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ABSTRACT
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This thesis is concerned with strongly continuous semigroups of linear operators, called
Co-semigroups, on Banach and Hilbert spaces. In particular, we are interested in how
exponential stability is preserved under additive perturbations of the infinitesimal
generator of the Cy-semigroup. We consider both bounded and relatively bounded
perturbations.

The problem is divided into two parts. We will first look for conditions under which
the perturbed generator remains an infinitesimal generator of a Cy-semigroup. Subse-
quently, we will impose additional conditions for the stability of the perturbed Cjy-
semigroup.

To answer the first part of the problem, we present a variety theoretical results found
in the literature. These results provide conditions under which the perturbed operator
generates a Cy-semigroup.

As the first approach to the second part of the problem, we introduce additional condi-
tions under which the perturbed Cy-semigroup is exponentially stable. This is done
by applying conditions for the stability of a Cy-semigroup to the case of the perturbed
Co-semigroup.

As a second approach, we provide conditions under which the stability of the perturbed
Cop-semigroup can be determined from the spectrum of the perturbed operator. Some
of these results require certain special properties from the Cy-semigroup and some of
them are applicable to the case of general Cy-semigroups.
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Tassa diplomityossa kasitelladn vahvasti jatkuvia puoliryhmia, eli Cy-puoliryhmia,
Banach- ja Hilbert-avaruuksissa. Erityisesti olemme kiinnostuneita siitd miten niiden
stabiilisuusominaisuudet muuttuvat infinitesimaaliseen generaattoriin kohdistuvien
hairioiden vaikutuksesta.

Vahvasti jatkuvien puoliryhmien voidaan ajatella olevan eksponenttifunktion e
yleistys aaretonulotteisiin avaruuksiin. Suljettu operaattori Banach-avaruudessa voi
generoida samankaltaisen vahvasti jatkuvan kuvauksen ¢ +— T(t) puoliavoimelta
véliltd [0, 00) avaruuteen £(X). Eksponenttifunktion tavoin tdmé kuvaus toteuttaa
chdot T'(s +t) = T'(s)T'(t) ja T(0) = I kun s,t > 0. Toisaalta &éreténulotteisesta
tilanteesta 16ytyy myos paljon eroavaisuuksia eksponenttifunktion tapaukseen verrat-
tuna. Esimerkiksi yleisessa Banach-avaruudessa jokainen lineaarinen operaattori ei
generoi vahvasti jatkuvaa puoliryhmaa.

Selvitamme seuraavaksi mitd puoliryhméan eksponentiaalinen stabiilisuus tarkoittaa.
Vahvasti jatkuvat puoliryhmat liittyvat laheisesti abstraktien Cauchy-ongelmien teo-
rinan: Jos A generoi vahvasti jatkuvan puoliryhmén T'(¢) Banach-avaruudessa X,
niin yhtélén #(t) = Ax(t) alkuehdolla z(0) = xy € X ratkaisuksi saadaan
x(t) = T(t)xo. Ratkaisua kutsutaan stabiiliksi, jos se lahestyy nollaa ¢:n kasvaessa.
Tassa tyossa olemme kiinnostuneita erityisesti tapauksesta, jossa kaikilla alkutiloilla
xg € X yhtalon ratkaisun normi lahenee nollaa eksponentiaalisella nopeudella ¢:n
kasvaessa. Puoliryhmén 7T'(t) ominaisuuksien avulla ilmaistuna tdmé tarkoittaa sité,
ettd on olemassa reaaliset vakiot M > 1 ja w > 0 siten ettd ||T(t)]| < Me " patee
kaikilla ¢t > 0.

Koska kaikilla alkutiloilla xy vahvasti jatkuva puoliryhmé 7'(¢) mééraa ratkaisun x(t)
kéyttaytymisen, voimme nidhdé yhtélon ratkaisujen stabiilisuuden puoliryhmén 7'(t)
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ominaisuutena. TAmén vuoksi kutsumme vahvasti jatkuvaa puoliryhméé T'(t) ekspo-
nentiaalisesti stabiiliksi, jos on olemassa reaaliset vakiot M > 1 ja w > 0 siten
ettd || T(t)|| < Me" patee kaikilla ¢ > 0.

Tassé tyossa tarkastelemme seuraavaa ongelmaa: Oletetaan, ettd operaattori A, jonka
maéérittelyjoukko on D(A), generoi eksponentiaalisesti stabiilin vahvasti jatkuvan
puoliryhman Banach- tai Hilbert-avaruudessa X ja B, jonka maarittelyjoukko on
D(B), on lineaarinen operaattori avaruudessa X. Milla ehdoilla operaattori A + B
generoi eksponentiaalisesti stabiilin vahvasti jatkuvan puoliryhmén avaruudessa X7
Ongelma voidaan jakaa kahteen osaan. Koska jokainen lineaarinen operaattori ei ge-
neroi vahvasti jatkuvaa puoliryhméaa, on meidan ensin tarkasteltava milloin operaat-
tori A + B on jonkin Cp-puoliryhmén infinitesimaalinen generaattori. Taméan jalkeen
etsimme lisdehtoja sille, etta hairitty puoliryhma on eksponentiaalisesti stabiili.
Ongelman ensimmaiseen osaan vastataksemme esittelemme erilaisia ehtoja sille, et-
td myOs hairitty operaattori generoi vahvasti jatkuvan puoliryhméan avaruudessa X.
Tata aihetta on tutkittu 1950-luvulta lahtien ja teoriaa on kehitetty seka rajoite-
tuille ettd ei-rajoitetuille héirioille. Jo vuonna 1953 R.S. Phillips julkaisi tuloksia,
jotka antavat tyhjentavan vastauksen rajoitettujen hairividen tapaukseen. Téaman jal-
keen tutkimuksen paapaino on ollut ei-rajoitettujen hairididen tapauksessa. Jo hyvin
aikaisessa vaiheessa huomattiin, etta tietyt vahvasti jatkuvien puoliryhmien luokat
sietavat toisia paremmin ei-rajoitettuja hairioita. Téssa tyossa esittdmamme tulokset
analyyttisten ja kontraktiivisten puoliryhmien generaattorien hairioille esiteltiin en-
simmaisen kerran jo 1950-luvun loppupuolella. Naiden hairiotulosten lisaksi esit-
telemme viela kolme erilaista kokoelmaa ehtoja yleisen vahvasti jatkuvan puoliryhman
generaattorin hairitsemiselle siten, ettd myos hairitty operaattori generoi vahvasti
jatkuvan puoliryhman avaruudessa X. Nama ehdot voidaan jarjestda Cy-puoliryhméan
generoinnin sailyttavien hairiciden luokiksi S}gs, S%N ja S¥W. Eli, jos A generoi
vahvasti jatkuvan puoliryhman avaruudessa X ja operaattori B kuuluu johonkin
vastaavista luokista SP5, SMV tai S¥W, niin myos héiritty operaattori generoi
vahvasti jatkuvan puoliryhméan avaruudessa X. FEnsimmainen luokista seuraa W.
Deschin ja W. Schappacherin johtamista ehdoista. Toisen luokan ehdot ovat alun-
perin I. Miyaderan julkaisemia ja myohemmin J. Voigtin eteenpéain kehittamia.
Tassa tyossa kayttamamme yhtenaistetty lahestymistapa naiden kahden hairioluokan
kasittelyyn seuraa K-J. Engelin ja R. Nagelin esittelemaa menettelya. Kolmas luokka
seuraa C. Kaiserin ja L. Weisin esittelemista ehdoista.

Ongelmamme toiseen osaan 16ytyy kirjallisuudesta vain muutamia suoria vastauksia.
Lisaksi monet naista tuloksista patevat vain tietyille vahvasti jatkuvien puoliryhmien
luokille tai tietyn tyyppisille hairioille. Tassa diplomityossa kaytamme useampaa eri-
laista lahestymistapaa.

Ensimmaisessa lahestymistavassa aloitamme esittelemalla erilaisia kirjallisuudesta 16y-
tyvia tapoja maarittaa vahvasti jatkuvan puoliryhman stabiilisuus. Vaikka puoliryh-
man stabiilisuuden méaaraaminen daretonulotteisessa avaruudessa on monimutkaisem-
paa kuin aarellisulotteisessa tapauksessa, l0ytyy tahan useita erilaisia menetelmia.
Soveltamalla joitakin naista ehdoista hairityn puoliryhmén tapaukseen voimme johtaa
riittavia ehtoja tadman puoliryhman eksponentiaaliselle stabiilisuudelle. Johdamme
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ehtoja ensin tapaukselle jossa operaattori B on A-rajoitettu ja hairitty operaatto-
ri A+ B, jonka méiirittelyjoukko on D(A + B) = D(A), generoi vahvasti jatkuvan
puoliryhman. Lisaksi esittelemme nama ehdot erikseen tapauksissa B € S%[V ja
B € S¥W. Yleinen ehtomme on sovellettavissa myos rajoitettujen hiirididen tapauk-
seen. Tassa tapauksessa naemme myos, etta rajoitettujen hairiciden tunnettu ja
yksinkertainen ehto eksponentiaaliselle stabiilisuudelle seuraa tassa tyossa johtamis-
tamme ehdoista. Yleista ehtoamme ei voida kayttaa jos B € St]gs, mutta kasittelemal-
14 tapauksen erikseen voimme johtaa vastaavan tuloksen myo6s néille hairicille. Lopuksi
esittelemme vield samankaltaisen mutta erillisen tuloksen kontraktiivisten puoliryh-
mien hairioille.

Toisena lahestymistapana etsimme osittaista ratkaisua eksponentiaalisen stabiilisuu-
den sailymiselle. Adrellisulotteisissa avaruuksissa puoliryhman, siis eksponenttifunk-
tion e?, stabiilisuusominaisuuksien mé#rittiminen onnistuu madrittimalla matriisin
A ominaisarvot. Puoliryhmé on talldin stabiili, jos kaikkien ominaisarvojen reaali-
osat ovat aidosti negatiivisia. Joissakin erikoistapauksissa myos aaretonulotteisen
avaruuden puoliryhmén stabiilisuus voidaan péatelld sen infinitesimaalisen generaat-
torin spektrista. Joillekin vahvasti jatkuvien puoliryhmien luokille nimittain patee,
ettd puoliryvhma on eksponentiaalisesti stabiili tasmaélleen silloin kun sen generaat-
torin spektrin alkioiden reaaliosat ovat ylhaaltapain rajoitettuja jollakin negatiivi-
sella luvulla. Tassd tyossa etsimme ehtoja sille, ettd hairityn puoliryhmén sta-
biilisuus voidaan paatella hairityn operaattorin spektrista. Naita ehtoja on kahta
tyyppida. Ensimmaisissa naistda hyodynnetaan suoraan sita, etta jos vahvasti jatku-
valla puoliryhmaélla on tiettyja saannollisyysominaisuuksia, voimme paatella onko
puoliryhma eksponentiaalisesti stabiili tarkastelemalla sen generaattorin spektria. Jos
alkuperaiselld puoliryhmallamme on tallainen ominaisuus ja rajoitumme tarkastele-
maan hairioita jotka sailyttavat taman saannollisyysominaisuuden, voimme talloin
paatella hairityn puoliryhman stabiilisuuden hairityn operaattorin spektrista. Taméan
kasittelytavan lisaksi voimme saavuttaa vastaavanlaisen tilanteen myos yleisempien
puoliryhmien tapauksessa. Jos alkuperidinen vahvasti jatkuva puoliryvhmamme on
eksponentiaalisesti stabiili, on olemassa suoraan hairioon kohdistuvia ehtoja, joiden
toteutuessa hairityn puoliryhméan stabiilisuus voidaan paatella hairityn operaattorin
spektrista.

