be simplified. Since

B is a bounded operator on X, we know that Bx belongs to X for all x ∈ X. Thus,

A−1x + Bx belongs to X if and only if A−1x ∈ X. Because this is satisfied for x ∈ X1

and for these values A−1x = Ax, the perturbed operator assumes a familiar form.

(A−1 + B) |X = A + B, D((A−1 + B) |X) = D(A)

We will now present some sufficient conditions for a perturbation B ∈ L(X,X−1) to

be a Desch-Schappacher perturbation.

Corollary 4.15. Let A be the generator of a C0-semigroup T (t) on a Banach space

X and let B ∈ L(X, X−1). Moreover, assume that there exists t0 > 0 and q ∈ [0, 1)

such that

•
∫ t0

0
T−1(t− s)Bf(s)ds ∈ X and

• ‖
∫ t0

0
T−1(t− s)Bf(s)ds‖ < q‖f‖∞

for all continuous functions f ∈ C([0, t0], X). Then B ∈ SDS
t0

.

Proof. [8, Cor III.3.3]
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Corollary 4.16. Let A be the generator of a C0-semigroup T (t) on a Banach space

X and let B ∈ L(X, X−1). Moreover, assume that there exist t0 > 0 and p ∈ [1,∞)

such that ∫ t0

0

T−1(t0 − s)Bf(s)ds ∈ X

for all functions f ∈ Lp([0, t0], X). Then B ∈ SDS
t0

.

Proof. [8, Cor III.3.4]

Corollary 4.17. Let A be the generator of a C0-semigroup T (t) on a Banach space

X and let B ∈ L(X, X−1) satisfy ran(B) ⊂ F0. Then B ∈ SDS
t0

for some t0 > 0.

Proof. [8, Cor III.3.6]

The following proposition states that analyticity of the semigroup is preserved under

Desch-Schappacher perturbations. This result will be used in section 5.2 where

we consider spectral conditions for the exponential stability of the perturbed C0-

semigroup. The result was given as an exercise in [8, Exer. III.3.8.(2)] and the proof

is by the author.

Proposition 4.18. Let A be a generator of an analytic semigroup on X and let B ∈
SDS

t0
. Then (A−1 + B)|X generates an analytic semigroup on X.

Proof. Let A generate an analytic semigroup T (z) on X and let ω1 ∈ R be such that

ω1 > ω0(T (t)). Then A − ω1I generates a bounded analytic semigroup on X and by

theorem 2.17 there exist a constant M1 > 0 and such that for all r, s ∈ R with r > 0

and s 6= 0

‖R(r + is, A− ω1I)‖ ≤ M1

|s|

⇔ ‖R(r + ω1 + is, A)‖ ≤ M1

|s|
. (4.3)

Let M2 > 0 and ω2 be real constants such that

‖T−1(t)‖ ≤ M2e
ω2t.
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Then for all λ ∈ C with Re λ > ω2 we have λ ∈ ρ(A−1) and for all x ∈ X we can

express R(λ, A−1)x as an integral (see theorem 2.6). Using this fact we get for x ∈ X

R(λ, A−1)Bx =

∫ ∞

0

e−λsT−1(s)Bxds =
∞∑

n=0

∫ (n+1)t0

nt0

e−λsT−1(s)Bxds

=
∞∑

n=0

∫ (n+1)t0

nt0

e−λnt0e−λ(s−nt0)T−1(nt0)T−1(s− nt0)Bxds

=
∞∑

n=0

e−λnt0T−1(nt0)

∫ t0

0

e−λsT−1(s)Bxds

=
∞∑

n=0

e−λnt0T−1(nt0)

∫ t0

0

T−1(t0 − s)BIe−λ(t0−s)xds

=
∞∑

n=0

e−λnt0T−1(nt0)[VBFλ](t0)x.

Here we have denoted Fλ(t) = Ie−λ(t0−t). Clearly we have Fλ ∈ Xt0 with ‖Fλ‖∞ =

supt∈[0,t0]|e−λ(t0−t)| = 1. We can now estimate the norm of R(λ, A−1)x by

‖R(λ, A−1)Bx‖ = ‖
∞∑

n=0

e−λnt0T−1(nt0)[VBFλ](t0)x‖

≤
∞∑

n=0

|e−λnt0|‖T−1(nt0)‖
<1︷ ︸︸ ︷
‖VB‖

=1︷ ︸︸ ︷
‖Fλ‖∞‖x‖

≤ ‖VB‖‖x‖+ M2‖x‖
∞∑

n=1

e(ω2−Re λ)nt0

≤ ‖VB‖‖x‖+
M2e

(ω2−Re λ)t0

1− e(ω2−Re λ)t0
‖x‖.

Because B ∈ SDS
t0

, the Volterra operator VB is bounded with ‖VB‖ < 1. Since the last

term is a decreasing function of λ, we have for some ω3 > ω2 and 0 < q < 1 that

‖R(λ, A−1)B‖ ≤ q < 1 (4.4)

for all λ ∈ C with Re λ > ω3.

Since B ∈ SDS
t0

, operator (A−1 + B)|X generates a C0-semigroup S(t) with growth

bound ω0(S(t)) on X. Now choose

ω > max{ω0(S(t)), ω1, ω3}.
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Let λ ∈ C such that Re λ > ω. Theorem A.17 and equation (4.4) now tell us that for

the spectral bound of R(λ, A−1)B

r(R(λ, A−1)B) ≤ ‖R(λ, A−1)B‖ < 1.

Therefore we have 1 ∈ ρ(R(λ, A−1)B) and we can make an estimate

‖R(1, R(λ, A−1)B)‖ = ‖
∞∑

n=0

(R(λ, A−1)B)n‖ ≤
∞∑

n=0

‖R(λ, A−1)B‖n

=
1

1− ‖R(λ, A−1)B‖
≤ 1

1− q
. (4.5)

Since Re λ > ω > ω2 > ω0(T−1(t)) = ω0(T (t)) (see section 2.2.1), we also have

λ ∈ ρ(A). The identity

(λI − (A−1 + B)|X) = (λI − A)(I −R(λ, A−1)B)

implies that λ ∈ ρ((A−1 + B)|X) and

R(λ, (A−1 + B)|X) = R(1, R(λ, A−1)B)R(λ, A).

Finally, since ω > ω0(S(t)), the operator (A−1 + B)|X − ωI generates a bounded

C0-semigroup on X and for r, s ∈ R with r > 0 and s 6= 0 we get using (4.3) and (4.5)

‖R(r + is, (A−1 + B)|X)− ωI‖ = ‖R(r + ω + is, (A−1 + B)|X)‖

= ‖R(1, R(r + ω + is, A−1)B)R(r + ω + is, A)‖

≤ ‖R(1, R(r + ω + is, A−1)B)‖‖R(r + ω + is, A)‖

≤ 1

1− q

M1

|s|
=

M

|s|
.

By theorem 2.17 operator (A−1 + B)|X − ωI then generates a bounded analytic semi-

group e−ω Re zS(z) on X and the operator

(A−1 + B)|X = (A−1 + B)|X − ωI + ωI

generates an analytic semigroup eω Re ze−ω Re zS(z) = S(z) on X.
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4.5 Miyadera-Voigt Perturbations

The perturbation results presented in this section were first considered by Miyadera in

1960’s. The original results include the first part of corollary 4.22. These results were

later extended by Voigt. More details on the developement of the theory can be found

in [8]. As in the previous section, we formulate the class of perturbations using the

abstract Volterra operators as proposed by Engel and Nagel [8]. The perturbations

considered here are bounded linear operators from the Sobolev space X1 to X. Before

defining the class of perturbations, we note that the operators belonging to L(X1, X)

are exactly the A-bounded operators.

Remark 4.19. Property B ∈ L(X1, X) is equivalent to B being A-bounded: If B ∈
L(X1, X), we have

‖Bx‖ ≤ M‖x‖1 = M‖Ax‖ ∀x ∈ X1 = D(A)

and thus we can choose a = M and b = 0 in definition A.8. On the other hand, if B is

A-bounded, we have D(B) ⊃ D(A) and for some a, b ≥ 0 and for all x ∈ D(A) = X1,

‖Bx‖ ≤ a‖Ax‖+ b‖x‖ = a‖Ax‖+ b‖A−1Ax‖ ≤
(
a + b‖A−1‖

)
‖x‖1

and so B ∈ L(X1, X).

We will now define the class of Miyadera-Voigt perturbations. Consider again the

Banach space (Xt0 , ‖·‖∞), where

Xt0 = C ([0, t0],Ls(X)) , ‖F‖∞ = sup
0≤s≤t0

‖F (s)‖L(X).

For a given operator B ∈ L(X1, X) define the abstract Volterra operator V ∗
B : Xt0 →

Xt0 by

(V ∗
BF )(t)x =

∫ t

0

F (s)BT (t− s)xds for all t ∈ [0, t0], F ∈ Xt0 and x ∈ X1

We can see that (V ∗
BF )(t) ∈ L(X1, X) for all t ∈ [0, t0]. We denote by V ∗

B the operator

giving the extensions (V ∗
BF )(t) : X → X of operators (V ∗

BF )(t).

We define the set of Miyadera-Voigt perturbations SMV
t0

by

SMV
t0

=
{

B ∈ L(X1, X)
∣∣ V ∗

B ∈ L(Xt0),
∥∥V ∗

B

∥∥ < 1
}
.
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We have the following result for the Miyadera-Voigt perturbations:

Theorem 4.20. Let A be the generator of a C0-semigroup T(t) on a Banach space X.

If B ∈ SMV
t0

for some t0 > 0, then the operator A + B with domain D(A + B) = D(A)

generates a C0-semigroup on X.

Proof. [8, Thm III.3.14]

The C0-semigroup generated by A + B is then given by the variation of parameters

-formula

S(t)x = T (t)x +

∫ t

0

S(s)BT (t− s)xds, x ∈ D(A)

or the abstract Dyson-Phillips series

S(t) =
∞∑

n=0

(V nT )(t), for t ≥ 0, V = V ∗
B

The following lemma states that bounded perturbations can be seen as Miyadera-Voigt

perturbations.

Lemma 4.21. Let A be a generator of a C0-semigroup T (t) on a Banach space X. If

B ∈ L(X), then for the restriction B′ : X1 → X we have B′ ∈ SMV
t0

.

Proof. Let x ∈ X1. Then we have

‖B′x‖ = ‖B′A−1Ax‖ ≤ ‖B‖‖A−1‖‖x‖1

and we see that B ∈ L(X1, X). Let t0 > 0 be arbitrary. Next we will show that for

all t ∈ [0, t0] and F ∈ Xt0 the extension (V ∗
B′F )(t) = (V ∗

BF )(t) is a bounded operator

on X. Let x ∈ X. Since ‖T (t)‖ ≤ Me−ωt for some M ≥ 1 and ω > 0, we have

‖(V ∗
BF )(t)x‖ = ‖

∫ t

0

F (s)BT (t− s)xds‖ ≤
∫ t

0

‖F (s)BT (t− s)x‖ds

≤ ‖B‖ · ‖F‖∞‖x‖
∫ t

0

‖T (s)‖ds

≤ M‖B‖ · ‖F‖∞‖x‖
∫ t

0

e−ωsds =
M

ω
(1− e−ωt)‖B‖ · ‖F‖∞‖x‖
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and thus for all t ≥ 0 and F ∈ Xt0 , we have (V ∗
BF )(t) ∈ L(X). Finally, we will show

that we can choose t0 > 0 such that ‖V ∗
B′‖ < 1. From the previous inequalities we can

also see that

‖V ∗
B′‖ ≤

M

ω
(1− e−ωt)‖B‖.

Now,
M
ω

(1− e−ωt)‖B‖ < 1

⇔ 1− e−ωt < ω
M‖B‖

⇔ e−ωt > 1− ω
M‖B‖

If ω
M‖B‖ ≥ 1, then the last inequality holds for all t > 0 and hence ‖V ∗

B′‖ < 1 for all

t0 > 0. If ω
M‖B‖ < 1, then

e−ωt > 1− ω
M‖B‖

⇔ −ωt > ln
(
1− ω

M‖B‖

)
⇔ t < − 1

ω
ln
(
1− ω

M‖B‖

)

and that ‖V ∗
B′‖ < 1 for all t0 < − 1

ω
ln
(
1− ω

M‖B‖

)
. This shows that we can choose

t0 > 0 such that B′ ∈ SMV
t0

.

We will now give sufficient conditions for an operator B ∈ L(X1, X) to be a Miyadera-

Voigt perturbation. The first part of the following corollary is the original condition

formulated by Miyadera in 1960’s.

Corollary 4.22. Let A be the generator of a C0-semigroup T (t) on a Banach space

X and let B ∈ L(X1, X) satisfy

∫ t0

0

‖BT (s)x‖ds ≤ q‖x‖ ∀x ∈ D(A) (4.6)

for some 0 ≤ q < 1. Then B ∈ SMV
t0

, and therefore the operator A + B with domain

D(A + B) = D(A) generates a C0-semigroup S(t) on X. Moreover, S(t) satisfies

• S(t)x = T (t)x +
∫ t

0
T (t− s)BS(s)xds and

•
∫ t0

0
‖BS(s)x‖ds ≤ q

1−q
‖x‖ for x ∈ D(A) and t ≥ 0,
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where q and t0 are given by (4.6). If, in addition, (B, X1) is closable in X and

(B,D(B)) denotes its closure, then we have T (t)x, S(t)x ∈ D(B) for almost all t ≥ 0

and all x ∈ X. Finally, the functions BT (·)x and BS(·)x are locally integrable, and

S(t)x = T (t)x +

∫ t

0

S(s)BT (t− s)xds

S(t)x = T (t)x +

∫ t

0

T (t− s)BS(s)xds

hold for all x ∈ X and t ≥ 0.