Teoriaa voidaan kéiyttaa esimerkiksi tutkittaessa miten abstraktin Cauchy-ongelman
t(t) = Ax(t) ratkaisujen stabiilisuus muuttuu, jos tdmé korvataan yhtalolla z(t) =
(A + AA)x(t) alkuehdon pysyessd samana. Téllaisessa tapauksessa héirion AA voi
aiheuttaa esimerkiksi operaattorin A korvaaminen sen aarellisulotteisella approksi-
maatiolla. Jos A on rajoittamaton operaattori, on selvia ettei operaattori AA valt-
tamatta ole rajoitettu. Toisaalta esimerkiksi saatoteoriassa tulee monesti vastaan
tilanteita, joissa operaattorit ovat rajoitettuja tai kompakteja. Taman vuoksi on hyo-
dyllista etsia myos tuloksia, jotka patevat joissain erityistapauksissa.
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Chapter 1

Introduction

In this thesis we study strongly continuous semigroups of bounded linear operators,
or Cy-semigroups, and how their properties change under certain kinds of perturba-
tions. We will start by introducing the operator semigroups and relating them to
familiar structures of finite-dimensional spaces. A more mathematical formulation of
the concepts involved will be given in chapter 2. In this chapter we will also formulate
the main problem, give a brief account of how it has been addressed before and outline
the approach used in this thesis.

In a way, a semigroup of linear operators is a generalization of an exponential function.
Recall that for a matrix A € C"*" the mapping

Eo T(t) = et = (“‘Z)n (1.1)

produces an n x n-matrix for every ¢ > 0. From the basic properties of the exponential
function we also know that this mapping satisfies T'(t + s) = T'(t)T'(s) and T(0) = 1.
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In a general infinite-dimensional Banach space X a closed and possibly unbounded
operator
A: XDDA) - X

can give rise to a similar structure. If this is the case, then the strongly continuous
semagroup of bounded linear operators generated by A is a strongly continuous mapping

T(-):[0,00) — L(X)

satisfying T'(t+s) = T'(t)T(s) and T'(0) = I. However, unlike in the finite-dimensional
case, it is in general not possible to find a formula like the one in (1.1) for 7T'(¢) in
infinite-dimensional spaces. A more detailed introduction to the properties of strongly
continuous semigroups and their generators is given in chapter 2. We will now describe
what is meant by the stability of a semigroup.

Semigroups of linear operators are heavily related to the behaviour of dynamical
systems. Let us start with the homogeneous abstract Cauchy equation

z(t) = Az(t), x(0) = (1.2)

on X where A : D(A) — X is the generator of a strongly continuous semigroup. As
in finite-dimensional case, the solution of this equation can be given in terms of the
semigroup T'(t):

If the initial value zy belongs to D(A), the domain of the operator A, this is the
classical solution of the equation. If this is not the case, the solution is a mild (or
weak) solution of the equation.

The solution x(t) of this equation is called stable if it approaches zero as t grows.
There are several different ways this can happen. In particular we are interested in
the case where the norm of the solution approach zero at an exponential rate with ¢
for all initial values xy € X. Expressed in terms of the properties of the semigroup,
this means that we are able to find real constants M > 1 and w > 0 such that for all
t>0

[T < Me™". (1.3)

Since for all initial values z( the behaviour of z(t) is determined by the strongly
continuous semigroup, we can see that the stability of the solutions is a property
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of the semigroup. To this end, we will call a strongly continuous semigroup 7'(¢)
exponentially stable if there exist real constants M > 1 and w > 0 such that (1.3)
holds for all ¢ > 0.

In this thesis we consider the preservation of the exponential stability of the semigroup
when its generator A is subjected to an additive perturbation. When considering
abstract Cauchy equations, this means that equation (1.2) is replaced with an equation
of form

#(t) = (A+ AA) z(t),  2(0) = 0. (1.4)

This can happen for example when the operator is not exactly known or when
discretization error occurs in simulations. This kind of situation is also often encoun-
tered in control theory where we have a system described by the equations

(t) = Ax(t)+ Bul(t), z(0) = xg
y(t) = Cu(t)

Here y(t) is called the output and u(t) the control of the system. If we apply a feedback
of form u(t) = Ky(t), the state z(t) will be given by the abstract Cauchy equation

#(t) = (A+ BKC)z(t), 2(0) = xo.

Obviously the operator BKC' can be seen as a perturbation.

Our aim is to consider a wide range of perturbations. If A is an unbounded operator
and the perturbation in the abstract Cauchy equation (1.4) is caused by replacing it
with its finite-dimensional approximation, it is clear that the perturbing operator AA
does not have to be bounded. On the other hand, in the case of feedback considered
above it is common that some of the operators B, K and C are finite-dimensional and
bounded. In some of these cases the perturbing operator BKC can become compact.
This motivates us not only to consider the most general perturbations, but also to find
particular results for certain special classes of perturbations.

Considering the abstract Cauchy problem (1.4) also gives rise to a question under what
conditions the perturbed equation has a solution. This can, however, be answered
using the theory of strongly continuous semigroups: It turns out that as long as the
operator A + AA generates a strongly continuous semigroup, the perturbed equation
has a unique solution for all initial values zo € X [8, Cor 11.6.9.].
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We will now formulate the main problem of the thesis:

Assume that an operator A generates an exponentially stable strongly continuous
semigroup T(t) on a Banach or Hilbert space X and consider a perturbing operator
B : D(B) — X with D(B) C X. Under what conditions on the operators A and B
does the perturbed operator A + B with domain D(A + B) generate an exponentially
stable strongly continuous semigroup on X ¢

The problem can be divided into two main parts:

e Under what assumptions does A + B generate a strongly continuous semigroup
on X7?

e What additional conditions are needed for this semigroup to be stable?

Answering the first part of the problem is pretty straightforward. This particular
question has been studied actively since the 1950’s and a fair amount of theory has
been developed for both bounded and relatively bounded perturbations. As early as
in 1953, Phillips [21] presented results which give a thorough answer to the problem in
the case B € £L(X). Since then the main emphasis has been in the study of relatively
bounded perturbations. In chapter 4 we will introduce different types of conditions
for the perturbed operator to be a generator of a Cy-semigroup. At the beginning of
the chapter we will also look at the developement of the theory in more detail.

Literature presents only few answers to the second part of the problem and in this
thesis we will consider different approaches. We will first introduce the theory on
the stability of strongly continuous semigroups. Subsequently, we will apply some of
these criteria to the case of perturbed semigroups in order to formulate an answer
to the second part of the problem. We will first derive sufficient conditions for the
preservation of stability when the perturbed operator generates a Cp-semigroup on X.
We will also formulate these conditions for certain classes of perturbations for which
the perturbed operator again generates a semigroup on X. We will also derive separate
sufficient conditions for certain perturbations for which the general conditions are not
applicable. We will also compare the results obtained with this method to existing
ones by Pritchard and Townley [23]. These results are presented in Section 5.1 and
they are by the author.

As a second approach to the problem we look for a partial answer to the question.
In finite-dimensional spaces the semigroup of linear operators (the exponential func-
tion), is exponentially stable exactly when the spectrum of its generator is contained
in the open left half-plane of the complex plane C. Even though the case is far
more complicated in infinite-dimensional spaces, we will learn in chapter 3 that if the
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semigroup has certain regularity properties we can achieve a characterization which is
similar to the one in finite-dimensional case. More precisely, for some classes of regular
semigroups it holds that the strongly continuous semigroup is exponentially stable if
the real part of the spectrum of the generator is bounded from above by a negative
constant. A more detailed description of what we mean by a ”regular semigroup” is
given in section 2.1.3. Using this theory we will in section 5.2 formulate conditions
under which the exponential stability of the perturbed semigroup is determined by
the spectrum of the perturbed operator. In the same section we will also characterize
some perturbations which lead to the same situation without additional assumptions
on the unperturbed semigroup.

Pandolfi and Zwart [19] have considered this problem in Hilbert spaces for relatively
bounded perturbations satisfying certain special assumptions. They use the fact that
the exponential stability of a strongly continuous semigroup can be characterized by
the existence of a positive self-adjoint solution to a certain Lyapunov equation (see [5]
or [4, Thm 5.1.3]). We will present the main results of this theory in section 5.3.

This thesis is arranged as follows:

Chapter 2 introduces mathematical concepts used in this thesis. We will give a
detailed formulation of the strongly continuous semigroups of linear operators and
introduce their most important properties. We will also introduce theory on Sobolev
towers and Favard spaces, both of which will be used throughout the thesis.

Chapter 3 discusses the stability of strongly continuous semigroups. This is more
complicated in infinite-dimensional spaces than in finite-dimensional ones. The first
part of the chapter discusses characterization of general strongly continuous semi-
groups on Banach and Hilbert spaces. The latter part of the chapter shows that in
case the strongly continuous semigroups has certain special properties, its stability is
completely determined by the spectrum of its infinitesimal generator.

Chapter 4 studies conditions under which the perturbed operator again generates
a strongly continuous semigroup. Before considering more general perturbations, we
will give a brief account of the theory on bounded perturbations and perturbations of
certain special classes of semigroups. The rest of the chapter is used to introduce three
classes of relatively bounded perturbations relating to general strongly continuous
semigroups.

Chapter 5 contains derivation of conditions for the stability of the perturbed semi-
group. The first part of the chapter presents direct conditions for the stability of
a general strongly continuous semigroup. In the second part, we present conditions
under which the stability of the perturbed semigroup is determined by the spectrum
of the perturbed generator. Finally, we present conditions obtained by Pandolfi and
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Zwart for the stability of the perturbed strongly continuous semigroups under certain
type of perturbations.

Chapter 6 contains concluding remarks.

Appendix A lists some helpful results from functional analysis and integration theory.



Chapter 2

Mathematical Background

In this chapter we will present some mathematical results which we will use later in
the thesis. For the purposes of this thesis, the most important part is Section 2.1
where we define a strongly continuous semigroup of linear operators. More thorough
introductions to this topic can be found for example in [20, 4, 8]. We will also use
some more advanced concepts related to strongly continuous semigroups. The theory
on the essential growth bound [8, 15] and the critical growth bound [17, 3] are needed
when considering particular classes of perturbations in Section 5.2. Sobolev towers and
Favard spaces are used for a unified treatment of two classes of unbounded perturba-
tions in chapter 4. The introduction to this theory follows the one given in [8].

2.1 Semigroup Theory

In this section we will define the strongly continuous semigroups mathematically and
introduce their most important properties. As we already stated, this structure can be
seen as a generalization of the exponential function from finite-dimensional spaces to
Banach spaces. Because of this, it is useful to compare the properties of the strongly
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continuous semigroups introduced here to the corresponding properties of exponential
functions. The following two definitions formulate the concepts of strongly continuous
semigroups and their generators.

Definition 2.1. A semigroup of bounded linear operators is an operator-valued func-
tion T'(t) from R* to £(X) having the properties

(i) T(t+s)=T@)T(s) fort,s >0,

(ii) T(0) = 1.
Furthermore, if the function satisfies
(iii) [[T'(t)xo — zol| — 0 ast — 0T, Vi € X,

it is called a strongly continuous semigroup. The term strongly continuous semigroup
is often abbreviated as Cy-semigroup. B

Definition 2.2. The infinitesimal generator A of a Cy-semigroup on a Banach space
X is defined by

A — fig LTz
t—0+ t

t—0+

D(A) = {ze X | lim % exists }.

The infinitesimal generator of a Cy-semigroup T'(t) is sometimes simply called the
generator and we say that ” A generates T'(t)”.

It is now easy to see that if X = C", then for a matrix A € C"*" the exponential
function

T(t) = e

is a Cy-semigroup and its infinitesimal generator is the matrix A (which is an operator
on X).
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Before stating properties of Cy-semigroups, we will consider their asymptotic behav-
iour. Strongly continuous semigroups have a property that the growth of their norm
is at most exponential with respect to ¢. This means that for any Cy-semigroup 7'(t)
we can find real constants M > 1 and w such that

1T (@) < Me*

holds for all ¢ > 0 [8, Prop 1.5.5]. Of course, since this estimate is only an upper
bound for the growth, we are naturally interested in finding a bound which is as strict
as possible. Because of this, we will define the growth bound of a Cy-semigroup as
follows.

Definition 2.3. The growth bound wo(T'(t)) of a Cy-semigroup 7T'(t) is defined as

wo(T(t)) =inf{weR|IM >1: |T(t)|| < Me*, Vt>0}.

As we already mentioned, we are interested in the kind of stability where the norm of
the Cy-semigroup decays exponentially with respect to t. We will now give a precise
definition of this property. This definition also immediately leads us to the character-
ization of this kind of stability in terms of the growth bound of the C)-semigroup.

Definition 2.4. A Cy-semigroup T'(t) on a Banach space X is exponentially stable if
there exist positive constants M and w such that

IT(t)|| < Me™™*, forall t > 0.

In other words, for the growth bound of the Cp-semigroup holds wy(7'(¢)) < 0. B

In finite-dimensional spaces, the ”growth bound” of an exponential function is equal to
the largest real part of the generator’s eigenvalues. This does not hold in the infinite-
dimensional space, but we have the following relation between the growth bound of a
Cy-semigroup and the spectral bound of its generator

Theorem 2.5. Let A generate a Cy-semigroup T'(t) on a Banach space X. Then the
following holds:
—00 < 5(A) <wp(T(t)) < 0.
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Also, the spectral radius of the Cy-semigroup is given by

r(T(t)) = e T for all t > 0.

Proof. [8, Prop 1V.2.2] O

The following theorem gives some properties of Cy-semigroups and their infinitesimal
generators. These results are frequently used throughout the thesis.

Theorem 2.6. Let T'(t) be a Cy-semigroup on a Banach space X with infinitesimal
generator A. The following results hold:

(i) |T(t)|| is bounded on every finite subinterval of [0, 00),
(i) T(t) is strongly continuous for all t € [0, 00),
(iii) A is a closed densely defined linear operator,

(w) If X € C and Re X > wo(T(t)), then X € p(A) and R(\, A)x = [;° e MT(t)xdt
forallz € X,

(v) If xog € D(A), then T'(t)xg € D(A) for allt >0,

(vi) L(T(t)wg) = A"T(t)zo = T(t) A zo for zo € D(A™), t > 0.
Proof. [20],[8],[4] O

Although expressing the Cy-semigroup in terms of its infinitesimal generator is gener-
ally not as straight-forward as it was in finite-dimensional spaces, we can determine
when a closed linear operator on a Banach space is a generator of a Cy-semigroup. The
following well-known theorem presents a complete characterization of the generators
of Cy-semigroups on a Banach space.

Theorem 2.7 (Hille-Yosida). A closed, densely defined, linear operator A on a Banach
space X is the infinitesimal generator of a strongly continuous semigroup T(t) if and
only if there exist real numbers M and w such that for all A with Re A > w it follows
that A € p(A) and

M

RMNA] < —r
1RO A < oy

for alln € N.
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The Cy-semigroup then satisfies

IT@)]] < Me".

Proof. [20], [8], [4] O

We will now define another concept frequently used in this thesis. Let the operator
A with domain D(A) be the generator of a Cy-semigroup 7'(¢f) on a Banach space
X. If p € Cand a € R with a > 0, then the operator B = aA + $I with domain
D(B) = D(A) is the generator of a rescaled Cy-semigroup e?*T'(at) on X [8, Par 11.2.2].
Clearly, since for all w > wo(T'(t))

HeﬁtT(Oét)H _ eReﬁtHT(O‘ﬂH < MeReﬂtewat _ Me(anrReﬁ)t’

the rescaled Cp-semigroup has the growth bound wy(e®T'(at)) = awe(T(t)) + Re 3.

Before moving on, we will give a simple example of an exponentially stable Cy-
semigroup.

Example 2.8. Consider the space X = ¢?(C) and an unbounded operator A

A(zy) = (—kxy), DA) ={zeX|Aze X}

The operator A generates a Cy-semigroup 7'(t) on X with
T(t)r = (e ), z€X.
Since we have for all z € X with [|z]| =1
[Tl = 3 e a2 = 3 e o < 3" e ol = e ] = e,
k=1 k=1 k=1
the Cyp-semigroup satisfies ||T'(¢)]| < Me " with M =1 and w = 1.

In sections 2.1.1 and 2.1.2 we will define quantities which can be used together with
the spectral bound of a generator to determine the stability of a Cy-semigroup.
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2.1.1 The Essential Growth Bound

Let A be a bounded linear operator on a Banach space X. The operator A is called a
Fredholm operator if

dimker A < oo and dim (X/ran A> < 00.
For an operator B € L(X) a Fredholm domain is defined as

pr(B)={XeC ‘ Al — B is a Fredholm operator }

and the essential spectrum of B is defined as its complement,

ess(B) = C\ pr(B).

Consider the quotient space L(X >/IC( X) where (X)) C L£(X) is the set of all compact
operators on X. For an operator

A € E(X)/IC(X)
where A = A+ K, K € K(X), we have the quotient norm (see definition A.1)

|A]| = dist(4, K(X)) = inf{ |A - K| | K € K(X) }.

Now the Fredholm domain and the essential spectrum are given by [8, Par IV.1.20]

pr(A) = p(
Oess(A) = of

22

We also define the essential norm by ||Alles = ||A||. Finally, the essential growth bound
of a Cy-semigroup T'(t) is defined as

Wess (T (1)) =inf{w €R [ IM > 1: [|T(t)||ess < Me**, ¥Vt >0}

The following theorem states the relation between the growth bound and the essential
growth bound of a Cy-semigroup.
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Theorem 2.9. Let T(t) be a Cy-semigroup on a Banach space with generator A. Then
the growth bound of T'(t) is given by

wo(T(t)) = max {wess(T'(t)), s(A)} -

Proof. [8, Cor IV.2.11] O

2.1.2 The Critical Growth Bound

We will go on to define the critical growth bound introduced in [17]. Define first a
(not necessarily strongly continuous) semigroup 7'(¢) in the space X = [*(X) by

T()7 = (T()an), & = (z,) € X.

For this semigroup, consider the subspace of strong continuity
Xy = {7 € X | lim |T(@)7 7] =0}

Denote by T'(t) the quotient semigroup induced by T'(t) in the space X = X/ X,

A ~ ~

T(t).f? = T(t).f’ + XT(t) where T =2+ T(t)-

The critical growth bound of a Cy-semigroup T'(¢) is now defined as

werit(T(1)) = wo(T(t)).

Similarly to the case of the essential growth bound in Section 2.1.1, we have the
following result which states the relation between the growth bound and the critical
growth bound of a Cy-semigroup 7'(t).

Theorem 2.10. Let A be the generator of a Co-semigroup T(t). Then the growth
bound of T(t) is given by

wolT (1)) = max {s(A), were(T(1))}

Proof. [17] O
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2.1.3 Special Classes of Semigroups

In this section we will define Cy-semigroup classes based on certain special properties.
We will see in chapter 3 that this classification will be helpful when determining the
stability of a Cj-semigroup.

Definition 2.11. A Cy-semigroup T'(t) is called a Cy-semigroup of contractions if
|T(t)|| <1 holds for all ¢t > 0. R

Definition 2.12. A Cy-semigroup T'(¢) is called eventually compact if T(t) is a
compact operator for t > ty for some ty > 0. The Cy-semigroup T'(t) is called imme-
diately compact if we can choose to = 0. H

Definition 2.13. A Cy-semigroup T'(t) is called eventually differentiable if for some
to > 0 and for every x € X the maps t — T(t)x are differentiable for ¢ > t,. The
Co-semigroup T'(t) is called immediately differentiable if we can choose ty = 0. B

Definition 2.14. A Cy-semigroup T'(t) is called eventually norm-continuous if T(t)
is norm-continuous for ¢ > ¢y, that is,

li T -T = fi .
hg&“ (t+h) (t)|| =0, fort>tg

The Cy-semigroup is called immediately norm-continuous if we can choose to = 0. B

In the previous definition, the limit is only required to be zero when approaching 0
from the positive side. However, in this case the properties of the Cy-semigroups imply
that T'(s) converges uniformly to 7'(¢t) whenever s — ¢. The same holds for the the
next definition.

Definition 2.15. A Cy-semigroup is called uniformly continuous if T'(t) is uniformly
continuous for ¢ > 0, that is,

. - _ -
Jlim | T(t+ 1) = T(0)] =0, ¥t >0
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Uniformly continuous Cy-semigroups are a relatively restricted class, because they

are exactly those Cy-semigroups whose infinitesimal generators are bounded linear
operators on X [20, Thm 1.1.2].

As the last special class, we will define analytic semigroups. The name comes from
the property that the mapping
t— T(t)

can be continued from the positive real axis to an analytic function on a certain part
of the complex plane. We denote a sector in C by

Ss={AeC||arg)| <} \ {0}

Definition 2.16. A family of linear operators T'(z), z € X5U{0}, is called an analytic
semagroup if
(1) T(0) = I and T'(z1 + 22) = T'(21)T(22) for 21,29 € Xy,
(ii) The map z — T'(2) is analytic in 3,
(iii) Forall z € X and 0 < ¢’ < 0

lim T'(z)x = x.
z—0

2625/

Analytic semigroup T'(z) is called a bounded analytic semigroup if ||T(z)|| is bounded
inYgforal0<d<d. N

We will need the the following characterization of analytic semigroups later in the
thesis.

Theorem 2.17. For an operator A on a Banach space X the following properties are
equivalent:

(i) A generates a bounded analytic semigroup T(z) on X.

(ii) A generates a bounded Cy-semigroup on X and there ezists a constant M > 0
such that

M

5]

|R(r + s, A)|| <

for all r;s € R with r > 0 and s # 0.
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Proof. [8, Thm 11.4.6], [20, Thm 2.5.2] m

Throughout the thesis we will use terms such as "regular Cy-semigroup” or speak of
"regularity properties” of the Cy-semigroup. By this we mean that the Cp-semigroup in
question belongs to some of the special classes of semigroups introduced in definitions
2.12, 2.13, 2.14 or 2.16.

2.2 Interpolation and Extrapolation Spaces

We will now introduce Sobolev towers and Favard spaces. These concepts allow
unified treatment of certain classes of perturbations and they help us simplify notation
throughout the thesis. The spaces are constructed by extending and reducing the orig-
inal Banach space X and the set of spaces is always related to a specific Cp-semigroup
on X.