Proof. [8, Cor III.3.16]

The following result is an extension of the previous corollary and it is due to Voigt.

The result was given as an exercise in [8, Exer III.3.17.(2)] and the part of the proof

presented here is by the author.

Corollary 4.23. The conclusion of corollary 4.22 holds if (B,D(B)) is closed in

X, there exists a T (t)-invariant dense subspace D ⊂ D(A) ∩ D(B) such that the map

t 7→ BT (t)x is continuous for all x ∈ D and there exist constants t0 > 0 and 0 ≤ q < 1

such that

∫ t0

0

‖BT (s)x‖ds ≤ q‖x‖ ∀x ∈ D

Proof. We will prove only that A+B generates a C0-semigroup on X, since the rest of

the results can be proved by following the latter part of the proof of [8, Cor III.3.16].

We first prove that B ∈ SMV
t0

. To do this, we will show the following:

(i) For all F ∈ Xt0 the operator (V ∗
BF )(t) : X1 → X can be extended to a bounded

operator (V ∗
BF )(t) : X → X.

(ii) The mapping t 7→ (V ∗
BF )(t) is strongly continuous for all F ∈ Xt0 .

(iii) The operator V ∗
B is bounded and satisfies ‖V ∗

B‖ < 1
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Part (i):

Let F ∈ Xt0 and x ∈ D

‖(V ∗
BF )(t)x‖ = ‖

∫ t

0

F (r)BT (t− r)xdr‖ ≤
∫ t

0

‖F (r)BT (t− r)x‖dr

≤ ‖F‖∞
∫ t

0

‖BT (r)x‖dr ≤ ‖F‖∞
∫ t0

0

‖BT (r)x‖dr

≤ q‖F‖∞ · ‖x‖

Since D is dense in X, theorem A.14 tells us that (V ∗
BF )(t) can be extended to a

bounded operator (V ∗
BF )(t) on X for all F ∈ Xt0 and t ∈ [0, t0].

Part (2):

To show that the mapping t 7→ (V ∗
BF )(t) is strongly continuous for all F ∈ Xt0 , we will

show that the mapping t 7→ (V ∗
BF )(t)x = (V ∗F )(t)x from [0, t0] to X is continuous

∀x ∈ D. Because D is dense in X, this is an equivalent property [8, Lem I.5.2].

Let x ∈ D and t, s ∈ [0, t0] with s ≤ t. Then

‖(V ∗
BF )(t)x− (V ∗

BF )(s)x‖

= ‖
∫ t

0

F (r)BT (t− r)xdr −
∫ s

0

F (r)BT (s− r)xdr‖

= ‖
∫ s

0

(F (r)BT (t− r)x− F (r)BT (s− r)x) dr +

∫ t

s

F (r)BT (t− r)xdr‖

≤ ‖
∫ s

0

(F (r)BT (t− r)x− F (r)BT (s− r)x) dr‖+ ‖
∫ t

s

F (r)BT (t− r)xdr‖

≤
∫ s

0

‖F (r)BT (t− r)x− F (r)BT (s− r)x‖dr +

∫ t

s

‖F (r)BT (t− r)x‖dr.

For the first term we have an estimate
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∫ s

0

‖F (r)BT (t− r)x− F (r)BT (s− r)x‖dr

=

∫ s

0

‖F (r)BT (s− r)T (t− s)x− F (r)BT (s− r)x‖dr

=

∫ s

0

‖F (r)BT (s− r) (T (t− s)x− x)‖dr

≤ ‖F‖∞
∫ s

0

‖BT (s− r) (T (t− s)x− x)‖dr

= ‖F‖∞
∫ s

0

‖BT (r) (T (t− s)x− x)‖dr

≤ ‖F‖∞
∫ t0

0

‖BT (r) (T (t− s)x− x)‖dr

≤ q‖F‖∞‖T (t− s)x− x‖ → 0, when t → s + .

We used the fact that T (t−s)x−x ∈ D which follows from T (t)-invariance of D. The

convergence to 0 is due to the strong continuity of T (t). We can estimate the second

term by

∫ t

s

‖F (r)BT (t− r)x‖dr ≤ ‖F‖∞
∫ t

s

‖BT (t− r)x‖dr = ‖F‖∞
∫ t−s

0

‖BT (r)x‖dr

Since by our assumption ‖BT (·)x‖ ∈ L1([0, t0], R+) for all x ∈ D, corollary A.21 tells

us that ∫ t−s

0

‖BT (r)x‖dr → 0

as t → s+. This shows that the mapping t 7→ (V ∗
BF )(t)x is continuous ∀x ∈ D and

hence the mapping t 7→ (V ∗
BF )(t) is strongly continuous for all F ∈ Xt0 .

Part (iii):

We want to show that operator V ∗
B is bounded with ‖V ∗

B‖ < 1. This follows from Part

(i) with
∥∥∥(V ∗

BF )(t)
∥∥∥ ≤ q‖F‖∞.

Together the parts (i)-(iii) imply that B ∈ SMV
t0

and hence A + B is a generator of a

C0-semigroup S(t) on X by theorem 4.20.

The rest of the proof follows the proof of [8, Cor III.3.16].
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The next sufficient condition tells us that B ∈ L(X1, X) is a Miadera-Voigt perturba-

tion if its range is contained in the Favard space of order 1. The result was presented

as an exercise in [8, Exer III.3.23.(iii)] and the proof is by the author.

Corollary 4.24. Let A be a generator on X with ρ(A) 6= ∅. If B ∈ L(X1, X) and

ran B ⊂ F1, then the operator A + B with domain D(A) is a generator on X.

To prove this theorem, we need the following result concerning multiplicative pertur-

bations (see [8, Sec III.3.d] for more information).

Lemma 4.25. Let A be the generator of a C0-semigroup on a Banach space X. If A

is invertible and B ∈ SDS
t0

, then the operator

A + A−1
−1BA, D(A + A−1

−1BA) = D(A)

is a generator of a C0-semigroup on X.

Proof. [8, Cor III.3.22]

Proof of corollary 4.24. If 0 /∈ ρ(A), we can choose a real positive constant ω >

ω0(T (t)) and consider

A + B = (A− ωI) + (B + ωI) = A′ + B′

Now 0 ∈ ρ(A′). We will show that B ∈ L(X ′
1, X

′) and ran B ⊂ F ′
1 where X ′, X ′

1 and

F ′
1 are corresponding Sobolev and Favard spaces associated to the operator A− ωI.

Since we know from section 2.2.1 that B ∈ L(X1, X) and the norm ‖·‖1 associated to

operator A′ is equivalent to the graph norm ‖·‖A′ , we have

‖B′x‖ = ‖(B + ωI)x‖ ≤ M‖Ax‖+ |ω|‖x‖ ≤ M‖(A− ωI)x‖+ (M + 1)|ω|‖x‖
= M‖(A− ωI)x‖+ (M + 1)|ω|‖R(ω,A)(ωI − A)x‖
≤ (M + (M + 1)|ω|‖R(ω,A)‖) ‖A′x‖.

This means that B′ ∈ L(X ′
1, X

′). Finally, we will show that ran B′ ⊂ F ′
1. Let x ∈

D(B′). Since D(B′) = D(B + ωI) = D(B) = X1, we have that x ∈ X1. We can make

an estimate
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sup
t>0
‖1

t
(e−ωtT (t)− I)B′x‖ = sup

t>0
‖1

t
(e−ωtT (t)− Ie−ωt + Ie−ωt − I)B′x‖

≤ sup
t>0

e−ωt‖1

t
(T (t)− I)(B + ωI)x‖+ sup

t>0
‖1

t
(e−ωt − 1)B′x‖

≤ sup
t>0
‖1

t
(T (t)− I)Bx‖+ ω sup

t>0
‖1

t
(T (t)− I)x‖+ ‖B′x‖ sup

t>0

1− e−ωt

t

= sup
t>0
‖1

t
(T (t)− I)Bx‖+ ω sup

t>0
‖1

t
(T (t)− I)x‖+ ω‖B′x‖ < ∞

The first term is finite, because ran B ⊂ F1 and the second term is finite because

x ∈ X1 ⊂ F1 (see lemma 2.20). This means that ran B′ ⊂ F ′
1.

Assume now that 0 ∈ ρ(A). Consider a perturbation C = A−1BA−1 : X → X−1. If

we can show that C ∈ SDS
t0

, we get by lemma 4.25 that the operator

A + A−1
−1CA = A + A−1

−1A−1BA−1A = A + B, D(A + B) = D(A)

is a generator of a C0-semigroup on X. By corollary 4.17 it suffices to show that

C ∈ L(X, X−1) and ran C ⊂ F0.

Since B ∈ L(X1, X), we have ‖Bx‖ ≤ M‖x‖1 for all x ∈ X1. Let x ∈ X. Then

‖A−1BA−1x‖−1 = ‖A−1
−1A−1BA−1x‖ = ‖BA−1x‖ ≤ M‖AA−1x‖ = M‖x‖

This implies that A−1BA−1 ∈ L(X, X−1).

We have from lemma 2.20 that A−1F1 = F0. Thus

ran A−1BA−1 = A−1 ran BA−1 ⊂ A−1F1 = F0

since ran B ⊂ F1.

Since by part (ii) of lemma 2.20 we know that for a Hilbert space X the Favard space

of order 1 and the domain of A coincide, F1 = D(A), we get the following result as a

direct consequence of corollary 4.24.

Corollary 4.26. Let A be a generator on a Hilbert space X with ρ(A) 6= ∅. If

B ∈ L(X1, X) and ran B ⊂ D(A), then the operator A + B with domain D(A) is a

generator on X.
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Corollary 4.24 also leads to a simple proof of the following result concerning pertur-

bations B ∈ L(X1) [8, Cor III.1.5]. The proof is by the author.

Corollary 4.27. Let A generate a C0-semigroup T (t) on a Banach space X. If B ∈
L(X1) where X1 = (D(A), ‖·‖1), then the operator A+B with domain D(A) generates

a C0-semigroup on X.

Proof. We will show that B satisfies the conditions of corollary 4.24. Since A is a

generator of a C0-semigroup, we know that ρ(A) 6= ∅ since by theorem 2.6 for all

λ ∈ C with Re λ > ω0(T (t)) we have λ ∈ ρ(A). We can now assume that 0 ∈ ρ(A)

(otherwise we can consider A− λI with λ > ω0(T (t))).

Using part (iii) of lemma 2.20 we see that ran B ⊂ X1 ⊂ F1.

It remains to show that B ∈ L(X1, X). Since B ∈ L(X1), we know that for some

M > 0 we have ‖Bx‖1 ≤ M‖x‖1. Let x ∈ X1. Now

‖Bx‖ = ‖A−1ABx‖ ≤ ‖A−1‖‖ABx‖ = ‖A−1‖‖Bx‖1 ≤ ‖A−1‖M‖x‖1

and thus B ∈ L(X1, X). By corollary 4.24 the operator A + B with domain D(A)

generates a C0-semigroup on X.

The following example shows a perturbation which is bounded on X1 but not on X.

The example is taken from [8, Ex III.1.6].

Example 4.28. Let Af = f ′ with domain C1
0(R) on X = C0(R). Let h ∈ C1

0(R) and

define the operator B by

Bf = f ′(0) · h, f ∈ C1
0(R)

Now B ∈ L(X1), since for f ∈ C1
0(R) we have

‖Bf‖1 = ‖A(f ′(0) · h)‖ = ‖f ′(0) · h′‖ = sup
t∈R

|f ′(0) · h′(t)| ≤ sup
t∈R

|f ′(t)| ·
= M︷ ︸︸ ︷

sup
t∈R

|h′(t)|

= M‖Af‖ = M‖f‖1.

By corollary 4.27 the operator A + B with domain C1
0(R) generates a C0-semigroup

on C0(R).
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We have the following result concerning preservation of regularity properties under

Miyadera-Voigt pertubations. As in the case of Desch-Schappacher perturbations, the

result was given in an exercise in [8, Exer III.3.17.(1)] and the proof is by the author.

Proposition 4.29. Let A generate an analytic semigroup on X and let B ∈ SMV
t0

.

Then A + B generates an analytic semigroup on X.

Proof. Let A generate an analytic semigroup T (z) on X and choose ω1 ∈ R such that

ω1 > ω0(T (t)). Then the operator A − ω1I generates a bounded analytic semigroup

on X and by theorem 2.17 there exists a constant M1 > 0 such that for all r, s ∈ R
with r > 0 and s 6= 0

‖R(r + is, A− ω1I)‖ ≤ M1

|s|

⇔ ‖R(r + ω1 + is, A)‖ ≤ M1

|s|
(4.7)

Let M2 > 0, ω2 be real constants such that

‖T (t)‖ ≤ M2e
ω2t.

Then for λ ∈ C with Re λ > ω2 we have λ ∈ ρ(A) and theorem 2.6 tells us that for all

x ∈ X we can express R(λ, A)x as an integral. Therefore for all x ∈ D(A)

BR(λ, A)x = B

∫ ∞

0

e−λsT (s)xds =
∞∑

n=0

∫ (n+1)t0

nt0

e−λsBT (s)xds

=
∞∑

n=0

∫ (n+1)t0

nt0

e−λnt0e−λ(s−nt0)BT (s− nt0)T (nt0)xds

=
∞∑

n=0

e−λnt0

∫ t0

0

e−λsBT (s)T (nt0)xds

=
∞∑

n=0

e−λnt0

∫ t0

0

Ie−λ(t0−s)BT (t0 − s)T (nt0)xds

=
∞∑

n=0

e−λnt0
[
V ∗

BFλ

]
(t0)T (nt0)x.