We assume that A generates an exponentially stable Cy-semigroup on a Hilbert space
X. If this is not the case, we can carry out the construction by considering a rescaled
Co-semigroup e “'T(t) generated by the operator A — wl for some w > wo(T(t)) (see
Section 2.1).

We will present the construction of Sobolev spaces X, and Favard spaces F, for all
n € Z and a € R even though we will mainly use these spaces for values n = —1,0, 1
and a =0, 1.

A more detailed account of the concepts presents here can be found in [§].

2.2.1 Sobolev Towers

Define Xy = X, To(t) = T(t), Ao = A and ||z||, = ||[A"z||. Now the Sobolev space of
order n € N is defined as

X = (D(A™), [[-[l) -

With this definition, X,, are Banach spaces for all n € N [8, Prop 11.5.2]. We define
the Cy-semigroup T,(t) as the restriction of T'(t) to X,

T.(t)x =T(t)x for z € {ze X, |T(t)z € X, }.
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It turns out that the generator of the Cy-semigroup 7,,(¢) is given by the part of A in
XTL?

Az = Az forxz € D(A,)
D(A,) = {zeX,|Are X, } =DA™") =X,

For negative integers n, the norms are defined recursively as ||z||_, = ||AZ) 12| —pt1-
The Sobolev space of order —n is now defined as completion of Sobolev space of order
—n + 1 with respect to the norm ||-||_,.

It can now be shown that the space X, with norm |||, is a Banach space for all
n € Z [8, Thm I1.5.5]. For n € N, the Cy-semigroup 7, (t) is the continuous extension
of T_,41(t) to the space X_, and the generator A_, of T_,(t) is then the unique
continuous extension of

A—n—l—l : X—n+2 - X—n+1

to an isometry A_,, : X_, 11 — X_,,. We will now introduce some important properties
which will be useful for us later in the thesis.

The first important result is that the Cy-semigroups 7),(t) are bounded similar for
n € Z (corollary 11.5.3 and theorem I1.5.5 in [8]) and thus their growth bounds coincide.

For comparison of perturbations and spaces we will need to know the relationships
between certain norms. The results are stated in the next lemma.

Lemma 2.18. For two elements of the resolvent, A\, i € p(A), the following hold

(i) The norm ||-||1 is equivalent to the graph norm of A (see definition A.2),
(i) The norms defined by |[(AM — A)z|| and ||[(u] — A)x|| on Xy are equivalent,

(iii) The norms defined by |R(\, A)zx|| and ||R(u, A)zx| on X are equivalent.

Proof. (i): Let x € D(A). Then

)t = [l Az|* < [zl = [ A=) + [l2]* = [ Az]* + |A™ Az ||* < (1 + [|A7H*) |21}
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(ii): Let z € X; and A\, € p(A). Using the resolvent equation (equation (A.1)) we

get

AL = Azl = (M = A) (] = A)R(p, A)z|| = |(n] — A)(M — A)R(p, A)z||
FET (= AN = AR A)T + (A = @) R(p, A) )|
= (el = A)I + (A= p)R(pu, A))x|
= T+ A =R, A))(pl — A)|
< (A4 A= plll R, AN (L = A)z|]
Likewise,

[l = Azl < (14 [ = ARA, A)DIAL = A)z]

(iii): Let z € X and A\, u € p(A). Using the resolvent equation again, we get

1B(A, A)(pl = A)R(p, A)z|| =

T+ (= MRS A)) R, A)(ul = A)R(p, A))|
17+ (1 = AR, A)) R(p, A))|

< (U fp = AR A) DI B, Azl

[1R(A, A)z]|

e

@
[l

Similarly,
[R(p, Azl < (1 + A = pll[R( A)DIRA, A)z]]

To clarify the meaning of these concepts, we present the following simple example.

Example 2.19. Let X = (*(C). Then z € X is a sequence x = (x}) with z; € C for
all £ € N. Let Ax = (—kxy) with domain

DA ={zeX|AveX}={(m) € X|D Klul <oo}.

We saw in example 2.8 that A generates a Cy-semigroup on X. Now for n € Z, the
Sobolev space (X, ||||) is defined by

Xy = {(a) € X[ D K"ul* < o0}

oo
el = | D k2|l
k=1
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2.2.2 Favard Spaces

Finally, we will briefly introduce Favard spaces. This concept helps us formulate some
perturbation results in chapter 4.

For 0 < a < 1 we define the Favard space of order « as (Fy, |||, ), where

Fa:{xGX‘sup

t>0

%(T(t)x—x) <00}

and

‘%(T(t)x )

2]l . = sup
t>0

For a general a € R, we define F,, as follows: Choose k € Z and 0 < v < 1 so
that a = k£ + 7. The Favard space F, is then defined as the Favard space of order ~
associated to the Cy-semigroup T}(¢).

It follows directly from the previous definition that if n is an integer, the Favard space
of order n is given by

1
Fo={z€X,| sugH%(Tn_l(t)m —)||po1 < 00 }
>

and the corresponding norm is defined as

1
|zl = supl| > (Tn-1()2 = @)[ln-1.
>0

We list a couple of useful properties of Favard spaces in the following lemma.

Lemma 2.20. Let A be a generator of a Cy-semigroup on a Banach space X. Then
the following properties hold.

(i) Let n € Z. Then A, 1F,41 = F,.

(i) If X is reflexive, then Fy = D(A). In particular this holds if X is a Hilbert space.

(#ii) For all n € 7 we have X,, C F),.
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Proof. part (i):

An_an+1 - Fn:

Let z € F,,1. This means that z € X, and

supl[7(T(t)z — o)l < 50

Since A, 1 : X, — X,_1 and z € X,, = D(A,,_1), we have A, 12 € X,,_;. Now

€D(An—1)

1 —~—
SUP” ( (B A — A lx)Hn 1 _SUP”A 1An1— ( n— 1(75)1’—95)||n

t>0

= Supll—( n(t)r = x)[ln < 00

and thus A, _1x € F,,. Since x € F,, ;1 was arbitrary, we have A, 1F, .1 C F,.

An—an—i-l D F,:

Let x € F,,. This means that xr € X,,_; and

Supll—( 1)z = z)[ln < 00

20

We need to show that z = A, 1y for some y € F,,;. Since A, _; is invertible,

y= A1 2 Since A' : X,,_1 — X,,, we have that y € X,,. It follows that

€Xn

1 1

t>0

= sup||—( (t)An—lA;ilx - An—lA;ilx)Hn—l

t>0

=smﬂ( () = @)l < o

This means that y € F,,;; and thus F,, C A, 1F,41.
part (ii): [8, Cor I1.5.21]

part (iii): Follows directly from the definition.

/__/b -1 -1 -1
SuPH?(Tn(t) A _An—lx)Hn = i‘ig||An—1¥(Tn—l(t)An—1x - An—lx)Hn—l



Chapter 3

Stability of C)-Semigroups

In chapter 2 we saw that the exponential stability of a Cy-semigroup T'(t) means that
we can find real constants M > 1 and w > 0 such that for all ¢ > 0

1T ()] < Me™".

In this chapter we will study different characterizations of this kind of stability of a
Co-semigroup. As we already mentioned, the problem is more complicated in infinite-
dimensional spaces than in finite-dimensional ones. In the general case, the stability
of a general Cy-semigroup isn’t always characterized by the spectrum of its generator.
However, for certain special classes of semigroups this holds even in Banach and Hilbert
spaces. Even though these are special cases, some of the semigroups most frequently
encountered in applications belong to some of these classes. For example, the second
order partial differential operator C{‘l—; with homogeneous Dirichlet boundary conditions
z(0) = (1) = 0 and an appropriate domain generates an analytic semigroup on
X = L*([0,1],C) [8, Ex 11.4.8].
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In section 3.1 we will present various means of characterizing exponential stability
of Cy-semigroups without additional assumptions on its behaviour. The stability of
classes of regular Cy-semigroups will be studied separately in section 3.2.

3.1 Ciriteria for Exponential Stability

In this section we will present some necessary can sufficient conditions for exponential
stability of a general Cij-semigroup. Some of these involve the generator and some the
Co-semigroup. As mentioned earlier, we will present the theory in its most general
form as opposed to restricting our attention to Hilbert spaces.

For our purposes in this thesis, the most useful characterization of exponential stability
will be the one presented in theorem 3.4. In a Hilbert space this result allows us to
characterize the stability of the Cy-semigroup generated by A through the behaviour
of the resolvent R(-, A) on the open right half-plane of the complex plane C.

We will first state a few properties equivalent to exponential stability. This result
should demonstrate the effect of the semigroup property T'(t + s) = T(s)T'(t) on the
asymptotic behaviour ||T(t)]|.

Theorem 3.1. Let A generate a Cy-semigroup T(t) on a Banach space X. The
following properties are equivalent
(i) T(t) is exponentially stable
(1) limy_oo||T'(¢)|| = 0
(i1i) There exists a ty > 0 such that | T (to)|| < 1.
Proof.
(i) = (ii): We can make a direct estimate lim; . ||7'(¢)]] < lim;—o Me " = 0.
(ii) = (iii): This is obvious.

(iii) = (i): Let t > 0. Choose n € Ny and t; € [0,%) such that ¢t = nty + t;. Since
theorem 2.6 tells us that ||7°(¢)|| is bounded on every finite subinterval of [0, c0), we
can choose M; such that

My = sup [[T(t)]].

te[0,to)
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By assumption we have ||T'(to)|| < ¢ for some ¢ < 1. Since

_lnq

> 0,
to

qg=-2¢€ & w=

we can make an estimate

1T = T (nto +t)ll = 1T )" TE] < T[T < Mig"

— Mlefwnto — Mlewtlefwtlefwnto — Mlewt1€7w(nto+t1)

IN

Me*e " = Me™*

]

The following theorem gives a characterization for exponential stability through inte-
grability of the mappings t — T'(t)x for x € X. It was first proved by Datko for the
case p = 2 and later extended by Pazy for other values of p. The property (3.1) is
often referred to as LP-stability.

Theorem 3.2. Let A generate a Cy-semigroup T(t) on a Banach space X. The
semigroup T'(t) is exponentially stable if and only if for one/all p € [1,00)

/ |T(t)z||Pdt < oo for all z € X. (3.1)
0

This s equivalent with condition

T( )z € LP([0,00),X) forallx e X

Proof. 1t is easy to see that exponential stability of T'(¢) implies (3.1). The proof of
the converse implication can be found in [20, Thm 4.1 p. 116}, [8, Thm V.1.8] or [15,
Thm 3.28]. O

In a Hilbert space a weaker property, weak LP-stability (the condition in (3.2)), is
equivalent to exponential stability. This was first proved by Huang Falun for the case
p =1 and later extended by Weiss in [28] for other values of p.
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Theorem 3.3. Let A generate a Cy-semigroup T(t) on a Hilbert space X. The semi-
group T'(t) is exponentially stable if and only if for some p € [1,00)

/OOO|(T(t)x,y)|pdt <oo Vr,yeX. (3.2)

Proof. [28] O

The next theorem tells us that in a Hilbert space the exponential stability can be
determined from the behaviour of the resolvent operator R(A, A) on the right half-
plane of C. The proof of this theorem uses Plancherel’s Theorem, ([8, Thm C.14])
which only holds in Hilbert spaces. This theorem is due to Gearhart, Priiss and
Greiner.