Here Fλ(t) = Ie−λ(t0−t) and Fλ ∈ Xt0 with ‖Fλ‖∞ = supt∈[0,t0]|e−λ(t0−t)| = 1. For

simplicity, we will denote V = V ∗
B. We can estimate the norm by
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‖BR(λ, A)x‖ = ‖
∞∑

n=0

e−λnt0 [V Fλ](t0)T (nt0)x‖

≤

[
∞∑

n=0

|e−λnt0|‖V ‖‖Fλ‖∞‖T (nt0)‖

]
‖x‖

≤

[
‖V ‖+ M2

∞∑
n=1

e(ω2−Re λ)nt0

]
‖x‖ ≤

[
‖V ‖+

M2e
(ω2−Re λ)t0

1− e(ω2−Re λ)t0

]
‖x‖.

Because B ∈ SMV
t0

the operator V is bounded with ‖V ‖ < 1. Since the last term goes

to zero as the real part of λ goes to infinity, we have for some ω3 > ω2 and 0 < q < 1

that

‖BR(λ, A)x‖ ≤ q‖x‖, ∀x ∈ D(A)

for all λ ∈ C with Re λ > ω3. Since D(A) is dense in X and BR(λ, A) ∈ L(X), the

uniqueness of the extension in theorem A.14 tells us that

‖BR(λ, A)‖ ≤ q < 1, ∀λ ∈ C with Re λ > ω3. (4.8)

Since B ∈ SMV
t0

, the perturbed operator A + B generates a C0-semigroup S(t) with

growth bound ω0(S(t)) on X. Choose

ω > max{ω0(S(t)), ω1, ω3}.

Let λ ∈ C such that Re λ > ω. Now we have by equation (4.8) and theorem A.17 that

the spectral radius of BR(λ, A) satisfies

r(BR(λ, A)) ≤ ‖BR(λ, A)‖ < 1.

Therefore 1 ∈ ρ(BR(λ, A)) and we can make an estimate

‖R(1, BR(λ, A)‖ = ‖
∞∑

n=0

(BR(λ, A))n‖ ≤
∞∑

n=0

‖BR(λ, A)‖n

=
1

1− ‖BR(λ, A)‖
≤ 1

1− q
. (4.9)
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Since Re λ > ω > ω2, we also have λ ∈ ρ(A). The identity

(λI − A−B) = (I −BR(λ, A))(λI − A)

then implies that λ ∈ ρ(A + B) and

R(λ, A + B) = R(λ, A)R(1, BR(λ, A)).

Since ω > ω0(S(t)), we know that A + B − ωI generates a bounded C0-semigroup on

X. Finally, for r, s ∈ R with r > 0 and s 6= 0 we get using (4.7) and (4.9) that

‖R(r + is, A + B − ωI)‖ = ‖R(r + ω + is, A + B)‖

= ‖R(r + ω + is, A)R(1, BR(r + ω + is, A))‖

≤ ‖R(r + ω + is, A)‖‖R(1, BR(r + ω + is, A))‖

≤ M1

|s|
1

1− q
=

M

|s|
.

By theorem 2.17 the operator A + B − ωI then generates an analytic semigroup

e−ω Re zS(z) on X and A + B = (A + B − ωI) + ωI generates an analytic semigroup

eω Re ze−ω Re zS(z) = S(z) on X.

4.5.1 Class P Perturbations

First results concerning unbounded perturbations and general C0-semigroups were

presented as early as in the 1950’s. One of these concerns a class of perturbations

called class P perturbations. Basic theory can be found for example in [7] or [9].

We will show here that class P perturbations can in fact be seen as Miyadera-Voigt

perturbations. The proof is by the author, but the result is not new.

Definition 4.30. An operator B with domain D(B) ⊃ D(A) is a class P perturbation

if B is closed and for every t > 0 there exists a constant K(t) such that

‖BT (t)x‖ ≤ K(t)‖x‖ for x ∈ D(A)
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and K(t) can be chosen so that ∫ 1

0

K(t)dt < ∞.

�

To prove that class P perturbations are Miyadera-Voigt perturbations, we will show

that they satisfy conditions of corollary 4.22. Let B be a class P perturbation.

We will first have to show that B ∈ L(X1, X). By remark 4.19 it suffices to show that

B is A-bounded. Since A is closed as a generator of a C0-semigroup and B is closed

with domain D(B) ⊃ D(A), this follows directly from lemma A.9.

It remains to show that we can choose t0 > 0 so that

∫ t0

0

‖BT (t)x‖ ≤ q‖x‖ ∀x ∈ D(A)

for some 0 ≤ q < 1. Because for x ∈ D(A) we have

∫ t0

0

‖BT (t)x‖dt ≤
∫ t0

0

K(t)dt‖x‖,

it suffices to show that we can choose t0 > 0 such that
∫ t0

0
K(t)dt < 1. Now, since

∫ 1

0

K(t)dt < ∞

we know that K(t) ∈ L1([0, 1]; R+). Now lemma A.20 guarantees that we can find

δ > 0 such that for all a < b with b− a < δ we have

∫ b

a

K(t)dt < 1.

Thus, choosing any 0 < t0 < δ we have

∫ t0

0

K(t)dt < 1.
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This shows that the operator B satisfies the conditions of corollary 4.22 and thus

B ∈ SMV
t0

for some t0 > 0.

4.6 The Perturbation Theorem of Kaiser and Weis

In their article [13], Kaiser and Weis presented sufficient conditions for an operator

A + B in Hilbert space to generate a semigroup that is strongly continuous on (0,∞).

Batty later proved in [2] that the semigroup S(t) generated by A + B approaches

the identity operator in the strong operator topology as t → 0+ and thus S(t) is a

C0-semigroup. The main result is presented in theorem 4.31. The theorem presented

here is a slightly modified version of the one presented in the article by Batty [2]: The

original version required the condition (4.11) to hold for all x ∈ D(B). We prove here

that it is sufficient that this holds for all x ∈ D(A).

Theorem 4.31. Let A be a generator of a C0-semigroup T (t) on a Hilbert space X

and let B be a closed operator on X with domain D(B) ⊃ D(A). Assume that there

exist constants 0 < q < 1 and λ0 ∈ R such that

{
λ ∈ C

∣∣ Re λ ≥ λ0

}
⊂ ρ(A)

and

‖BR(λ, A)‖ ≤ q (4.10)

‖R(λ, A)Bx‖ ≤ q‖x‖ ∀x ∈ D(A) (4.11)

whenever Re λ ≥ λ0. Then A + B generates a C0-semigroup on X.

The proof presented here follows [2, Thm 1] and is based on the following result from

[24, Thm 1.1].

Lemma 4.32. A linear operator A on a Hilbert space X is a infinitesimal generator

of a C0-semigroup T (t) satisfying

‖T (t)‖ ≤ Meω0t, ∀t ≥ 0,

for some M ≥ 1, ω0 ∈ R if and only if

(i) A is a closed densely defined operator
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(ii)
{

λ ∈ C
∣∣ Re λ > ω0

}
⊂ ρ(A) and for any λ = ω + is ∈ C with ω > ω0 the

resolvent estimates

sup
ω>ω0

(ω − ω0)

∫ ∞

−∞
‖R(ω + is, A)x‖2ds < ∞, ∀x ∈ X

and

sup
ω>ω0

(ω − ω0)

∫ ∞

−∞
‖R(ω + is, A∗)x‖2ds < ∞, ∀x ∈ X

are satisfied.

Proof of theorem 4.31. We can assume that ‖T (t)‖ ≤ M for all t ≥ 0 and that λ0 ≤ 0

(if this is not the case, we consider the rescaled semigroup generated by A−ωI where

ω > max{ω0(T (t)), λ0}. See section 2.1 for details).

Let x ∈ D(A). Since 0 ∈ ρ(A), we have from (4.10) that

‖Bx‖ = ‖BA−1Ax‖ ≤ q‖Ax‖

and thus the A-bound of B must be less than 1. Thus the operator A + B is closed

[14, Thm IV.1.1]. Because D(A) is dense in X (see theorem 2.6), the operator A + B

is also densely defined.

Let x ∈ X and a > 0. Consider the mapping

f(t) =

{
e−atT (t)x t ≥ 0

0 t < 0

Now, since by theorem 3.2 we have f ∈ L2(R, X) and

R(a + is, A)x =

∫ ∞

0

e−(a+is)rT (r)xdr =

∫ ∞

−∞
e−isrf(r)xdr = (Ff) (s)

where F denotes the Fourier transform. By Plancherel’s Theorem [8, Thm C.14]

‖Ff‖2 =
√

2π‖f‖2 and thus

∫ ∞

−∞
‖R(a + is, A)x‖2ds =

∫ ∞

−∞
‖(Ff) (s)‖2ds = ‖Ff‖2

2 = 2π‖f‖2
2

=

∫ ∞

−∞
‖f(t)‖2dt =

∫ ∞

0

e−2at‖T (t)x‖2dt ≤ M2π

a
‖x‖2
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Similarly, considering the mapping

f(t) =

{
e−atT (t)∗x t ≥ 0

0 t < 0

we get an estimate ∫ ∞

−∞
‖R(a + is, A)∗x‖ds ≤ M2π

a
‖x‖2

Denote by R|D(A) the restriction of R(a+is, A)B to D(A). Because ran R(a+is, A)B ⊂
D(A) and (4.11) holds, R|D(A) is a bounded operator on D(A). Since D(A) is dense

in X, we know by theorem A.14 that R|D(A) can be extended to a bounded operator

R ∈ L(X) with ‖R‖ ≤ q. This immediately tells us that r(R) ≤ ‖R‖ ≤ q < 1 and

thus 1 ∈ ρ(R) = ρ(R|D(A)) (see lemma A.19).

Since D(A + B) = D(A), we have the identity

(a + is)I − A−B = ((a + is)I − A)(I −R(a + is, A)B)

= ((a + is)I − A)(I −R|D(A)).

This tells us that a + is ∈ ρ(A + B) and

R(a + is, A + B)x = R(1, R|D(A))R(a + is, A)x

=
∞∑

n=0

(
R|D(A)

)n
R(a + is, A)x.

This identity allows us to estimate

∫ ∞

−∞
‖R(a + is, A + B)x‖2ds ≤

∫ ∞

−∞

[
∞∑

n=0

‖R|D(A)‖n‖R(a + is, A)x‖

]2

ds

≤
∫ ∞

−∞

‖R(a + is, A)x‖2

(1− q)2
ds

≤ M2π

a(1− q)2
‖x‖2
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Since condition (4.10) implies that ‖R(λ, A)∗B∗x′‖ ≤ q‖x′‖ for all x′ ∈ D(B∗) and

D(B∗) is dense in X (B is closed), we can make another estimate

∫ ∞

−∞
‖R(a + is, A + B)∗x‖2ds ≤ M2π

a(1− q)2
‖x‖2

This shows that A+B satisfies the assumptions of lemma 4.32 and thus A+B generates

a C0-semigroup on X.

We will introduce for the perturbations satisfying assumptions of theorem 4.31 a

notation similar to the one we have adapted from Engel and Nagel [8] for Desch-

Schappacher (SDS
t0

) and Miyadera-Voigt (SMV
t0

) perturbations. This will help us discuss

the stability of the pertubed semigroup later in the thesis.

Definition 4.33. Let A generate a C0-semigroup on a Hilbert space X and let B be

a closed operator on X with domain D(B) ⊃ D(A). We say that B ∈ SKW if there

exist constants 0 < q < 1 and λ0 ∈ R such that for all λ ∈ C with Re λ ≥ λ0

‖BR(λ, A)‖ ≤ q

‖R(λ, A)Bx‖ ≤ q‖x‖ ∀x ∈ D(A)

�

Definition 4.33 does not require that the set
{

λ ∈ C
∣∣ Re λ ≥ λ0

}
belongs to the

resolvent set of A. However, since A is a generator of a C0-semigroup T (t) on X, we

know from theorem 2.6 that for all ω > ω0(T (t)) we have λ ∈ ρ(A) whenever Re λ ≥ ω.

If we choose max {λ0, ω} as the new λ0, then all the assumptions of theorem 4.31 are

satisfied.

It is now clear from theorem 4.31 that if A is a generator of a C0-semigroup on a Hilbert

space X and B ∈ SKW, then the operator A + B with domain D(A + B) = D(A) is a

generator of a C0-semigroup on X.

It should be noted that conditions (4.10) and (4.11) are not completely unfamiliar to

us. We saw in the proof of proposition 4.29 that if B ∈ SMV
t0

, then there exists a

λ1 ∈ R such that

‖BR(λ, A)‖ ≤ q < 1, for all λ ∈ C with Re λ ≥ λ1. (4.12)

In other words, all Miyadera-Voigt perturbations satisfy condition (4.10) for some λ0.

Relating Desch-Schappacher perturbations to the ones considered in this section is
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not as straightforward because the perturbed operators differ in form. Recall from

section 4.4 that if A generates a C0-semigroup on X, then for B ∈ SDS
t0

the perturbed

operator is constructed as (A−1 + B)|X . Also, B is defined on all of X. In the proof

of proposition 4.18 we found that for a perturbation B ∈ SDS
t0

there exists a λ1 ∈ R
such that

‖R(λ, A−1)B‖ ≤ q < 1, for all λ ∈ C with Re λ ≥ λ1. (4.13)

As we mentioned, the forms of the perturbations in this case differ too much for

us to state as strong an implication as in the case of Miyadera-Voigt perturbations.

Nevertheless, the property (4.13) has similar features compared to condition (4.11).

There are also strong differences between perturbations of class SKW compared to the

classes SDS
t0

and SMV
t0

. Perturbations of class SKW are required to be closed operators

on a Hilbert space, while perturbations of classes SDS
t0

and SMV
t0

are not required to be

closed and it suffices that the underlying space is a Banach space.

Similarly to the case of Miyadera-Voigt perturbations in section 4.5, we can prove the

following result concerning the preservation of regularity properties for perturbations

in SKW. The result and proof are by the author.

Proposition 4.34. Let A generate an analytic semigroup on X and let B ∈ SKW.

Then A + B generates an analytic semigroup on X.

Proof. Let A generate an analytic semigroup T (z) on X and choose ω1 ∈ R such that

ω1 > ω0(T (t)). Then the operator A − ω1I generates a bounded analytic semigroup

on X and by theorem 2.17 there exists a constant M1 > 0 such that for all r, s ∈ R
with r > 0 and s 6= 0

‖R(r + is, A− ω1I)‖ ≤ M1

|s|

⇔ ‖R(r + ω1 + is, A)‖ ≤ M1

|s|
(4.14)

Since B satisfies the assumptions of theorem 4.31, we know that A + B is a generator

of a C0-semigroup S(t) on X.

Furthermore, from our assumptions we know that there exists a λ0 ∈ R such that for

some 0 < q < 1 we have ‖BR(λ, A)‖ ≤ q and λ ∈ ρ(A) for all λ ∈ C with Re λ > λ0.

Choose

ω > max {ω0(S(t)), ω1, λ0}
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Let λ ∈ C be such that Re λ > ω. Since Re λ > ω > λ0, we have λ ∈ ρ(A) and

theorem A.17 implies that the spectral radius of BR(λ, A) satisfies

r(BR(λ, A)) ≤ ‖BR(λ, A)‖ < 1.

Therefore 1 ∈ ρ(BR(λ, A)) and we can make an estimate

‖R(1, BR(λ, A)‖ = ‖
∞∑

n=0

(BR(λ, A))n‖ ≤
∞∑

n=0

‖BR(λ, A)‖n

=
1

1− ‖BR(λ, A)‖
≤ 1

1− q
. (4.15)

The identity

(λI − A−B) = (I −BR(λ, A))(λI − A)

now implies that λ ∈ ρ(A + B) and

R(λ, A + B) = R(λ, A)R(1, BR(λ, A)).

Since ω > ω0(S(t)), we know that A + B − ωI generates a bounded C0-semigroup on

X. Finally, for r, s ∈ R with r > 0 and s 6= 0 we get using (4.14) and (4.15) that

‖R(r + is, A + B − ωI)‖ = ‖R(r + ω + is, A + B)‖

= ‖R(r + ω + is, A)R(1, BR(r + ω + is, A))‖

≤ ‖R(r + ω + is, A)‖‖R(1, BR(r + ω + is, A))‖

≤ M1

|s|
1

1− q
=

M

|s|
.

By theorem 2.17 the operator A + B − ωI then generates an analytic semigroup

e−ω Re zS(z) on X and A + B = (A + B − ωI) + ωI generates an analytic semigroup

eω Re ze−ω Re zS(z) = S(z) on X.



Chapter 5

Stability Criteria for Perturbed

C0-Semigroups

In this chapter we apply the stability criteria studied in chapter 3 to the case of

perturbed C0-semigroups. Our aim is to find sufficient conditions for the stability

of the C0-semigroup generated by the perturbed operator. We will consider different

types of perturbations separately.

In case of bounded perturbations we can easily derive such a sufficient condition. Let

A generate an exponentially stable C0-semigroup T (t) satisfying

‖T (t)‖ ≤ Me−ωt

for some M ≥ 1 and ω > 0. Theorem 4.1 now tells us that for any B ∈ L(X) the

operator A + B generates a C0-semigroup S(t) satisfying

‖S(t)‖ ≤ Me(−ω+M‖B‖)t
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This gives rise to the following simple sufficient condition for the stability of the

perturbed semigroup.

Corollary 5.1. Let A generate a C0-semigroup T (t) on a Banach space X statisfying

‖T (t)‖ ≤ Me−ωt for some M ≥ 1 and ω > 0. Let B ∈ L(X). Then A + B generates

an exponentially stable C0-semigroup on X if ‖B‖ < ω
M

.

If we have a perturbation of form A + εB where B ∈ L(X) and ε ∈ C, the previous

corollary states that the perturbed C0-semigroup is exponentially stable for all ε satis-

fying

|ε| < ω

M‖B‖
.

Even though the result of corollary 5.1 seems like a crude estimate, it turns out to be

the sharpest bound we can achieve if we need to cover all C0-semigroups and bounded

perturbations. To see this, consider again the case of example 4.9. Applying corol-

lary 5.1 we see that A + B generates an exponentially stable C0-semigroup whenever

‖B‖ = |β| < 1. If we choose β = 1, we can see that the perturbed operator becomes

(A + B)(xk) = ((−k + 1)xk)

and thus it generates a C0-semigroup S(t) with

S(t)(xk) = (e(−k+1)txk).

Now choose e1 ∈ `2(C) such that e1 = (1, 0, 0, . . .). We see that S(t)e1 = e1 does not

decay as t grows and thus the C0-semigroup S(t) is not stable. This means that there

exists a perturbation B with norm ‖B‖ = ω
M

such that the C0-semigroup generated

by A + B is not exponentially stable.

As we saw in chapter 4, generation results are far more complicated when the

perturbing operator is not bounded. In addition, it turns out that obtaining condi-

tions for the exponential stability of the perturbed C0-semigroup is more tricky. One

of the obvious reasons is that we do not have any definite way to measure the ”size”

of the perturbation since ‖B‖ is not defined. Since we are only considering relatively

bounded perturbations, the first intuitive attempt would be to use the A-bound of

B instead of ‖B‖. However, this will not work because the spectrum of the operator

A is not guaranteed to stay in the left half-plane of the complex plane C even for

perturbations with small A-bound. We will use a different approach. We will formu-

late conditions for the stability of the perturbed C0-semigroup using the norms of the

operators
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BR(λ, A) or R(λ, A−1)B

on the open half-plane of the complex plane C.

The results presented in section 5.1 are based on the application of theorem 3.4 and

corollary 3.6 to the case of perturbed C0-semigroups. We will first present sufficient

conditions for the stability of the perturbed C0-semigroup when the perturbing oper-

ator is a relatively bounded operator for which the perturbed operator is generator on

X. We will then proceed to formulate this condition particularly for the perturbations

belonging to classes SMV
t0

or SKW. The differences in Desch-Schappacher perturba-

tions compared to the ones of classes SMV
t0

and SKW make separate treatment neces-

sary. We will, however, be able to derive a similar sufficient condition for this class of

perturbations. Finally, we will formulate a separate condition for the perturbation of

exponentially stable C0-semigroups of contractions. This case is dealt with separately,

because the results concerning perturbation of contractive C0-semigroups allows us to

weaken the conditions for the exponential stability of the perturbed semigroup.

Some of these conditions are similar to the ones presented by Thieme for locally Lips-

chitz continuous integrated semigroups and positive perturbations in [26]. However,

the assumptions used in the article are relatively restrictive compared to the case of

general C0-semigroups.

Also the results presented by Pritchard and Townley in [23] are related to the condi-

tions presented in section 5.1. We analyze this relationship in section 5.1.6.

In section 5.2 we will present situations where we are able to determine the stability

of the perturbed C0-semigroup directly from the spectrum of the operator A + B.

More precisely, we present conditions under which the negative spectral bound of the

operator A + B determines the stability of the perturbed C0-semigroup. Since we

lack proper perturbation theory for the spectral bound of an unbounded operator, the

theory will be of use mainly when the spectrum of A+B is known or can be obtained

easily.

5.1 Conditions On The Resolvent

In this section we consider unbounded perturbations considered in chapter 4 and

discuss the stability of the perturbed C0-semigroup. Our results are based on appli-

cation of theorem 3.4 and corollary 3.6. Because of the conditions in these results, we

will throughout this section assume that X is a Hilbert space.
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Like we already stated, we will first formulate sufficient conditions for the exponential

stability of the perturbed C0-semigroup when the perturbation is a relatively bounded

operator. This is done in section 5.1.1. We will go on to formulate this condition

for classes SMV
t0

and SKW in sections 5.1.2 and 5.1.3. These sections also contain

results concerning the perturbations of form εB, where B is a perturbation of the class

mentioned and ε is a real or complex parameter. The conditions derived in section 5.1.1

are not applicable to perturbations of class SDS
t0

. A similar condition for exponential

stability under perturbations of this class is derived in section 5.1.4. Finally, we will

in section 5.1.5 formulate separate conditions for perturbation of exponentially stable

C0-semigroups of contractions.

The results obtained in this section are compared to the existing ones for bounded

perturbations in section 5.1.6.

All the results and proofs presented in this section are by the author.

5.1.1 Conditions for General Perturbed C0-Semigroups

In this section, we will present conditions for the stability of the perturbed C0-

semigroup. The first result applies to the case of relatively bounded perturbations for

which the perturbed operator is a generator of a C0-semigroup on X. The following

is the main result of this section.

Proposition 5.2. Let A generate an exponentially stable C0-semigroup T (t) on a

Hilbert space X and let B : X ⊃ D(B) → X be an A-bounded perturbation such that

the operator A + B with domain D(A + B) = D(A) generates a C0-semigroup S(t) on

X. If there exists a real constant 0 < q < 1 such that

‖BR(λ, A)‖ ≤ q for all λ ∈ C+,

then S(t) is exponentially stable.

Proof. We will show that the operator A + B satisfies conditions of theorem 3.4. By

theorem A.17 we now know that

r(BR(λ, A)) ≤ ‖BR(λ, A)‖ ≤ q < 1

and thus 1 ∈ ρ(BR(λ, A)) and R(1, BR(λ, A)) ∈ L(X). Since T (t) is exponentially

stable, we have λ ∈ ρ(A) for all λ ∈ C+.
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The identity

λI − A−B = (I −BR(λ, A))(λI − A)

implies that λ ∈ ρ(A + B) whenever λ ∈ ρ(A) and 1 ∈ ρ(BR(λ, A)). This means that

{
λ ∈ C

∣∣ Re λ > 0
}
⊂ ρ(A + B)

and for all λ ∈ C+ the resolvent can be expressed as

R(λ, A + B) = R(λ, A)R(1, BR(λ, A)).

We can make an estimate

sup
Re λ>0

‖R(1, BR(λ, A))‖ = sup
Re λ>0

‖
∞∑

n=0

(BR(λ, A))n‖ ≤ sup
Re λ>0

∞∑
n=0

‖BR(λ, A)‖n

= sup
Re λ>0

1

1− ‖BR(λ, A)‖
≤ sup

Re λ>0

1

1− q

=
1

1− q
< ∞

and thus

sup
Re λ>0

‖R(λ, A + B)‖ ≤ sup
Re λ>0

‖R(λ, A)R(1, BR(λ, A))‖

≤ sup
Re λ>0

‖R(λ, A)‖‖R(1, BR(λ, A))‖

≤ sup
Re λ>0

‖R(λ, A)‖︸ ︷︷ ︸
< ∞

sup
Re λ>0

‖R(1, BR(λ, A))‖︸ ︷︷ ︸
< ∞

< ∞.

Theorem 3.4 now tells us that the C0-semigroup generated by A + B is exponentially

stable.

Since bounded perturbations are also relatively bounded, we can see that the condi-

tions of proposition 5.2 are clearly satisfied for perturbations B ∈ L(X). This case is

further addressed in section 5.1.6.

Before moving on, we will note that if A is a generator of an exponentially stable C0-

semigroup on X and B is a relatively bounded perturbation, the operator BR(λ, A)

is always bounded for all λ ∈ C+. This follows directly from the A-boundedness of

B and the fact that R(λ, A) is bounded for all λ ∈ C+. In addition, the condition
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presented in proposition 5.2 then requires that BR(·, A) is uniformly bounded on C+

with supremum less than 1.

5.1.2 Miyadera-Voigt perturbations

In this section we will consider Miyadera-Voigt perturbations. We will first reformulate

proposition 5.2 in the case B ∈ SMV
t0

.

Corollary 5.3. Let A generate an exponentially stable C0-semigroup on a Hilbert

space X. If B ∈ SMV
t0

and for some 0 < q < 1

‖BR(λ, A)‖ ≤ q for all λ ∈ C+,

then the C0-semigroup generated by A + B is exponentially stable.

Proof. Because B ∈ L(X1, X), remark 4.19 tells us that B is A-bounded. Since the

operator A + B with domain D(A + B) = D(A) is a generator of a C0-semigroup

on X, the assumptions of proposition 5.2 are satisfied. Therefore the C0-semigroup

generated by A + B is exponentially stable.

We saw in the proof of proposition 4.29 that if A generates an exponentially stable

C0-semigroup and B ∈ SMV
t0

, then ‖BR(·, A)‖ is uniformly bounded on C+. We can

use this to obtain the following result concerning perturbations of form εB.

Proposition 5.4. Let A generate an exponentially stable C0-semigroup on a Hilbert

space X. If B ∈ SMV
t0

, we can choose 0 < ε0 ≤ 1 such that A + εB generates an

exponentially stable C0-semigroup for all ε ∈ C with 0 < |ε| ≤ ε0.

Proof. Let A generate an exponentially stable C0-semigroup T (t) on X and let B ∈
SMV

t0
. Due to corollary 5.3, it suffices to show that there exists 0 < ε0 ≤ 1 such that

for all 0 < |ε| ≤ ε0 we have εB ∈ SMV
t0

and for some 0 < q < 1

‖εBR(λ, A)‖ ≤ q for all λ ∈ C+.