Theorem 3.4. Let A generate a Cy-semigroup T(t) on a Hilbert space X. The semi-
group T'(t) is exponentially stable if and only if { reC | Re \ > O} C p(A) and

sup [|R(\, A)|| < oo. (3.3)
Re >0
Proof. 8, Thm V.1.11], [15, Thm 3.35] O

Remark 3.5. 1t follows from the properties of the resolvent operator that if (3.3) holds,
then

sup [|[R(\, A)|| = RSI,I\EOHR()\’A)H <oo and {Ae€C|ReA>0} Cp(A).

Re A>0

To see this, let
M = sup [[R(A, A).

Re >0

Using lemma A.18 we see that for every A € C*

. 1 1
dist(A, 0(A)) > TRV A > i

and thus { A € C|ReA >0} C p(A). It now suffices to show that ||[R(\i, A)|| < M
for all A € R. For this purpose, choose £ > 0. From the properties of the resolvent
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operator (see [14, Thm IV.3.15]) it follows that for every A € R there exists a real
constant 0, > 0 such that

IR(Xi, A) — R(Ni + 0y, A)| < e.

Because Re(\i + 0,) > 0, we can make an estimate

IR, Al = [IR(\, A) — R(\i + 63, A) + R(Xi + 65, A)|
< ||R(Ni, A) — R(Ni + 6y, A)|| + | R(Ni + 65, A)|| < & + M.

Since € > 0 was arbitrary, this implies that [|R(Ai, A)|| < M for all A € R.

If we already know that the Cy-semigroup is uniformly bounded, it suffices to know the
behaviour of the resolvent operator on the imaginary axis. We can use this condition
for example when dealing with Cj-semigroups of contractions. We will see in section 4.3
that under certain assumptions when a Cy-semigroup of contractions is perturbed, the
perturbed semigroup is also contractive and hence also uniformly bounded.

Corollary 3.6. Let A generate a Cy-semigroup T(t) on a Hilbert space X. If T(t) is
uniformly bounded, iR C p(A) and

sup|| R(iA, A)|| < oo
AR
holds, then T(t) is exponentially stable.

Proof. [15, Cor 3.36] O

The next theorem is due to Datko [5]. It characterizes the exponential stability of
a Cy-semigroup in a Hilbert space by the existence of a certain type of solution to a
Lyapunov equation. This result in a Hilbert space is a generalization of a corresponding
result by Lyapunov in finite-dimensional spaces. This theorem is used in the theory
presented in section 5.3

Theorem 3.7. Let A generate a Cy-semigroup T'(t) on a Hilbert space X. The semi-
group T'(t) is exponentially stable if and only if the Lyapunov equation

(Az, 1ly) + (z,TTAy) = —(z,y) Vax,y € D(A) (3.4)

has a self-adjoint positive solution I1 € L(X).
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Proof. We will first show that Lyapunov equation in (3.4) is equivalent to

(Ax,Tlz) + (x,[TAx) = —(x,z) Vz € D(A). (3.5)

By this we mean that a self-adjoint positive operator II € £(X) is a solution of (3.4)
if and only if it is a solution of (3.5). The actual theorem is proved in [4, Thm 5.1.3]
for the Lyapunov equation of form (3.5).

It is clear that if operator II € £(X) is a solution of (3.4) then it is also a solution of
(3.5) since we can choose y = z.

Now, let z,y € D(A) and assume II € L£(X) satisfies (3.5). For all @« € C we have
r+ay € D(A) and

(Alr + ay), 1z + ay))

+ (x4 ay, TA(x + ay))
= (Az,Iz) + o(Ay,lz) + @

+

(y

(Az, Ily) + |af*(Ay, Ily)
a(z, ITAy) + |af*(y, 1 Ay)
MAz)) +a ((Az, Iy) + (2, TTAy)) — |a*(y, ).

+(z,[TAz) + a(y, [1Az)
= —(z,2) + o ((Ay, Iz) +

By our assumption, this is equal to

—(z+ay,z+ay) = —(z,2) — aly,z) —alz,y) —[a]*{y,y).
Combining these we get

a ((Ay,Ilz) + (y, lTAz)) + @ ((Az, ITy) + (2, [TAy)) = —afy, z) — a(z,y)
& a({dy,Tz) + {y, TTAz) + {y, 2)) +a ({Az, TTy) + (@, TAy) + (.y)) = 0

Y
'
= Cg

= Cyx y

This holds for all « € C. In particular, this holds for &« = 1 and o = ¢. This implies

Cye + Cay =

i(Cyr — Cay) =

8} = Cay = Cyp =0

and thus
(Az, y) + (v, [TAy) = —(z,y) Vz,y € D(A).

As we already mentioned, the theorem is proved in [4, Thm 5.1.3]. O
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3.2 Stability of Regular Semigroups

The special property which guarantees that the spectrum (and hence also the stability
properties) of a Cy-semigroup is determined by the spectrum of its generator is called
the Spectral Mapping Theorem (SMT) which claims

o(T(t)\ {0} =@ vt >0. (3.6)

If the Spectral Mapping Theorem holds for a given Cy-semigroup 7'(t), we are able to
determine the growth bound of T'(¢) directly from the spectral bound of its generator
[8, Lem V.1.9]. This result is presented in the next lemma.

Lemma 3.8. Let T(t) be a Cy-semigroup with generator A on a Banach space X . If
the Spectral Mapping Theorem (3.6) holds, then the growth bound of the T(t) equals
the spectral bound of its generator, that is,

s(A) = wo(T(1)).

We refer to this property as the spectrum determined growth condition.

Proof. The proof is taken from [8, Lem V.1.9]. The growth bound of a Cy-semigroup
can expressed as [8, Prop IV.2.2]

wo(T(1)) = %logr(T(t)), for all ¢ > 0

By theorem 2.5 we have —oo < s(A) < wo(T'(¢)), and thus the equality holds if
wo(T'(t)) = —oo. Assume that wy > —oo. Then

wlT(H) = Flogr(T(1) = ;logsup{|ul | u € o(T(1))}
_ %logsup{ € [ A€ a(4)} = %logsup{ RN | ) € o(A)}
= sup{ % loge!®r | A€ o(A)} =sup{ReX | A€ a(A)} =s(A)

]

Our motivation for the study of this theory is that if the Cy-semigroup has certain
regularity properties, then the spectrum determined growth condition holds automat-
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ically. On Banach spaces we have the following result for eventually norm-continuous
Co-semigroups.

Theorem 3.9. Let T'(t) be an eventually norm-continuous Cy-semigroup with gener-
ator A on a Banach space X. Then the Spectral Mapping Theorem (3.6) holds and
thus s(A) = wo(T'(t)).

Proof. First part is given in the proof of [8, Thm IV.3.10] and s(A) = wy(7'(t)) follows
directly from lemma 3.8. O]

By considering specific subclasses of eventually norm-continuous semigroups, we obtain
a corresponding result for other regular semigroups as well. The diagram in figure 3.1
illustrates the relations between special classes of Cyp-semigroups [8, p. 119].

Analytic =  Immediately differentiable = =  Eventually differentiable

Y Y
Immediately norm cont. = Eventually norm cont.
) )

Immediately compact = Eventually compact

Figure 3.1: Relations between semigroup classes

These relations combined with theorem 3.9 lead to the following result.

Corollary 3.10. The spectrum determined growth condition holds for the following
classes of Cy-semigroups on a Banach space X :

o Analytic semigroups

Fuventually compact Cy-semigroups

Fventually differentiable Cy-semigroups

FEventually norm-continuous Cy-semigroups

Uniformly continuous Cy-semigroups



Chapter 4

Robustness of C)-Semigroup
Generation

Let a linear operator A be an infinitesimal generator of a Cy-semigroup T'(t) on a
Banach or Hilbert space X and let B be a linear operator on X. In this chapter we
will introduce conditions under which the the perturbed operator A+ B is a generator
of a Cp-semigroup on X. This problem has been studied since the early 1950’s and
theory exists for both bounded and unbounded perturbations.

Throughout this chapter, we will assume that the unperturbed Cy-semigroup 7'(¢) is
exponentially stable. This assumption simplifies certain matters, but is not essential
to the development of the theory. The results can be extended to a more general case
by considering the rescaled Cy-semigroup generated by the operator A — wl for some
w > wo(T'(t)) (see rescaled semigroups in section 2.1).

We will start with theory for bounded perturbations in section 4.1. We will see from the
beginning that considering these perturbations is very straightforward: The perturbed
operator remains a generator for all bounded perturbations and we even get an upper
bound for the growth of the perturbed semigroup in terms of the norm of the perturbing
operator. These results were formulated as early as 1953 by Phillips [21]. Although
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the results are exhaustive, the estimate of the growth bound given by this theory is
generally not optimal. Because of this, we will go on to analyse the preservation of
certain regularity properties under bounded perturbations. This theory will be used
in section 5.2 where we derive spectral conditions for the stability of the perturbed
Cp-semigroup.

Particular perturbation theory for analytic and contractive semigroups is presented in
sections 4.2 and 4.3, respectively. We will see that these particular classes of semi-
groups can deal with perturbations with a degree of unboundedness. In a way this
means that if we impose more conditions on the unperturbed Cy-semigroup, we can
relax the ones on the perturbing operator. Perturbation of these particular classes of
semigroups was first considered by Hille and Phillips [11].

Sections 4.4, 4.5 and 4.6 deal with general unbounded perturbations. This is meant
in the sense that we do not need any regularity assumptions for the unperturbed Cj-
semigroup T'(t). We will characterize the classes of perturbations considered in the
first two of these sections using abstract Volterra operators as was done by Engel and
Nagel in [8]. This treatment allows us to deal with unboundedness by considering
bounded operators between Sobolev spaces of different orders. The class of perturba-
tions considered in section 4.4 results from the perturbation theorems of Desch and
Schappacher. The unboundedness of these perturbations is handled by considering
operators belonging to £(X, X_1). The class considered in section 4.5 follows from
theory presented by Miyadera and later extended by Voigt. Similarly to the previous
class of perturbations, the unboundedness of the perturbations is dealt with by consid-
ering perturbations belonging to £(X7, X). As extensions of the class of bounded
operators on X, the classes £(X, X 1) and £L(X7, X) of operators are natural and we
will in remark 4.19 see that an operator B belongs to £(X;, X) if and only if it is
A-bounded.

The perturbation theorem presented in section 4.6 is relatively new compared to the
other theory considered in this chapter. The theorem allows unboundedness of a closed
perturbing operator B by imposing special conditions on operators BR(\, A) : X — X
and R(A\,A)B : D(B) — X. The conditions are very simple and the theorem is
independent of the other results presented in this chapter. However, unlike most of
the theory presented in this chapter, the results are only applicable in Hibert spaces.

4.1 Bounded Perturbations

In this section we consider the case where the perturbing operator B is a bounded
operator on X. The following is a well-known result formulated by R. S. Phillips in
[21].
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Theorem 4.1. Let A be an infinitesimal generator of a Cy-semigroup T(t) on a
Banach space X, satisfying ||T(t)|| < Me*t. If B € L(X), then A+ B generates
a Co-semigroup S(t) on X such that

1S(t)]| < Melw MBIt
For every x € X we have
T(t —s)BS(s)xds

S(s)BT'(t — s)xds

Proof. [20, Sec 3.1], [4, Thm 3.2.1], [8, Sec IIL1] 0

The previous theorem shows us that the perturbed operator A + B is a generator of
a Cy-semigroup on X for all bounded perturbations B. The theorem only expresses
the perturbed Cy-semigroup implicitly, but we can also derive a formula for it using a
Dyson-Phillips -series.