We will first show that for all 0 < |ε| ≤ 1, we have εB ∈ SMV
t0

. Recall from section 4.5

that

SMV
t0

=
{

B ∈ L(X1, X)
∣∣ V ∗

B ∈ L(Xt0),
∥∥V ∗

B

∥∥ < 1
}
.
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where

(V ∗
BF )(t)x =

∫ t

0

F (s)BT (t− s)xds for t ∈ [0, t0], x ∈ X1

Since B ∈ SMV
t0

, we have B ∈ L(X1, X) and ‖Bx‖ ≤ M1‖x‖1 for some M1 > 0. Now

‖εBx‖ = |ε|‖Bx‖ ≤ |ε|M1‖x‖1

and thus εB ∈ L(X1, X). For all x ∈ X1 and t ∈ [0, t0] we have

(V ∗
εBF )(t)x =

∫ t

0

F (s)εBT (t− s)xds = ε

∫ t

0

F (s)BT (t− s)xds = ε(V ∗
BF )(t)x

Since V ∗
B is closable, clearly also V ∗

εB is closable, V ∗
εB ∈ L(Xt0) and

‖V ∗
εB‖ = |ε|‖V ∗

B‖ < |ε| ≤ 1

This means that εB ∈ SMV
t0

.

Now, since T (t) is exponentially stable, we have for some M ≥ 1 and ω > 0 that

‖T (t)‖ ≤ Me−ωt.

As in proof of proposition 4.29, we can achieve an estimate

‖BR(λ, A)x‖ ≤ ‖V ∗
B‖+

Me(−ω−Re λ)t0

1− e(−ω−Re λ)t0
.

Since we are considering λ ∈ C with Re λ > 0, and the second term is a decreasing

function of Re λ, we can estimate

‖BR(λ, A)‖ ≤ ‖V ∗
B‖+

Me(−ω−Re λ)t0

1− e(−ω−Re λ)t0
≤ ‖V ∗

B‖+
Me−ωt0

1− e−ωt0
< 1 +

Me−ωt0

1− e−ωt0
.

Let 0 < q < 1 be a constant and choose
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ε0 =
q

1 + Me−ωt0

1−e−ωt0

=
q(1− e−ωt0)

1 + (M − 1)e−ωt0
.

Now, for all ε ∈ C with 0 < |ε| ≤ ε0

‖εBR(λ, A)‖ = |ε|‖BR(λ, A)‖ <
q

1 + Me−ωt0

1−e−ωt0

(
1 +

Me−ωt0

1− e−ωt0

)
= q.

Corollary 5.3 now tells us that with this choise of ε0 the C0-semigroup generated by

A + εB is exponentially stable for all 0 < |ε| ≤ ε0.

5.1.3 The Perturbation Theorem of Kaiser and Weis

We will now consider perturbations of class SKW and formulate the conditions of

proposition 5.2 in this particular case. The following corollary states the main result.

Corollary 5.5. Let A generate an exponentially stable C0-semigroup on a Hilbert

space X and let B be a closed operator on X with domain D(B) ⊃ D(A). If there

exist constants 0 < q < 1 and µ ∈ R such that for all λ ∈ C+

‖BR(λ, A)‖ ≤ q

and for all λ ∈ C with Re λ ≥ µ

‖R(λ, A)Bx‖ ≤ q‖x‖ ∀x ∈ D(A),

then A + B generates an exponentially stable C0-semigroup on X.

Proof. We will first show that A + B generates a C0-semigroup on X by showing that

the assumptions of theorem 4.31 are satisfied. Since A generates an exponentially

stable C0-semigroup T (t) on X, we know from theorem 2.6 that

{
λ ∈ C

∣∣ Re λ ≥ 0
}
⊂ ρ(A).

If µ > 0, choose λ0 = µ. Otherwise we can choose λ0 to be any positive real number.

This shows that the conditions of theorem 4.31 are satisfied and thus A+B generates

a C0-semigroup S(t) on X.
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Because the closedness of B and D(B) ⊃ D(A) imply that B is A-bounded (see

lemma A.9), the assumptions of proposition 5.2 are satisfied. This shows that the

C0-semigroup generated by A + B is exponentially stable.

We will again present a direct consequence of the previous result concerning perturbed

operators of the form εB.

Corollary 5.6. Let A generate an exponentially stable C0-semigroup on a Hilbert

space X and let B be a closed operator on X with domain D(B) ⊃ D(A). If there

exist constants M1, M2 > 0 and µ ∈ R such that for all λ ∈ C+

‖BR(λ, A)‖ ≤ M1

and for all λ ∈ C with Re λ ≥ µ

‖R(λ, A)Bx‖ ≤ M2‖x‖ ∀x ∈ D(B), (5.1)

then there exists a constant ε0 > 0 such that A + εB generates an exponentially stable

C0-semigroup on X for all 0 < ε ≤ ε0.

Proof. Choose

ε0 ≤ q ·min

{
1

M1

,
1

M2

}
for some 0 < q < 1. Clearly D(εB) = D(B) and εB is closed. Because for all λ ∈ C+

‖εBR(λ, A)‖ = |ε|‖BR(λ, A)‖ ≤ q

and for all λ ∈ C with Re λ ≥ µ

‖R(λ, A)εB‖ = |ε|‖R(λ, A)B‖ ≤ q,

the operator εB satisfies conditions of corollary 5.5 for all 0 < |ε| ≤ ε0. This shows

that A + B generates an exponentially stable C0-semigroup on X.

We will now present an example of an application for the theory presented in this

section. This example is a modification of the one in [13, Sec 6].
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Example 5.7. Let X = L2(R, C) and choose k ∈ N. Consider an operator A0 such

that

A0x = ix(2k)

where x(2k) denotes the 2kth distributional derivative of x. Let the domain of this

operator be

D(A0) =
{

x ∈ X
∣∣ x(i) abs. cont. for i ∈ {1, . . . , 2k − 1}, x(2k) ∈ L2(R, C)

}
.

Operator A0 then generates a C0-semigroup T0(t) on X [1, Sec 8.1] and σ(A0) ⊂ iR.

Choose a real constant ω such that ω > ω0(T0(t)). Since ω0(T0(t)) ≥ s(A0), we know

that ω > 0. The operator A0 − ωI with

(A0 − ωI)x = ix(2k) − ωx, D(A) = D(A0)

now generates an exponentially stable C0-semigroup T (t) on X.

Consider a perturbing operator B on X such that

Bx = V · x(l)

with domain

D(B) =
{

x ∈ X
∣∣ V · x(i) abs. cont. for i ∈ {1, . . . , l − 1}, V · x(l) ∈ X

}
where V ∈ L2(R, C) is a potential function and l ∈ N0 such that l < k. It is shown in

[13] that for λ ∈ C \ (iR)

‖BR(λ, A0)‖ ≤
‖V ‖2

2c(Re λ)1−l/(2k)−1/(4k)
(5.2)

for some real constant c > 0. Since by our assumption we have that 1− l
2k
− 1

4k
> 0,

this immediately implies that for all λ ∈ C+ we have

‖BR(λ, A)‖ = ‖BR(λ, A0 − ωI)‖ = ‖BR(λ + ω,A0)‖

≤ ‖V ‖2

2c(Re λ + Re ω)1−l/(2k)−1/(4k)
≤ ‖V ‖2

2c(Re ω)1−l/(2k)−1/(4k)
.
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This means that for any potential function V ∈ L2(R, C) whose norm satisfies

‖V ‖2 < 2c(Re ω)1−l/(2k)−1/(4k), (5.3)

we have for some 0 < q < 1 and for all λ ∈ C+ that ‖BR(λ, A)‖ ≤ q.

It can also be shown [13, Proof of Prop 6.1] that the estimate in (5.2) holds for A∗
0

and B∗ instead of A0 and B. This means that also for all x ∈ D(B) we have

‖R(λ, A)Bx‖ = ‖R(λ + ω,A0)Bx‖ ≤ ‖V ‖2

2c(Re λ + Re ω)1−l/(2k)−1/(4k)
‖x‖

and for all potential functions satisfying (5.3) we have

‖R(λ, A)Bx‖ ≤ q‖x‖

for all λ ∈ C+. This shows that the conditions of corollary 5.5 are satisfied for any

real µ > 0 and thus the operator A + B,

(A + B)x = ix(2k) + V · x(l) − ωx, D(A + B) = D(A),

generates an exponentially stable C0-semigroup on X.

5.1.4 Desch-Schappacher perturbations

Results similar to the ones in previous sections can also be formulated for Desch-

Schappacher perturbations, but because of the differences this case must be dealt with

separately. The following proposition states the main result of this section.

Proposition 5.8. Let A generate an exponentially stable C0-semigroup on a Hilbert

space X. If B ∈ SDS
t0

and for some 0 < q < 1

‖R(λ, A−1)B‖ ≤ q for all λ ∈ C+,

then the C0-semigroup generated by (A−1 + B)|X on X is exponentially stable.

Proof. By theorem A.17 we now know that
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r(R(λ, A−1)B) ≤ ‖R(λ, A−1)B‖ ≤ q < 1

and thus 1 ∈ ρ(R(λ, A−1)B) and R(1, R(λ, A−1)B) ∈ L(X). Since T (t) is exponen-

tially stable, we have λ ∈ ρ(A) for all λ ∈ C+.

The identity

λI − (A−1 + B)|X = (λI − A)(I −R(λ, A−1)B)

now implies that λ ∈ ρ((A + B)|X) whenever λ ∈ ρ(A) and 1 ∈ ρ(R(λ, A−1)B). This

means that {
λ ∈ C

∣∣ Re λ > 0
}
⊂ ρ((A + B)|X)

and the resolvent can be expressed as

R(λ, (A−1 + B)|X) = R(1, R(λ, A−1)B)R(λ, A).

We have an estimate

sup
Re λ>0

‖R(1, R(λ, A−1)B)‖ = sup
Re λ>0

‖
∞∑

n=0

(R(λ, A−1)B)n‖ ≤ sup
Re λ>0

∞∑
n=0

‖R(λ, A−1)B‖n

= sup
Re λ>0

1

1− ‖R(λ, A−1)B‖
≤ sup

Re λ>0

1

1− q

=
1

1− q
< ∞

and thus

sup
Re λ>0

‖R(λ, (A−1 + B)|X)‖ ≤ sup
Re λ>0

‖R(1, R(λ, A−1)B)R(λ, A)‖

≤ sup
Re λ>0

‖R(1, R(λ, A−1)B)‖‖R(λ, A)‖

≤ sup
Re λ>0

‖R(1, R(λ, A−1)B)‖︸ ︷︷ ︸
< ∞

sup
Re λ>0

‖R(λ, A)‖︸ ︷︷ ︸
< ∞

< ∞.

Theorem 3.4 now tells us that the C0-semigroup generated by (A + B)|X is exponen-

tially stable.

We will again note that if A generates an exponentially stable C0-semigroup T (t) and

B ∈ SDS
t0

, then R(λ, A−1)B is a bounded linear operator on X for all λ ∈ C+. Because
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this is not as evident as the boundedness of BR(λ, A) in section 5.1.1, we will prove

it here.

Let λ ∈ C+. From the exponential stability of T (t) and section 2.2.1 we know that

ω0(T−1(t)) = ω0(T (t)). This also implies that 0, λ ∈ ρ(A−1). Thus, by part (ii) of

lemma 2.18, the norms defined by ‖A−1
−1x‖ and ‖R(λ, A−1)x‖ are equivalent. Because

of this and the fact that B ∈ L(X, X−1), we have that for some real positive constants

M and C

‖R(λ, A−1)Bx‖ ≤ C‖A−1
−1Bx‖ = C‖Bx‖−1 ≤ CM‖x‖ ∀x ∈ X.

This means that R(λ, A−1)B ∈ L(X).

As a direct consequence of proposition 5.8, we get the following result concerning the

stability of an operator (A−1 + εB)|X where B ∈ SDS
t0

and ε is a constant.

Proposition 5.9. Let A generate an exponentially stable C0-semigroup on a Hilbert

space X. If B ∈ SDS
t0

, we can choose 0 < ε0 ≤ 1 so that (A−1 + εB)|X generates an

exponentially stable C0-semigroup for all ε ∈ C with 0 < |ε| ≤ ε0.

Proof. Due to proposition 5.8, it suffices to show that there exists 0 < ε0 ≤ 1 such

that for all 0 < |ε| ≤ ε0 we have εB ∈ SDS
t0

and for some 0 < q < 1

‖R(λ, A−1)εB‖ ≤ q for all λ ∈ C+.

We will first show that for all 0 < |ε| ≤ 1, we have εB ∈ SDS
t0

. Recall from section 4.4

that

SDS
t0

=
{

B ∈ L(X, X−1)
∣∣ VB ∈ L(Xt0), ‖VB‖ < 1

}
.

where

(VBF )(t)x =

∫ t

0

T−1(t− s)BF (s)xds for t ∈ [0, t0], x ∈ X

Since B ∈ SDS
t0

, we have B ∈ L(X, X−1) and ‖Bx‖−1 ≤ M1‖x‖ for some M1 > 0. Now

‖εBx‖−1 = |ε|‖Bx‖−1 ≤ |ε|M1‖x‖

and thus εB ∈ L(X, X−1). Since for all x ∈ X and t ∈ [0, t0]
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(VεBF )(t)x =

∫ t

0

T−1(t− s)εBF (s)xds = ε

∫ t

0

T−1(t− s)BF (s)xds = ε(VBF )(t)x

and VB ∈ L(Xt0), then also VεB ∈ L(Xt0) and

‖VεB‖ = |ε|‖VB‖ < |ε| ≤ 1.