Theorem 4.2. The semigroup S(t) in theorem 4.1 can be expressed as

S(t) = Salt) (4.1)

where So(t) = T'(t) and forn > 1

Sp(t)z = /OtT(t —8)BS,_1(s)xzds Vre X (4.2)

Proof. [8, Thm III.1.10] O

The series in (4.1) converges in uniform operator topology on compact intervals of
[0,00) [8, p. 163]. We will now present a simple example of a bounded perturbation

Example 4.3. Consider again the space X = ¢*(C) and an unbounded operator A
such that

A(zy) = (—kar), DA ={zreX|Are X}
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The operator A generates a Cy-semigroup 7'(¢) on X with

Ttz = (e zy), z€X.

We already saw in example 2.8 that the semigroup satisfies |T'(¢)|]] < Me " with
M =1 and w = 1. Consider now a perturbation B such that for x € X we have
Bz = (fxy) with some § € C. Now, for z € X with ||z|| = 1, we have

1Bz||* = |Bail* = [BP[|=]* = 8]
k=1

This means that B € £(X) with norm ||B|| = |3|. Theorem 4.1 now tells us that
operator A + B for which (A + B)z = ((—k + B)xy) for all x € D(A + B) = D(A)
generates Cy-semigroup S(t) satisfying

1S(0)]| < Mel-e+MIBht — =018t

It can also be seen from the last expression that S(t) is exponentially stable whenever

18] < 1.

Theorem 4.1 guarantees that the growth bound of the perturbed Cy-semigroup is at
most —w + M||B||. In some cases this can be used to determine the stability of the
perturbed Cyp-semigroup. However, this bound is not always optimal and the growth
bound of the perturbed Cy-semigroup can even be smaller than the growth bound of
the unperturbed Cy-semigroup. The possibility of obtaining sharper bounds motivates
us to further address the preservation of exponential stability in the case of bounded
perturbations.

For the rest of the section we will consider the regularity properties of the perturbed Cy-
semigroup. For some classes of Cp-semigroups, the regularity properties are preserved
under all bounded perturbations. These results are summarized in the following
theorem.

Theorem 4.4. Let A be a generator of an (analytic, immediately compact, immedi-
ately norm-continuous) Cy-semigroup on a Banach space X and let B € L(X). Then
A + B with domain D(A + B) = D(A) generates an (analytic, immediately compact,
immediately norm-continuous) Cy-semigroup on X.

Proof. See [20, Cor 3.2.2] for preservation of analyticity and [8, Thm II1.1.16] for the
preservation of the other regularity properties. O]
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Furthermore, if certain additional conditions are satisfied, also other regularity prop-
erties of the Cy-semigroup are inherited by the perturbed Cy-semigroup [16]:

Theorem 4.5. Let X denote the space of all strongly continuous functions from [0, 00)
to L(X) and let B € L(X). Define an abstract Volterra operator on space X by

t
(VF)(t):U:/ T(t—s)BF(s)xds, Fe X, t>0andz e X.
0

If A generates an eventually (differentiable, compact, norm-continuous) Co-semigroup
and for some n € N

ran V" C {F ex ‘ F is immediately (differentiable,

compact, norm-continuous) for t > 0}

then the Cy-semigroup generated by A+ B is also eventually (differentiable, compact,
norm-continuous ).

Proof. [16, Thms 6.1, 6.3 & 6.5]. O

The previous results can be used with the theory presented in section 3.2 to derive
sufficient conditions for the stability of the perturbed Cy-semigroup. This is done in
section 5.2.

We will now move on to consider unbounded perturbations.

4.2 Perturbation of Analytic Semigroups

In this section we will present some results concerning analytic semigroups and
unbounded perturbations. It should be noted that in all the cases the perturbed
semigroups remain analytic. As stated earlier, this can be helpful when analysing
the stability of the perturbed Cy-semigroup. Later in sections 4.4, 4.5 and 4.6 we
will see that analytic semigroups remain analytic under even more general unbounded
perturbations.

Theorem 4.6. Let A be the generator of an analytic semigroup. Let B be a closed
linear operator and let B be A-bounded with A-bound ay. There exists a constant § > 0
such that if 0 <ag < d then A+ B is the generator of an analytic semigroup.
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Proof. [20, Thm 2.1 p. 80], [8, Thm I11.2.10] 0

The previous theorem also gives rise to the following corollary. For the definition of
the powers A* for 0 < a < 1, see [20, Sec 2.6].

Corollary 4.7. Let A be the generator of an analytic semigroup. Let B be closed and
suppose that for some 0 < o < 1, D(B) D D(A%). Then A+ B is the generator of an
analytic semigroup.

Proof. [20, Cor 2.4 p. 81] O

We will note here that the conditions in previous corollary require that B is A-bounded.
Since A is a closed operator as a generator of a Cy-semigroup and B is closed, this
follows from lemma A.9 and the fact that D(A) C D(A%) C D(B) for 0 < a < 1.

The last result for analytic semigroups concerns perturbing with A-compact operators
defined in section A.2.

Theorem 4.8. Let A be the generator of an analytic semigroup and let the operator

B be A-compact. Then the operator A+ cB with domain D(A+cB) = D(A) generates
an analytic semigroup on X for all c € C.

Proof. See [8, Cor 111.2.17] for the case where B is closable or X is reflexive and [6]
for the general case. 0

The following example makes use of the theory presented in this section.

Example 4.9. Consider Hilbert space X = L?([0, 1], C) and the operator

d2
A = —
dz?’
D(A) = {xGX‘xix abs. cont. d—szX z(0) =z(1) =0}.
Tdz T dz? ’

It is shown in [8, Ex I1.4.8] that A generates an analytic semigroup on X. Now consider
an unbounded perturbation

d
dz’

D(B) = {xGX‘xabs. cont., diixEX}.
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Operator B is closed and A-bounded with A-bound ay = 0 [8, Ex II1.2.2]. Thus, by
theorem 4.6 we know that operator A + B with domain D(A + B) = D(A) generates
an analytic semigroup on X.

4.3 Perturbation of Semigroups of Contractions

Before moving on to perturbation of more general Cy-semigroups we will consider the
case of Cy-semigroups of contractions. This special class has a few simple and well-
known results stated here. They all consider A-bounded and dissipative perturbing
operators. Similarly to the case of perturbation of analytic semigroups, all the results
presented here guarantee that the perturbed Cj-semigroup is again contractive. Even
though contractive Cy-semigroups are not regular in the same sense as analytic or
norm-continuous semigroups, they are automatically uniformly bounded. This is an
advantage for us since we have a particular result concerning exponential stability of
uniformly bounded Cy-semigroups (see corollary 3.6).

Theorem 4.10. Let A generate a Cy-semigroup of contractions and let B be dissipative
with D(B) D D(A). If B is A-bounded with A-bound ag < 1 then A+ B, D(A+ B) =

D(A) generates a Cy-semigroup of contractions.
Proof. [8, Thm I11.3.7], [20, Cor 3.3 p. 82] O

If the underlying space is a reflexive Banach space, we do not need the A-bound of B
to be less than one. In particular this holds if X is a Hilbert space, since the Riesz
representation theorem states that every Hilbert space is reflexive.

Theorem 4.11. Let X be a reflexive Banach space (or a Hilbert space) and let A be the
generator of a Cy-semigroup of contractions. Let B be dissipative with D(B) D D(A)

and
| Bz|| < [|Az|| + bl|z| for x € D(A)

where b > 0. Then then the closure A + B of A+ B is the generator of a Cy-semigroup
of contractions.

Proof. [8, Cor I11.2.9], [20, Cor 3.5 p. 84] O

We will now give an example of an unbounded perturbation of a contractive Cjy-
semigroup.
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Example 4.12. Consider again the Hilbert space X = ¢*(C) and the unbounded
operator A such that

A(zy) = (—kzy), DA)={zeX|AreX}.
The operator A generates a Cy-semigroup 7'(¢) on X with
T(t)r = (e ™), 2z€X

We showed in example 2.8 that the semigroup satisfies | 7'(¢)|| < e™“* < 1 and hence
it is contractive. Consider now a perturbing operator B such that for § € C with
Ref <0 and 5] < 1,

Bz = (Bkz), D(B)={zeX|BreX}

Since [ is a constant, we clearly have D(A) C D(B). For x € D(B), we have

[Bz|| = || 8Az[| = |5]]| Az|

and hence B is A-bounded with A-bound @y = || < 1. For every x € D(B)

Re(Bz,x) = Re (Z ﬁk‘ka) =Re(- Zk‘xk‘Q <0
k=1 k=1

>0

This means that B is a dissipative operator. Theorem 4.10 now tells us that A + B
with domain D(A + B) = D(A) generates a Cy-semigroup of contractions.

The perturbations considered in the rest of the chapter do not need any additional
assumptions concerning the regularity properties of the unperturbed Cy-semigroup.

4.4 Desch-Schappacher Perturbations

The perturbation results presented here were formulated by Desch and Schappacher.
The perturbations considered are bounded linear operators from a Banach space X to
the extrapolation space X_;. We will follow the manner of representation proposed
by Engel and Nagel [8]. This approach using abstract Volterra operators results in
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simple characterization of the considered class of perturbations and provides a nice
link between the theory in this section and the next one.

We begin by defining the abstract Volterra operator related to the perturbing operator
B € L(X,X_1). Denote by X, the space of all strongly continuous, £(X)-valued
functions,

Xy = C ([0, 0], L(X)), with norm |[F|l = sup [[F(s)|zx)-

0<s<tg

The space (X}, |||/« ) is @ Banach space [8, Prop A.7]. For an operator B € L(X, X_1)
we define an abstract Volterra operator Vg : X,y — X, by

t
(VaF)(t)z = / T \(t— $)BF(s)xds for all ¢ € 0,0, F € X, and z € X
0

It is clear from the definition that (VpF)(t) € L(X,X_) for all ¢ € [0,%;]. The set of
Desch-Schappacher perturbations Sgs is then defined by

S ={BeL(X,X1)|VseL(X), V]| <1}
For this class of perturbations we have the following result:

Theorem 4.13. Let A be the generator of a Cy-semigroup T(t) on a Banach space
X. IfBe Stjgs for some ty > 0, then the operator

(A.1+B)lx, DAL+ B)|lx)={zeX|Az+BreX}
generates a Cy-semigroup on X.

Proof. [8, Thm I11.3.1] O

The Cy-semigroup S(t) generated by (A_; + B)|x is then given by the variation of
parameters -formula

t
S(t)r =T(t)x +/ T 4(t—s)BS(s)xds, forallt>0andze X
0
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or the Dyson-Phillips -series

where Sy(t) = T(t) and for n > 1
t
Sp(t)x = / T 1(t —s)BS,_1(s)xds, forall t>0and z € X
0

The series representation of S(t) converges uniformly in £(X) on compact intervals of
R+ [8, Cor 111.3.2].

The theory of Desch-Schappacher perturbations can be used for example in the case
when the boundary conditions of a generator of a Cp-semigroup are subjected to pertur-
bations (see [8, Ex I11.3.5]). However, also "simpler” perturbations belong to this class.
The following lemma states that bounded perturbations are also Desch-Schappacher
perturbations.

Lemma 4.14. Let A be a generator of a Cy-semigroup T'(t) on a Banach space X . If
B € L(X), then B € S&°.