This means that εB ∈ SDS
t0

.

Now, since T (t) is exponentially stable and ω0(T−1(t)) = ω0(T (t)), we have for some

M ≥ 1 and ω > 0 that

‖T−1(t)‖ ≤ Me−ωt.

As in proof of proposition 4.18, we can achieve an estimate

‖R(λ, A−1)B‖ ≤ ‖VB‖+
Me(−ω−Re λ)t0

1− e(−ω−Re λ)t0
.

Since we are considering λ ∈ C such that Re λ > 0 and the second term is a decreasing

function of Re λ, we get

‖R(λ, A−1)B‖ ≤ ‖VB‖+
Me(−ω−Re λ)t0

1− e(−ω−Re λ)t0
≤ ‖VB‖+

Me−ωt0

1− e−ωt0
< 1 +

Me−ωt0

1− e−ωt0
.

Let 0 < q < 1 and choose

ε0 =
q

1 + Me−ωt0

1−e−ωt0

=
q(1− e−ωt0)

1 + (M − 1)e−ωt0
.

Now for all ε ∈ C with |ε| ≤ ε0

‖R(λ, A−1)εB‖ = |ε|‖R(λ, A−1)B‖ ≤
q

1 + Me−ωt0

1−e−ωt0

(
1 +

Me−ωt0

1− e−ωt0

)
= q.

Proposition 5.8 now tells us that with this choise of ε0 the C0-semigroup generated by

(A−1 + εB)|X is exponentially stable for all 0 < |ε| ≤ ε0.
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5.1.5 C0-semigroups of Contractions

As we saw in section 4.3, some perturbations of C0-semigroups of contractions result

again in contractive C0-semigroups. Using corollary 3.6 concerning the stability of

uniformly bounded C0-semigroups we can derive a stability result for a particular type

of C0-semigroup. This section deals with C0-semigroups that are both contractive

and exponentially stable. This means that the C0-semigroup T (t) satisfies the norm

estimate

‖T (t)‖ ≤ e−ωt

for some ω > 0. The following proposition contains the main result of this section.

Proposition 5.10. Let A generate a C0-semigroup T (t) on a Hilbert space X satis-

fying

‖T (t)‖ ≤ e−ωt

for some ω > 0. Let B with domain D(B) ⊃ D(A) be dissipative and A-bounded with

A-bound a0 < 1. If there exists a constant 0 < q < 1 such that

‖BR(λi, A)‖ ≤ q

for all λ ∈ R, then the operator A+B generates an exponentially stable C0-semigroup

on X.

Proof. Since B satisfies the assumptions of theorem 4.10, the operator A+B generates

a C0-semigroup of contractions S(t) on X. We will now show that A + B satisfies the

assumptions of corollary 3.6 and thus the perturbed C0-semigroup is exponentially

stable.

Let λ ∈ R. Since A is exponentially stable, we know that λi ∈ ρ(A). Since

theorem A.17 now tells us that

r(BR(λi, A)) ≤ ‖BR(λi, A)‖ < 1,

we have 1 ∈ ρ(BR(λi, A)). Furthermore, the identity

λiI − A−B = (I −BR(λi, A))(λiI − A)

implies that λi ∈ ρ(A + B) and
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R(λi, A + B) = R(λi, A)R(1, BR(λi, A)).

We need to show that supλ∈R‖R(λi, A + B)‖ < ∞. The previous identity allows us to

estimate

sup
λ∈R

‖R(λi, A + B)‖ = sup
λ∈R

‖R(λi, A)R(1, BR(λi, A))‖

≤ sup
λ∈R

‖R(λi, A)‖‖R(1, BR(λi, A))‖

≤ sup
λ∈R

‖R(λi, A)‖ sup
λ∈R

‖R(1, BR(λi, A))‖.

Thus it suffices to show that supλ∈R‖R(λi, A)‖ < ∞ and supλ∈R‖R(1, BR(λi, A))‖ <

∞.

Since T (t) is exponentially stable, it follows from remark 3.5 that

sup
λ∈R

‖R(λi, A)‖ < ∞.

Let λ ∈ R. To show that supλ∈R‖R(1, BR(λi, A))‖ < ∞, we estimate

‖R(1, BR(λi, A))‖ = ‖
∞∑

n=0

(BR(λi, A))n‖ ≤
∞∑

n=0

‖BR(λi, A)‖n

=
1

1− ‖BR(λi, A)‖
≤ 1

1− q

and thus

sup
λ∈R

‖R(1, BR(λi, A))‖ ≤ sup
λ∈R

1

1− q
=

1

1− q
< ∞.

This shows that

sup
λ∈R

‖R(λi, A + B)‖ < ∞

and thus by corollary 3.6 the C0-semigroup generated by A+B on X is exponentially

stable.

In closing, we will present a simple example of a perturbation of an exponentially

stable C0-semigroup of contractions.
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Example 5.11. Consider again the case of example 4.12. We showed that the operator

A+B generates a C0-semigroup of contractions on X = `2(C). We will now show that

the perturbed C0-semigroup is exponentially stable.

Let λ ∈ R and (xk) ∈ X. The resolvent operator R(λi, A) is given by

R(λi, A)(xk) =

(
xk

λi− k

)
and thus

‖BR(λi, A)(xk)‖2 =

∥∥∥∥( βk

λi− k
xk

)∥∥∥∥2

=
∞∑

k=1

|β|2 k2

|λi− k|2
|xk|2

= |β|2
∞∑

k=1

k2

λ2 + k2
|xk|2.

This shows that ‖BR(λi, A)‖ ≤ |β|. Now k2

λ2+k2 → 1 when k →∞. If we choose (xk)

such that

xk =

{
1 k = i

0 k 6= i

and let i →∞, it is easy to see that ‖BR(λi, A)‖ ≥ |β|. This means that for all λ ∈ R

‖BR(λi, A)‖ = |β|.

Because we assumed |β| < 1, this means that the conditions of proposition 5.10 are

satisfied and thus the C0-semigroup generated by A + B is exponentially stable.

5.1.6 Comparison of Results

From the definition of relative boundedness it is easy to see that all bounded oper-

ators are also relatively bounded. Furthermore, we know from theorem 4.1 that for

all bounded perturbations the perturbed operator generates a C0-semigroup on X.

Because of this, the condition presented in proposition 5.2 is also applicable in the

case B ∈ L(X). The following corollary is a formulation of proposition 5.2 for these

perturbations.
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Corollary 5.12. Let A generate an exponentially stable C0-semigroup T (t) on a

Hilbert space X and let B ∈ L(X). If there exists a real constant 0 < q < 1 such

that

‖BR(λ, A)‖ ≤ q for all λ ∈ C+, (5.4)

then A + B generates an exponentially stable C0-semigroup on X.

Because B is bounded, we can use the inequality

‖BR(λ, A)‖ ≤ ‖B‖‖R(λ, A)‖ ∀λ ∈ ρ(A)

to derive a sufficient condition for the condition (5.4) to hold. If we have for some

0 < q < 1

‖B‖ ≤ q

supRe λ>0‖R(λ, A)‖
, (5.5)

then for all λ ∈ C+ we also have

‖BR(λ, A)‖ ≤ ‖B‖‖R(λ, A)‖ ≤ ‖B‖ sup
Re λ>0

‖R(λ, A)‖ ≤ q < 1.

Since the unperturbed C0-semigroup is exponentially stable, we have for some

constants M ≥ 1 and ω > 0 that the estimate ‖T (t)‖ ≤ Me−ωt holds for all t ≥ 0.

The Hille-Yosida Theorem (theorem 2.7) now implies that

sup
Re λ>0

‖R(λ, A)‖ ≤ sup
Re λ>0

M

Re λ + ω
=

M

ω
.

This means that we obtain another sufficient condition by estimating

q

supRe λ>0‖R(λ, A)‖
≥ q

ω

M
.

The new sufficient condition is then ‖B‖ ≤ q ω
M

. This, however, is equivalent to

‖B‖ < ω
M

which is the sufficient condition presented in corollary 5.1. In this sense,

the condition in corollary 5.12 is stronger than the bound in corollary 5.1.

As we stated at the beginning of this chapter, the bound in corollary 5.1 is optimal

for general C0-semigroups and perturbing operators B ∈ L(X). This combined with
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the fact that the condition of corollary 5.12 is stronger for all particular perturbations

means that the conditions in corollaries 5.1 and 5.12 are equivalent for the general

case of bounded perturbations.

In this sense, the sufficient condition presented in proposition 5.2 is an extension of

the condition presented in corollary 5.1.

Pritchard and Townley [23] have considered the preservation of exponential stability

under perturbations of form BDC where the operators are bounded operators between

different spaces. The unboundedness of the perturbation can be embedded in the

choise of those spaces (for example by using Sobolev spaces of different orders). The

conditions for exponential stability of the perturbed semigroups formulated in the

article involve the operator norm ‖D‖. The theory itself is an infinite-dimensional

generalization of the theory introduced in [12]. We will now compare the conditions

for the preservation of exponential stability presented in [23] to the ones we have

obtained in this section.

The operators of the perturbation BDC are defined as B ∈ L(Z,X2), D ∈ L(Y, Z)

and C ∈ L(X1, Y ) where X is a Banach space and Y and Z are Hilbert spaces. The

spaces X1 and X2 restrict and extend the space X, respectively. If A generates an

exponentially stable C0-semigroup on X and the spaces and the operators B and C

satisfy certain assumptions, Pritchard and Townley present a stability radius rstab

such that the operator A + BDC generates an exponentially stable C0-semigroup on

X whenever ‖D‖ < rstab. It is also shown that if

sup
λ∈R

‖CR(λi, A)B‖ < ∞,

then

rstab =
1

supλ∈R‖CR(λi, A)B‖
.

We will now show that these results can be used to obtain conditions similar to the

ones we have presented in this section. Let A generate an exponentially stable C0-

semigroup on a Hilbert space X. Choose X1 = X1, X2 = X, Y = Z = X, B = I

and D = εI where ε is a real parameter such that ε ≥ 0. Now the perturbing

operator is εC with C ∈ L(X1, X). If certain initial assumptions are satisfied and

supλ∈R‖CR(λi, A)‖ < ∞, then the operator A + εC generates an exponentially stable

C0-semigroup on X whenever

ε <
1

supλ∈R‖CR(λi, A)‖
.
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This condition can also be formulated as

sup
λ∈R

‖(εC)R(λi, A)‖ = ε · sup
λ∈R

‖CR(λi, A)‖ < 1. (5.6)

This condition is clearly very similar to the one in proposition 5.2. However, the initial

assumptions turn out to be relatively restrictive for our purposes. This follows from the

fact that Pritchard and Townley consider simultaneously both the perturbed operator

being a generator of a C0-semigroup and the preservation of exponential stability. We

only want to derive conditions for the preservation of stability, that is, we already

know that the perturbed operator generates a C0-semigroup on X. In particular, one

of the assumptions requires that for all T > 0 there exists a constant k such that

∫ T

0

‖CT (t)x‖2dt ≤ k‖x‖2 for all x ∈ D(A).

This condition is stricter than is generally needed, for example, for C ∈ SMV
t0

.

Naturally, the assumptions used by Pritchard and Townley can be seen as additional

conditions on the perturbing operators. However, because of the nature of these

assumptions, the set of conditions obtained this way would not imply the conditions

in proposition 5.2.

It should also be noted that in (5.6) the supremum only needs to be taken over the

imaginary axis. We saw in remark 3.5 that if ‖R(·, A)‖ is uniformly bounded on C+,

then it is also uniformly bounded on the imaginary axis. Because the perturbing

operator C is unbounded, this kind of relationship does not necessarily hold in this

case. Because of this, the conditions in proposition 5.2 do not imply that

sup
λ∈R

‖BR(λi, A)‖ < 1

holds. This means that in this particular case the conditions of Pritchard and Townley

can not be obtained from our conditions. In this sense, even though similar, the

conditions obtained in this section and the ones presented by Pritchard and Townley

are separate.

Another difference between the results is that the ones by Pritchard and Townley are

also applicable when X is a Banach space, whereas the results we have presented in

this section all require X to be a Hilbert space. The spaces Y and Z need to be Hilbert

spaces but in applications this is generally not very restrictive. It should also be noted

that our main concern are the A-bounded perturbing operators B with D(B) ⊃ D(A).

The theory by Pritchard and Townley can be used for more general restricting and

extending spaces X1 and X2.
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5.2 Spectral Conditions

As we saw in section 3.2, determining the growth bound of the C0-semigroup from the

spectrum of its generator can be done in special cases, for example when the Spectral

Mapping Theorem holds. To this end, we will now turn our attention to classes of

regular C0-semigroups which have this property. However, it is not always easy to

determine when the perturbed operator generates a regular C0-semigroup. In this

thesis, we concentrate on the case in which we know the unperturbed semigroup has

certain regularity properties which enable us to determine its growth bound from the

spectrum of its generator. After that, we will restrict our attention to perturbations

which preserve these regularity properties. The theory will then tell us that the growth

bound of the perturbed C0-semigroup is again determined by the spectrum of the

perturbed operator. Perturbation of such C0-semigroups is considered in sections

5.2.1 and 5.2.2. It should be noted that unlike many results presented in this thesis,

the ones in those two sections do not assume that the unperturbed C0-semigroup is

exponentially stable.

When considering more general C0-semigroups we can sometimes impose conditions

directly on the perturbing operator to get results close to the spectrum determined

growth condition. The underlying idea is that although the spectrum of the perturbed

operator doesn’t determine the growth bound of the perturbed C0-semigroup alone,

we can still use it to characterize the growth bound together with another quantity.