Proof. Operator B € L(X) can be seen as an operator B : X — X _;. Since for x € X
we have

[Bz||l— = |A7"Ba|| < AT Bll]|]|

we see that B € L(X, X_1). Let € X. Since ||[T_1(¢)|] < Me ** for some M > 1 and
w > 0, we have for the abstract Volterra operator

VaP)0l = 1| [ Tt = o) BF@aas] < [ 7100 = 9)BF (sl
< ATt = 1B 1Flolds

t
= |BI- |IF )zl / 1T (s) s

IN

t
—ws M —w
MHBH-HFHOOHOCH/O e™*ds = — (1= ™| BI - [|Flloo |
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We see that Vg is bounded for every to > 0. Finally, we will show that we can choose
to > 0 such that ||Vp|| < 1. We have

TA—eB| < 1

_ p—wt w

—wt _ w
& e > 1 MIB]

If MTFBH > 1, then the last inequality holds for all t > 0 and B € Sggs for all £y > 0. If

w
B < 1, then

=

—wt w
e > 1 g
& —wt > In (1 — M““’BO
o < tu(ioam)
andBEStlgsfora110<t0<—£ln<1—m>. O

In the previous lemma, the form of the perturbing operator can be simplified. Since
B is a bounded operator on X, we know that Bx belongs to X for all x € X. Thus,
A_1x + Bx belongs to X if and only if A_;x € X. Because this is satisfied for x € X,
and for these values A_;x = Ax, the perturbed operator assumes a familiar form.

(A1 +B)|x=A+ B, D((A_1 + B)|x) =D(A)

We will now present some sufficient conditions for a perturbation B € L(X, X 1) to
be a Desch-Schappacher perturbation.

Corollary 4.15. Let A be the generator of a Cy-semigroup T'(t) on a Banach space
X and let B € L(X,X_1). Moreover, assume that there ezists to > 0 and q € [0,1)
such that

o JO T 1(t—s)Bf(s)ds € X and

o Ify" Talt = $)BS(s)ds]| < alfll
for all continuous functions f € C([0,ty],X). Then B € S&°.

Proof. [8, Cor I11.3.3] L
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Corollary 4.16. Let A be the generator of a Cy-semigroup T'(t) on a Banach space
X and let B € L(X,X_1). Moreover, assume that there exist to > 0 and p € [1,00)
such that

to
/ Tfl(to — S)Bf(S)dS e X
0
for all functions f € LP([0,to), X). Then B € SE”.

Proof. [8, Cor I11.3.4] O

Corollary 4.17. Let A be the generator of a Cy-semigroup T'(t) on a Banach space
X and let B € L(X,X_) satisfy ran(B) C Fy. Then B € Stlgs for some ty > 0.

Proof. [8, Cor 111.3.6] O

The following proposition states that analyticity of the semigroup is preserved under
Desch-Schappacher perturbations. This result will be used in section 5.2 where
we consider spectral conditions for the exponential stability of the perturbed Cj-
semigroup. The result was given as an exercise in [8, Exer. I11.3.8.(2)] and the proof
is by the author.

Proposition 4.18. Let A be a generator of an analytic semigroup on X and let B €
Stf))s. Then (A_1 + B)|x generates an analytic semigroup on X.

Proof. Let A generate an analytic semigroup 7'(z) on X and let w; € R be such that
wy > wo(T'(t)). Then A — wyI generates a bounded analytic semigroup on X and by
theorem 2.17 there exist a constant M; > 0 and such that for all r,s € R with » > 0
and s # 0

M
IR(r +is, A—w )| < ‘j
M

& |R(r+w +is, A)| < ‘j (4.3)

Let M5 > 0 and ws be real constants such that

IT-1 ()] < Moe™".
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Then for all A € C with ReA > wy we have A\ € p(A_;) and for all x € X we can
express R(A, A_j)z as an integral (see theorem 2.6). Using this fact we get for z € X

¢} (n+1)t0
Z / e T_1(s)Bxds

nto

R(\A_|)Bx = / e T (s)Bxds =
0

n=0

o (n+1)to
= Z/ e Ao A=) (0t )T (s — nty) Bads
n=0 v 1to
= Ze"\”tOT_l(nto)/ e ™T_,(s)Bxds
n=0 0
to
0

o0
= Ze’\”tOTl(nto)/ T_1(ty — s)BIe M0~z
n=0

= Z e_AntOT_l(TLto) [VBF)\](tO)x

n=0

Here we have denoted Fy(t) = Ie =%  Clearly we have F) € X, with ||F)|lec =

SUP;efo 11/€ 0P| = 1. We can now estimate the norm of R(X, A_;)z by

IR A) Bz = | e T (nto) [V F)](to)||
n=0

<1 =1
SN
< >l T (nto) [ IV T Exlloll]

n=0

o0

< |Villllal| + Myl|z]) Y elerRednto
n=1

M2€(W2—Re)\)t0

1 — e(w2—ReX)to ||JZ||

A

Valllzll +

Because B € SP9, the Volterra operator Vp is bounded with [|Vp|| < 1. Since the last
term is a decreasing function of \, we have for some w3 > wy and 0 < ¢ < 1 that

IROLA)B] < g < 1 (4.4)

for all A € C with Re A > ws.

Since B € SP°, operator (A_; + B)|x generates a Co-semigroup S(t) with growth
bound wy(S(t)) on X. Now choose

w > max{wy(S(t)),wr,ws}.



CHAPTER 4. ROBUSTNESS OF Cy-SEMIGROUP GENERATION 42

Let A € C such that Re A > w. Theorem A.17 and equation (4.4) now tell us that for
the spectral bound of R(A\, A_,)B

r(R(\ A_)B) < |[RO\, A_)B|| < 1.

Therefore we have 1 € p(R(\, A_1)B) and we can make an estimate

IR(L, R ADB)I| = 1D (RAADB)"| < Y IR A-)B]"
1 1

- < . 4.5
I RNA B S T-¢ (4:5)

Since ReA > w > wy > wo(T-1(t)) = wo(T'(t)) (see section 2.2.1), we also have
A € p(A). The identity

(M = (A_y + B)|x) = (AT — A)(I — R(\, A_,)B)

implies that A € p((A_; + B)|x) and

RO\ (A, + B)|x) = R(1, RO\, A_)B)R(), A).

Finally, since w > wy(S(t)), the operator (A_; + B)|x — wl generates a bounded
Co-semigroup on X and for r, s € R with » > 0 and s # 0 we get using (4.3) and (4.5)

|R(r+is, (A1 + B)|x) —wI|| = ||R(r+w+is,(A_1+ B)|x)||

= R, R(r +w+is, A1) B)R(r + w + is, A

< R R(r+w+is, AL) B)[[||R(r + w + is, A)|
1 M, M
L—qls| Is|

By theorem 2.17 operator (A_; + B)|x — wI then generates a bounded analytic semi-
group e “R°ZG(2) on X and the operator

(A_l +B)|X = (A_1 +B)|X —LU]+WI

generates an analytic semigroup e*R¢Ze“RezG(>) = S(z) on X. O



CHAPTER 4. ROBUSTNESS OF Cy-SEMIGROUP GENERATION 43
4.5 Miyadera-Voigt Perturbations

The perturbation results presented in this section were first considered by Miyadera in
1960’s. The original results include the first part of corollary 4.22. These results were
later extended by Voigt. More details on the developement of the theory can be found
in [8]. As in the previous section, we formulate the class of perturbations using the
abstract Volterra operators as proposed by Engel and Nagel [8]. The perturbations
considered here are bounded linear operators from the Sobolev space X; to X. Before
defining the class of perturbations, we note that the operators belonging to £(X;, X)
are exactly the A-bounded operators.

Remark 4.19. Property B € L(Xy, X) is equivalent to B being A-bounded: If B €
L(X;,X), we have

|Bz|| < M|lz|ly = M|[Az]] V€ Xy =D(A)
and thus we can choose a = M and b = 0 in definition A.8. On the other hand, if B is
A-bounded, we have D(B) D D(A) and for some a,b > 0 and for all z € D(A) = X;,
Bzl < al|Az|| + bl|z]| = al| Az|| + b AT Az < (a+0|AT]) [l

and so B € L(X;,X).

We will now define the class of Miyadera-Voigt perturbations. Consider again the
Banach space (X}, ||[|oc), Where

Ay = C([0,t0], Ls(X)) [ Flloo = sup [[F(s)]lcex)

0<s<tg

For a given operator B € L(X, X) define the abstract Volterra operator Vj : Xy, —
Xto by

t
(VEF)(t)z = / F(s)BT(t — s)xzds for all t € [0,ty], F € X}, and x € X,
0

We can see that (VAF)(t) € £(X,, X) for all t € [0,%]. We denote by V}; the operator
giving the extensions (VZF)(t) : X — X of operators (V5F)(t).

We define the set of Miyadera-Voigt perturbations Stl\ow by

SV ={BeL(X,X)| Ve LX),

Vill<1}.
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We have the following result for the Miyadera-Voigt perturbations:
Theorem 4.20. Let A be the generator of a Cy-semigroup T(t) on a Banach space X .

If B e S}V for some ty > 0, then the operator A+ B with domain D(A+ B) = D(A)
generates a Cy-semigroup on X.

Proof. [8, Thm I11.3.14] ]

The Cy-semigroup generated by A + B is then given by the variation of parameters
-formula

S(t)x =T(t)x + /t S(s)BT'(t — s)xds, x € D(A)

or the abstract Dyson-Phillips series

S(t) =Y _(V'T)(t), fort>0, V=Vj

n=0

The following lemma states that bounded perturbations can be seen as Miyadera-Voigt
perturbations.

Lemma 4.21. Let A be a generator of a Cy-semigroup T'(t) on a Banach space X . If
B € L(X), then for the restriction B' : X; — X we have B' € S}V,

Proof. Let x € X;. Then we have

1Bzl = |B'A™ Ax|| < | BI[|A7 |||
and we see that B € £(X;,X). Let ¢ty > 0 be arbitrary. Next we will show that for

all t € [0,%p] and F' € X}, the extension (V3 F)(t) = (V5F)(t) is a bounded operator
on X. Let z € X. Since ||T(t)|| < Me ™" for some M > 1 and w > 0, we have

I(VaE) Bz = ||/ BTt—s)xds||</||F \BT(t — s)z|ds

< 1B IFlele] / IT(s)]|ds

t
—Wws M %
< MBI Flelel | s = 1= B - [ Flclol
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and thus for all ¢ > 0 and F' € &, we have (V3F)(t) € L(X). Finally, we will show
that we can choose ¢y > 0 such that ||V%|| < 1. From the previous inequalities we can
also see that

M
V*/ < — - —wt B .
Vil < —1 = e™)IB]
Now,
SA—enBl < 1
& 1—e™ < g
& et > 1- 5
If 3775 = 1, then the last inequality holds for all ¢ > 0 and hence V] < 1 for all
to > 0. If MHB|| < 1, then
O i)
& —wt > In (1 = M\TBH)
& t < —%ln <1 — MTrB\\>

and that [[V3 | < 1 for all tp < —11In <1 — m) This shows that we can choose

to > 0 such that B’ € S%W. O

We will now give sufficient conditions for an operator B € £( X, X) to be a Miyadera-
Voigt perturbation. The first part of the following corollary is the original condition
formulated by Miyadera in 1960’s.