We saw in sections 2.1.1 and 2.1.2 that both the essential growth bound ωess(T (t)) and

the critical growth bound ωcrit(T (t)) together with the spectral bound of the generator

determine the growth bound of the C0-semigroup. Our aim is to find perturbations

which do not increase either ωess or ωcrit. When perturbing the generator of an exponen-

tially stable C0-semigroup with such an operator, the growth bound of the perturbed

C0-semigroup is determined by the spectral bound of the perturbed operator and ωess

or ωcrit of the unperturbed C0-semigroup.

We shall see in section 5.2.3 that compact perturbations leave the essential growth

bound unchanged. As special cases of bounded linear operators, compact operators

are not very general. However, they are common in applications.

Describing perturbations which do not increase the critical growth bound requires more

complicated conditions. In general, however, they do not even need to be bounded

operators. These kinds of perturbations are considered in section 5.2.4.



CHAPTER 5. STABILITY CRITERIA FOR PERTURBED C0-SEMIGROUPS 83

5.2.1 Perturbation of Analytic Semigroups

Analytic semigroups are in a sense ”most regular” among the regular classes of semi-

groups considered in this thesis since they are at the same time immediately differ-

entiable and immediately norm-continuous (see Figure 3.1). Since we have stronger

results concerning the preservation of analyticity than the other regularity proper-

ties, we will consider this class separately. We saw that bounded perturbations and

perturbations of classes SDS
t0

, SMV
t0

and SKW preserve this property. These results are

summarized in the following corollary.

Corollary 5.13. Let A be a generator of an analytic semigroup on a Banach space

X. If B ∈ L(X) or there exists a t0 > 0 such that B ∈ SDS
t0

or B ∈ SMV
t0

, then A + B

generates an analytic semigroup on X and this semigroup is exponentially stable if and

only if s(A + B) < 0. The conclusions also hold if X is a Hilbert space and B ∈ SKW.

Proof. Theorem 4.4, proposition 4.18, proposition 4.29, proposition 4.34 guarantee

that A + B generates an analytic semigroup S(z) on X. By corollary 3.10 we have

ω0(S(z)) = s(A + B).

Without restating the results, we will also mention that similar results hold for all

the perturbations considered in section 4.2. All of the cases considered there result in

an analytic perturbed semigroup. Therefore, the stability of the perturbed semigroup

being characterized by the negative spectral bound of the perturbed operator is a

direct consequence of corollary 3.10 in each of these cases.

5.2.2 Perturbation of Other Regular C0-Semigroups

There is very little theory concerning the preservation of other regularity properties

under unbounded perturbations. However, if we only consider bounded perturbations

we can use theory in sections 4.1 and 3.2 to formulate conditions under which the

spectral bound of the perturbed operator determines the stability of the perturbed

C0-semigroup. The following results are direct consequences of the results presented

in these sections. It should also be noted that since we are only considering bounded

perturbations, we know that the perturbed operator is always a generator of a C0-

semigroup.

Corollary 5.14. Let A generate an immediately compact or immediately norm-

continuous C0-semigroup on a Banach space X and let B ∈ L(X). Then the C0-

semigroup generated by A+B on X is exponentially stable if and only if s(A+B) < 0.
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If the unperturbed C0-semigroup is only eventually differentiable, compact or norm-

continuous we have to pose additional conditions. As in section 4.1, define the space

X as the space of all strongly continuous functions from [0,∞) to L(X) and define an

abstract Volterra operator V on X by

(V F )(t)x =

∫ t

0

T (t− s)BF (s)xds, F ∈ X , t ≥ 0 and x ∈ X.

Using this notation, we get the following result

Corollary 5.15. Let A generate an eventually (differentiable, compact, norm-

continuous) C0-semigroup on a Banach space X. If B ∈ L(X) and for some n ∈ N

ran V n ⊂
{
F ∈ X

∣∣ F is immediately (differentiable,

compact, norm-continuous) for t ≥ 0} ,

then the C0-semigroup generated by A + B on X is exponentially stable if and only if

s(A + B) < 0.

5.2.3 Compact Perturbations

As we saw in section 2.1.1, the growth bound of a C0-semigroup only depends on its

essential growth bound and the spectral bound of its generator. It turns out that this

characterization has an advantage when we are perturbing the generator of an expo-

nentially stable C0-semigroup with a compact operator: The essential growth bound

isn’t changed under a compact perturbation and thus the stability of the perturbed

C0-semigroup depends on the spectral bound of A + B alone. Again we can note that

since all compact operators are bounded, all the perturbed operators considered here

are automatically generators of C0-semigroups on X.

Proposition 5.16. Let T (t) be a C0-semigroup on a Banach space X with generator

A and let B ∈ K(X). Denote by S(t) the semigroup generated by A + B. Then

ωess(T (t)) = ωess(S(t)).

Proof. [8, Prop IV.2.12]



CHAPTER 5. STABILITY CRITERIA FOR PERTURBED C0-SEMIGROUPS 85

If we recall from section 2.1.1 that we can express the growth bound of a C0-semigroup

T (t) generated by A as

ω0(T (t)) = max {ωess(T (t)), s(A)} ,

the previous result implies that for a compact perturbation B the growth bound of

the perturbed C0-semigroup S(t) is given by

ω0(S(t)) = max {ωess(T (t)), s(A + B)} ,

Since the exponential stability of T (t) implies that ωess(T (t)) < 0, the stability of

the perturbed C0-semigroup depends only on the spectrum of the perturbed operator.

The result is summarized in the following corollary.

Corollary 5.17. Let T (t) be an exponentially stable C0-semigroup with generator A

on a Banach space X and let B ∈ K(X). Then A + B generates an exponentially

stable C0-semigroup on X if and only if s(A + B) < 0.

5.2.4 Perturbation of the Critical Growth Bound

In their article [3], Brendle, Nagel and Poland achieved results which can be used

to characterize the stability of the perturbed C0-semigroup in certain situations.

The article deals with unbounded perturbations B satisfying assumption 5.18. This

assumption guarantees that B is a Miyadera-Voigt perturbation, but is a stronger

condition than is in general needed for B ∈ SMV
t0

. We give here an introduction to

those parts of this theory which are most useful to us.

Let A generate a C0-semigroup T (t) on a Banach space X and let B be an A-bounded

operator on X. We make the following assumption

Assumption 5.18. There exists a function q : R+ → R+ for which limt→0+ q(t) = 0

such that ∫ t

0

‖BT (s)x‖ds ≤ q(t)‖x‖

for each x ∈ D(A) and t ≥ 0.

Corollary 5.19. Let A generate a C0-semigroup on a Banach space X and let B be

an A-bounded operator on X satisfying assumption 5.18. Then B ∈ SMV
t0

.
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Proof. Since by assumption B is A-bounded, we have by remark 4.19 that B ∈
L(X1, X).

Since q(t) ≥ 0 and limt→0+ q(t) = 0, there exists a t0 > 0 such that supt∈[0,t0] q(t) < 1.

This implies that for all x ∈ D(A)

∫ t0

0

‖BT (t)x‖dt ≤ q(t0)‖x‖ ≤ sup
t∈[0,t0]

q(t)‖x‖ = q‖x‖, 0 ≤ q < 1.

Therefore B satisfies the conditions of corollary 4.22 and B ∈ SMV
t0

.

For the rest of the section, let B be an A-bounded operator satisfying assumption 5.18

and denote by S(t) the C0-semigroup generated by the operator A + B on X. Recall

from section 4.5 that S(t) is given by the abstract Dyson-Phillips series

S(t) =
∞∑

n=0

(V nT )(t), t ≥ 0, where V = V ∗
B,

(V ∗
BF )(t)x =

∫ t

0

F (s)BT (t− s)xds, for F ∈ Xt0 = C([0, t0],Ls(X)), x ∈ X1

and V ∗
B denotes the operator giving extensions (V ∗

BF )(t) : X → X of operators

(V ∗
BF )(t). The series can be written as

S(t) =
∞∑

n=1

Sn(t),

where

S0(t) = T (t), Sn(t)x =

∫ t

0

Sn−1(t− s)BT (s)xds ∀x ∈ D(A), t ≥ 0.

Denote the remainder terms by

Rk(t) =
∞∑

n=k

Sn(t).

The following theorem gives sufficient conditions for a perturbation not to increase the

critical growth bound of a C0-semigroup.
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Theorem 5.20. Let A generate a C0-semigroup T (t) on a Banach space X. Let B

be an A-bounded operator satisfying assumption 5.18. If the mapping t 7→ Rk(t) is

right norm continuous for some k ∈ N and t ≥ t0 (see definition A.13), then for the

C0-semigroup S(t) generated by the operator A + B

ωcrit(S(t)) ≤ ωcrit(T (t)).

Proof. [3, Thm 4.1]

Theorem 5.20 immediately gives us knowledge of the growth bound of the perturbed

C0-semigroup in terms of the growth bound of the original semigroup and the spectral

bound of the operator A + B.

Corollary 5.21. Suppose conditions of theorem 5.20 hold. Then for the growth bound

of the perturbed C0-semigroup S(t) we have

ω0(S(t)) ≤ max {ωcrit(T (t)), s(A + B)} .

If the C0-semigroup T (t) is exponentially stable, its critical growth bound must be

negative. This leads us to the following corollary.

Corollary 5.22. Let A generate an exponentially stable C0-semigroup and let B be

an A-bounded operator satisfying assumption 5.18. If the mapping t 7→ Rk(t) is right

norm continuous for some k ∈ N and t ≥ t0, then the C0-semigroup generated by

A + B is exponentially stable if s(A + B) < 0.

5.3 Lyapunov Equation Approach

In [19], Pandolfi and Zwart derived a sufficient condition for the stability of the

perturbed C0-semigroup for a class of unbounded perturbations. They used the fact

that a C0-semigroup generated by A in Hilbert space X is exponentially stable if and

only if the Lyapunov equation

〈Ax, Py〉+ 〈x, PAy〉 = −〈x, y〉, ∀x, y ∈ D(A)

has a self-adjoint positive solution P ∈ L(X) (see theorem 3.7).
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Assuming that A generates an exponentially stable C0-semigroup T (t) on X, consider

perturbations B satisfying the following assumptions

Assumption 5.23.

(i) D(B) ⊃ D(A) and A + B generates a C0-semigroup S(t) on X.

(ii) The number LB defined by

L2
B = sup

x∈D(A),‖x‖=1

∫ ∞

0

‖BT (t)x‖2dt (5.7)

is finite.

(iii) B is A-bounded.

Since T (t) is exponentially stable, by theorem 3.2 the function T (·)x ∈ L2([0,∞), X)

for all x ∈ X and we can the define number Λ by

Λ2 = sup
‖x‖=1

∫ ∞

0

‖T (t)x‖2dt.

The following theorem gives a sufficient condition for the perturbed C0-semigroup to

be exponentially stable.

Theorem 5.24. Let A generate an exponentially stable C0-semigroup T (t) on a Hilbert

space X and let B be an operator satisfying assumption 5.23. If LB (as defined in

equation (5.7)) satisfies

LB <
1

2Λ
,

then the operator A + B generates an exponentially stable C0-semigroup on X.

Proof. [19, Thm 2]

The exponential stability of the unperturbed C0-semigroup T (t) allows us to find an

upper bound for Λ. Choose M ≥ 1 and ω > 0 such that

‖T (t)‖ ≤ Me−ωt for all t ≥ 0

and let x ∈ X be such that ‖x‖ = 1. We now have an estimate
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∫ ∞

0

‖T (t)x‖2dt ≤
∫ ∞

0

‖T (t)‖2‖x‖2dt ≤
∫ ∞

0

M2e−2ωtdt =
M2

2ω

and thus Λ ≤ M√
2ω

. This also implies that

1

2Λ
≥ 1

2 M√
2ω

=

√
ω√

2M
.

This leads to a more concrete sufficient condition for the stability of the perturbed

C0-semigroup.

Corollary 5.25. Assume A generates an exponentially stable C0-semigroup T (t) on a

Hilbert space X. Let B be an operator satisfying assumption 5.23 and let M ≥ 1 and

ω > 0 be such that

‖T (t)‖ ≤ Me−ωt ∀t ≥ 0.

If LB satisfies

LB <

√
ω√

2M
,

then the operator A + B generates an exponentially stable C0-semigroup on X.



Chapter 6

Conclusions

In this thesis we have studied strongly continuous semigroups of linear operators on

Hilbert spaces. Our main interest has been the preservation of exponential stability

under additive perturbations. We have considered both bounded and relatively

bounded perturbations and presented conditions under which the perturbed operator

generates an exponentially stable C0-semigroup.

Before considering the stability of the C0-semigroups, we needed to study which pertur-

bations preserve the property of the operator being an infinitesimal generator of a C0-

semigroup. In order to answer this question, we introduced a wide variety of theory

found in the literature.

Given that the unperturbed C0-semigroup is exponentially stable and the perturbed

operator generates a C0-semigroup, we were able to find conditions under which the

perturbed C0-semigroup is exponentially stable. Conditions were first derived for

the more general case of relatively bounded perturbations for which the perturbed

operator generates a C0-semigroup and subsequently for a class of perturbations for

which the first conditions were not applicable. The condition for relatively bounded

perturbations also includes bounded perturbations as a special case. Using this fact,
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we saw that a well-known condition for the preservation of exponential stability under

a bounded perturbation follows from our conditions.

As a second approach, we formulated conditions under which the spectrum of the

perturbed operator determines the stability properties of the perturbed C0-semigroup.

In most of these cases, certain degree of regularity is required from the unperturbed

C0-semigroup. Although this limits the generality of the theory, these special classes

of C0-semigroups are often encountered in applications.

Finally, we introduced sufficient conditions obtained by Pandolfi and Zwart for the

preservation of exponential stability. This theory is applicable to relatively bounded

perturbations satisfying certain special assumptions.

To find alternate conditions for the stability of the perturbed C0-semigroup, one

reasonable approach would be to use other conditions for exponential stability of a

C0-semigroups and apply them to the case of perturbed semigroups. Possibly useful

conditions for exponential stability include the weak Lp-stability in theorem 3.3 and

Quoc Phong’s condition [22]

sup
λ∈R,t≥0

‖
∫ t

0

eiλsT (s)xds‖ < ∞ ∀x ∈ X.

Another possibly useful condition is van Neerven’s result which states that the expo-

nential stability of a C0-semigroup T (t) in a Banach space is equivalent to the condition

T ∗ f ∈ Z for all f ∈ Z,

where Z denotes either Lp([0,∞), X) or C0([0,∞), X) [27]. The convolution T ∗ f is

defined by

(T ∗ f)(t) =

∫ ∞

0

T (s)f(t− s)ds.

Applying some these conditions to the case of perturbed C0-semigroups was already

tried during the writing of this thesis. Most of them led to very impractical conditions,

but there might be ways to carry the analysis further. For example, the conditions

resulted from the application of van Neerven’s results could probably be simplified by

using more advanced theory related to convolution. Also, in this thesis we mainly

used the Dyson-Phillips -series representation of the perturbed C0-semigroup. The

variation of parameters -formula could be more suitable when working with some of

these conditions.
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As we saw in section 5.1.6, the conditions presented by Pritchard and Townley in [23]

can be used to derive conditions similar to the ones in section 5.1. The authors consider

simultaneously both the perturbed operator being a generator of a C0-semigroup and

the preservation of exponential stability. The first natural question to ask is that if we

already knew that the perturbed operator generates a C0-semigroup, could we loosen

the initial assumptions used in the article? This way, it could be possible to find new

conditions for the stability of the pertubed C0-semigroup.

One possible topic for further research would be to incorporate perturbation theory

concerning the spectrum of linear operators to the results presented in section 5.2. At

first sight, however, the conditions needed in order to obtain bounds for the growth of

the spectral bound seem to be very restrictive. One of the directly applicable theorems

states the following: If the perturbing operator B is bounded and commutes with A,

then the distance between σ(A) and σ(A + B) does not exceed ‖B‖ [14, Thm IV.3.6].

This implies for the spectral bounds that s(A + B) ≤ s(A) + ‖B‖.

One certainly interesting topic would be to see how our conditions change if we did

not require exponential stability. The next natural form of stability would be strong

stability, which means that for a C0-semigroup T (t) on X we have

lim
t→∞

‖T (t)x‖ = 0

for all x ∈ X. There are actually two separate cases to study: One would be, given

an exponentially stable unperturbed C0-semigroup, to find conditions under which the

perturbed C0-semigroup is strongly stable. The other would be to start with a strongly

stable C0-semigroup and see how this property is preserved under perturbations.
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Appendix A

Functional Analysis and

Integration Theory

The results presented in this appendix can be found in most of the literature containing

introductory functional analysis, for example [14, 4, 25, 18, 7]. We will also present a

couple of helpful results concerning integrable functions. This theory can be found in

[10].

A.1 Normed Linear Spaces

We will first define the concept of quotient space.

Definition A.1. Let M be a subspace of a normed linear space X. Two elements

x, y ∈ X are said to be equivalent modulo M if x− y ∈ M . The equivalence class of x

is defined as

[x] =
{

y ∈ X
∣∣ x− y ∈ M

}
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The quotient space X�M is defined as the set of all these equivalence classes

X�M =
{

[x]
∣∣ x ∈ X

}
The quotient space is a normed linear space with quotient norm defined by

‖[x]‖ = dist(x, M) = inf
y∈M

‖x− y‖

�

A.2 Operator Theory

In this section we will present some basic result of operator theory.

Definition A.2. The graph of an operator A : D(A) → Y is defined as

Gr(A) =
{

(x, Ax)
∣∣ x ∈ D(A)

}
⊂ X × Y

The graph norm ‖·‖A is defined as

‖x‖A =
√
‖x‖2 + ‖Ax‖2

�

Definition A.3. Let X be a Hilbert space with inner product 〈·, ·〉 and let A be a

densely defined linear operator on X. For the adjoint operator A∗ : X ⊃ D(A∗) → X

we have

D(A∗) =
{

y ∈ X
∣∣ ∃z such that 〈Ax, y〉 = 〈x, z〉, ∀x ∈ D(A)

}
.

Following the notation of the definition of D(A∗) the adjoint operator A∗ is then

defined as

A∗y = z, for y ∈ D(A∗)

�

Definition A.4. A linear operator A is said to be closed if for every convergent

sequence (xn) in D(A) with xn → x and Axn → y we have x ∈ D(A) and Ax = y. �
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Theorem A.5. The operator A : D(A) ⊂ X → Y is closed if and only if Gr(A) is a

closed subspace of X × Y .

Proof. [14, p. 164]

Theorem A.6 (Closed Graph Theorem). Let A be a closed operator from Banach

space X to Banach space Y . If D(A) = X, then A is a bounded operator.

Proof. [14, Thm III.5.20], [25, Thm IV.5.7], [7, Thm II.2.3]

Definition A.7. Let X and Y be normed linear spaces. An operator A ∈ L(X, Y ) is

said to be compact if for every bounded sequence (xn) ⊂ X the sequence (Axn) has a

convergent subsequence. �

Definition A.8. Let X, Y and Z be normed spaces and let A and B be linear

operators such that A : X → Y , B : X → Z and D(A) ⊂ D(B). The operator B is

said to be A-bounded if there exist constants a, b ≥ 0 such that

‖Bx‖ ≤ a‖Ax‖+ b‖x‖, ∀x ∈ D(A).

The A-bound of B is then defined as

a0 = inf
{

a ≥ 0
∣∣ ∃b ≥ 0 : ‖Bx‖ ≤ a‖Ax‖+ b‖x‖, ∀x ∈ D(A)

}
�

Lemma A.9. Let X, Y and Z be Banach spaces. If the operators A : X ⊃ D(A) → Y

and B : X ⊃ D(B) → Z are closed and D(B) ⊃ D(A), then B is A-bounded.

Proof. This proof follows [14, Remarks IV.1.4-5].

Define space X̂ = (D(A), ‖·‖A) where ‖x‖A = ‖x‖ + ‖Ax‖ for all x ∈ D(A). We will

first show that X̂ is Banach space with this norm.

Let (xn) ⊂ X̂ be a Cauchy sequence. Then ‖xn − xm‖ ≤ ‖xn − xm‖A and thus (xn) is

a Cauchy sequence in X and limn→∞ xn = x ∈ X. Since ‖Axn−Axm‖ ≤ ‖xn−xm‖A,

also the sequence (Axn) ⊂ Y is Cauchy sequence in Y and limn→∞ Axn = y. This

means that (xn) and (Axn) are both convergent and since A is closed, this means that

x ∈ D(A) = X̂. Thus X̂ with norm ‖·‖A is a Banach space.
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Define operator B̂ as the restriction of B to D(A). Now B̂ can be seen as an operator

B̂ : X̂ → Z. We will show that B̂ is closed.

Let (xn) ⊂ X̂ be a sequence such that limn→∞ xn = x ∈ X̂ and limn→∞ B̂xn = y.

Since ‖xn − x‖ ≤ ‖xn − x‖A, also (xn) ⊂ D(B) is convergent with respect to the

norm in X. Since also (Bxn) = (B̂xn) is convergent and B is closed, we know that

B̂x = Bx = y. This shows that B̂ is closed. Since D(B̂) = X̂, theorem A.6 implies

that B̂ ∈ L(X̂, Z). This means that there exists M > 0 such that for all x ∈ D(A)

‖Bx‖ = ‖B̂x‖ ≤ M‖x‖A = M‖Ax‖+ M‖x‖

and thus B is A-bounded.

Definition A.10. Let A be a closed operator on a Banach space X. An operator B

is called (relatively) A-compact if D(A) ⊂ D(B) and B : X1 → X is compact. Here

X1 denotes (D(A), ‖·‖A) where ‖·‖A is the graph norm. �

Definition A.11. Let X be a Hilbert space. An operator A : X → X is said to be

positive if for all x ∈ X with x 6= 0 we have 〈Ax, x〉 > 0. �

Definition A.12. A linear operator A on a Banach space X is called dissipative if for

every x ∈ D(A) there exists a x∗ ∈ X∗ (the dual space of X) such that

〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

and Re〈Ax, x∗〉 ≤ 0. In Hilbert space X the operator is dissipative if Re〈Ax, x〉 ≤ 0

for every x ∈ D(A). �

Definition A.13. An operator-valued mapping t 7→ T (t), where T (t) ∈ L(X,Y ), for

all t ≥ 0 is called right norm-continuous for t ≥ t0 if

lim
h→0+

‖T (t + h)− T (t)‖ = 0, for t ≥ t0.

The mapping is called norm-continuous for t ≥ t0 if

lim
h→0

‖T (t + h)− T (t)‖ = 0, for t ≥ t0.

�
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Theorem A.14 (Extension principle). A bounded linear operator A on a Banach

space X with domain D(A) can be extended to a bounded linear operator on D(A) with

the same norm. The extension is unique.

Proof. [14, p. 145 & Thm III.1.16], [18, Thm 5.8.7]

A.3 Spectral Theory

Definition A.15. Let A be a linear operator on X. The resolvent set ρ(A) of A is

defined by

ρ(A) =
{

λ ∈ C
∣∣ R(λ, A) = (λI − A)−1 exists and is a densely defined

bounded linear operator

}
.

For a λ ∈ ρ(A), the operator (λI − A)−1 = R(λ, A) is called the resolvent operator.

The spectrum σ(A) of A is defined by

σ(A) = C \ ρ(A).

�

Definition A.16. Let A : D(A) ⊂ X → X be a closed operator. The spectral radius

of A is defined as

r(A) = sup
{
|λ|
∣∣ λ ∈ σ(A)

}
and the spectral bound of A as

s(A) = sup
{

Re λ
∣∣ λ ∈ σ(A)

}
.

�

Theorem A.17. Let A be a bounded operator on a Banach space X. Then the spectral

radius of A satisfies

r(A) ≤ ‖A‖.

Proof. [8, Cor IV.1.4]
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Lemma A.18. Let λ ∈ ρ(A) and dist(λ, σ(A)) = inf
{
|λ− µ|

∣∣ µ ∈ σ(A)
}
. Then

dist(λ, σ(A)) ≥ 1

‖R(λ, A)‖

Proof. [7, Cor VII.3.3]

Let λ, µ ∈ ρ(A). The following resolvent equation is a useful identity

R(µ, A) = R(λ, A) + (λ− µ)R(λ, A)R(µ, A) (A.1)

Lemma A.19. Let X be a linear space and let X be its completion. If A ∈ L(X) and

A ∈ L(X) is its unique linear extension, then ρ(A) = ρ(A) and hence also σ(A) =

σ(A).

Proof. Since A and A are bounded operators, both ρ(A) and ρ(A) are not empty [14,

Sec III.6.2]. We will first note that a bounded operator B on a linear space Y has a

bounded inverse if and only if there exists a positive real constant α such that

‖Bx‖ ≥ α‖x‖, ∀x ∈ Y

Let λ ∈ ρ(A). Then there exists a real positive constant α such that ‖(λI − A)x‖ ≥
α‖x‖ for all x ∈ X.

Let x ∈ X. There exists a sequence (xn) ⊂ X such that limn→∞ xn = x. This implies

that

‖(λI − A)x‖ = lim
n→∞

‖(λI − A)xn‖ = lim
n→∞

‖(λI − A)xn‖ ≥ lim
n→∞

α‖xn‖ = α‖x‖

and thus λI −A has a bounded inverse. It remains to show that ran(λI −A) is dense

in X. This follows directly from the fact that ran(λI −A) ⊂ ran(λI −A). This shows

that λ ∈ ρ(A) and thus ρ(A) ⊂ ρ(A).

Let λ ∈ ρ(A). There exists a real positive constant α such that ‖(λI − A)x‖ ≥ α‖x‖
for all x ∈ X. This implies that the same holds for all x ∈ X and thus (λI − A) has

a bounded inverse. We will now show that ran(λI − A) is dense in X.

Let y ∈ X and ε > 0. Since ran(λI − A) is dense in X, there exists x ∈ X such that
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‖(λI − A)x− y‖ <
ε

2
.

Choose a sequence (xn) ⊂ X such that limn→∞ xn = x. There exists m ∈ N such that

‖x− xm‖ <
ε

2‖λI − A‖
Now,

‖(λI − A)xm − y‖ = ‖(λI − A)xm − (λI − A)x + (λI − A)x− y‖
≤ ‖(λI − A)xm − (λI − A)x‖+ ‖(λI − A)x− y‖
≤ ‖λI − A‖ ε

2‖λI − A‖
+

ε

2
= ε

and thus ran(λI − A) is dense in X. This shows that λ ∈ ρ(A) and thus ρ(A) ⊂
ρ(A).

A.4 Integration Theory

Lemma A.20. Let f ∈ L1([a, b]; R+). Then for every ε > 0 there exists δ > 0 such

that if c, d ∈ [a, b], c < d and d− c < δ then

∫ d

c

f(t)dt < ε

Proof. This is a direct consequence of [10, Thm 12.34].

The previous Lemma immediately leads us to the following corollary

Corollary A.21. Let f ∈ L1([a, b]; R+). If c, s ∈ [a, b], then

lim
s→c+

∫ s

c

f(t)dt = 0.