Corollary 4.22. Let A be the generator of a Cy-semigroup T(t) on a Banach space
X and let B € L(X1,X) satisfy

/00 BT (s)xllds < gllz]| vz € D(A) (4.6)

for some 0 < g < 1. Then B € St](‘fv, and therefore the operator A + B with domain
D(A+ B) =D(A) generates a Cy-semigroup S(t) on X. Moreover, S(t) satisfies

o S(t)yxr =T(t)x + fot T(t — s)BS(s)xds and

JIIBS(s)x||ds < 1L =zl for x € D(A) and t = 0,
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where q and ty are given by (4.6). If, in addition, (B, X;) is closable in X and
(B, D(B)) denotes its closure, then we have T(t)x,S(t)x € D(B) for almost allt > 0
and all x € X. Finally, the functions BT (-)x and BS(-)x are locally integrable, and

Styr = T(t)x + /t S(s)BT(t — s)xds

Styr = T(t)x + /t T(t — s)BS(s)xds

hold for all x € X andt > 0.
Proof. [8, Cor I11.3.16] O

The following result is an extension of the previous corollary and it is due to Voigt.
The result was given as an exercise in [8, Exer I11.3.17.(2)] and the part of the proof
presented here is by the author.

Corollary 4.23. The conclusion of corollary 4.22 holds if (B, D(B)) is closed in
X, there exists a T'(t)-invariant dense subspace D C D(A) N'D(B) such that the map
t — BT (t)x is continuous for all x € D and there exist constantsty > 0 and 0 < g < 1
such that

to
/ | BT(s)z]lds < qlla|] ¥z e D
0

Proof. We will prove only that A+ B generates a Cy-semigroup on X, since the rest of
the results can be proved by following the latter part of the proof of [8, Cor I11.3.16].

We first prove that B € S%N. To do this, we will show the following:
(i) For all F € X,, the operator (V5F)(t) : X1 — X can be extended to a bounded
operator (VAF)(t): X — X.
(ii) The mapping t — (V4F)(t) is strongly continuous for all F' € A},.

(iii) The operator V} is bounded and satisfies ||V < 1
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Part (i):
Let F e X, and x € D

(ViR ()| = ||/ BTt—r)xdr||</ P () BT(t — r)al|dr

IN

to
HF%oOHBTUMWHSHFWnA | BT (r)z||dr

< 4l Flloo - [l

Since D is dense in X, theorem A.14 tells us that (V3F)(t) can be extended to a
bounded operator (V4F)(t) on X for all F' € X, and t € [0, to].

Part (2):

To show that the mapping ¢t — (V3 F)(t) is strongly continuous for all F' € &}, we will
show that the mapping t — (VZF)(t)x = (V*F)(t)x from [0,%] to X is continuous
Va € D. Because D is dense in X, this is an equivalent property [8, Lem 1.5.2].

Let z € D and t,s € [0, ] with s <¢. Then

I(VsE) )z = (VEF)(s)z]

_ H/ F)BT(t — r)adr — / F()BT(s — r)adr|

= H/ r)BT(t —r)x — F(r)BT (s — r)x) dr + / F(r)BT(t — r)zdr||

VAN

||/ rYBT(t —r)x — F(r)BT (s — r)x) dr|| + ||/ r)BT(t — r)xdr||

IN

/0 |F(r)BT(t — r)x — F(r)BT (s — r)x||dr + / |F(r)BT(t — r)x||dr.

For the first term we have an estimate
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/OSHF(T)BT(t —r)x — F(r)BT (s — r)x||dr
= /OSHF(T)BT(S — )T (t —s)x — F(r)BT (s — r)z||dr
- /OS||F(7~)BT(5 ~ ) (Tt - )z — 2)|dr

< IIFIIOO/OSIIBT(S—T) (T'(t = s)x — x)||dr

IFlle | 1BT0) (T = 92 = 0)ar

IN

1Pl / |BT(r) (T(¢ — s) — x)1dr
< q||F||leo||T(t — 8)x —z|| — 0, when t — s+.

We used the fact that T'(t — s)z —x € D which follows from 7'(¢)-invariance of D. The
convergence to 0 is due to the strong continuity of 7'(t). We can estimate the second
term by

t t t—s
/IIF(T)BT(t—T)l“IIdTS IIFlloo/ | BT (t — r)x||dr = ||F||oo/0 | BT (r)x||dr

Since by our assumption ||BT'(-)z|| € L*([0,to],R") for all € D, corollary A.21 tells
us that

t—s
/ \|BT (r)x||dr — 0
0

as t — s+. This shows that the mapping ¢ — (V;F)(t)z is continuous Va € D and
hence the mapping ¢ — (V5 F)(t) is strongly continuous for all F' € &},.

Part (iii):
We want to show that operator V}; is bounded with ||V}3]| < 1. This follows from Part
(i) with H (ViF H < || F||so-

Together the parts (i)-(iii) imply that B € Sp'V and hence A + B is a generator of a
Co-semigroup S(t) on X by theorem 4.20.

The rest of the proof follows the proof of [8, Cor I11.3.16]. ]
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The next sufficient condition tells us that B € £(X;, X) is a Miadera-Voigt perturba-
tion if its range is contained in the Favard space of order 1. The result was presented
as an exercise in [8, Exer I11.3.23.(iii)] and the proof is by the author.

Corollary 4.24. Let A be a generator on X with p(A) # @. If B € L(X1,X) and
ran B C F}, then the operator A+ B with domain D(A) is a generator on X .

To prove this theorem, we need the following result concerning multiplicative pertur-
bations (see [8, Sec II1.3.d] for more information).

Lemma 4.25. Let A be the generator of a Cy-semigroup on a Banach space X. If A
18 1nvertible and B € Stlgs, then the operator

A+ AT1BA, D(A+ AT1BA) =D(A)

1s a generator of a Cy-semigroup on X.
Proof. [8, Cor I11.3.22] O

Proof of corollary 4.24. 1f 0 ¢ p(A), we can choose a real positive constant w >
wo(T'(t)) and consider

A+B=A-wl)+(B+wl)=A"+DB

Now 0 € p(A’). We will show that B € £(X{, X’) and ran B C F| where X', X| and
F| are corresponding Sobolev and Favard spaces associated to the operator A — wl.

Since we know from section 2.2.1 that B € £(X;, X) and the norm ||-||; associated to
operator A’ is equivalent to the graph norm ||-|| 4/, we have

18|

(B +wlz|| < M||Az|| + |w[[le]| < M[[(A = wl)z|| + (M + D) wl[l]
= M[(A = whz|| + (M + D]w|| B(w, A)(w] = A)z|
< (M A+ M+ Dwl|R(w, A)|]) [| A"

This means that B’ € £(X], X’). Finally, we will show that ran B’ C F|. Let = €
D(B'). Since D(B') = D(B 4+ wl) = D(B) = X, we have that € X;. We can make
an estimate
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1 1
supH;(e‘“’tT(t) —I)B'z|| = stli%))ﬂg(e_mT(t) —Ie '+ Te " — I)B'z||

t>0

1 1
< supe | 2(T(t) — DB+ wiye] + supl 2 — 1))
>0 t t>0 L
1 1 , 1 —e vt
< sup||=(T(t) — I)Bx|| + wsup||-(T'(t) — I)z|| + || B'z| sup
t>0 ¢ >0 >0 t
1 1
= sup||-(T'(t) — I)Bx|| 4+ wsup|| - (T'(t) — I)z|| + w||B'z|| < oo
t>0 t t>0 t

The first term is finite, because ran B C F} and the second term is finite because
r € X; C Fy (see lemma 2.20). This means that ran B’ C Fj.

Assume now that 0 € p(A). Consider a perturbation C' = A |BA™ : X — X ;. If
we can show that C' € St]gs, we get by lemma 4.25 that the operator

A+ATICA=A+AT'A \BAT'A=A+ B, D(A+ B)=D(A)

is a generator of a Cy-semigroup on X. By corollary 4.17 it suffices to show that

CeL(X,X 1)and ranC C Fy.

Since B € L( X1, X), we have ||Bz|| < M||z||; for all x € X;. Let x € X. Then

lABA™ |-y = [AZJ AL BA™ 2| = || BA™ || < M| AA™ || = M|z

This implies that A_{BA™' € £(X, X _4).

We have from lemma 2.20 that A_{F} = Fy. Thus

ranA_lBA_l = A_l ran BA_I C A_lFl = FO
since ran B C F}. O

Since by part (ii) of lemma 2.20 we know that for a Hilbert space X the Favard space
of order 1 and the domain of A coincide, F; = D(A), we get the following result as a
direct consequence of corollary 4.24.

Corollary 4.26. Let A be a generator on a Hilbert space X with p(A) # @. If
B € L(X1,X) and ran B C D(A), then the operator A + B with domain D(A) is a
generator on X.
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Corollary 4.24 also leads to a simple proof of the following result concerning pertur-
bations B € L£(X;) [8, Cor II1.1.5]. The proof is by the author.

Corollary 4.27. Let A generate a Cy-semigroup T(t) on a Banach space X. If B €
L(X:) where X1 = (D(A),||-||1), then the operator A+ B with domain D(A) generates
a Cy-semigroup on X.

Proof. We will show that B satisfies the conditions of corollary 4.24. Since A is a
generator of a Cy-semigroup, we know that p(A) # @ since by theorem 2.6 for all
A € C with Re A > wo(T'(t)) we have A € p(A). We can now assume that 0 € p(A)
(otherwise we can consider A — A\l with A\ > wy(7'(t))).

Using part (iii) of lemma 2.20 we see that ran B C X; C Fj.

It remains to show that B € £(X;,X). Since B € £(X;), we know that for some
M > 0 we have | Bx||; < M||z||;. Let x € X;. Now

|Bz|| = [A7"ABz|| < A [[[|ABz|| = A1 Bzl < A7 [ M l]l

and thus B € £(X;,X). By corollary 4.24 the operator A + B with domain D(A)
generates a Cp-semigroup on X. O

The following example shows a perturbation which is bounded on X; but not on X.
The example is taken from [8, Ex III.1.6].

Example 4.28. Let Af = f’ with domain C}(R) on X = Cy(R). Let h € C}(R) and
define the operator B by

Bf =f(0)-h, [f€CR)

Now B € L(X}), since for f € C}(R) we have

=M
1Bfls = JACF(©)- B = IF(0) - K| = supl(0) - /(5] < supl /()] - Supl’(¢)

= MIAf| = M|l

By corollary 4.27 the operator A + B with domain C}(R) generates a Cp-semigroup
on Cy(R).
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We have the following result concerning preservation of regularity properties under
Miyadera-Voigt pertubations. As in the case of Desch-Schappacher perturbations, the
result was given in an exercise in [8, Exer I11.3.17.(1)] and the proof is by the author.

Proposition 4.29. Let A generate an analytic semigroup on X and let B € Sg}f‘/.
Then A + B generates an analytic semigroup on X.

Proof. Let A generate an analytic semigroup 7'(z) on X and choose w; € R such that
w1 > wo(T'(t)). Then the operator A — w;l generates a bounded analytic semigroup
on X and by theorem 2.17 there exists a constant M; > 0 such that for all r,s € R
with r > 0 and s # 0

M
IR(r +is, A—wiI)|| < gl
M
& [[Rr+w +is,4)]] < |?|1 (4.7)

Let My > 0, wy be real constants such that

1T < Mae".

Then for A € C with Re A > wy we have A € p(A) and theorem 2.6 tells us that for all
r € X we can express R(\, A)z as an integral. Therefore for all x € D(A)

[e.e]

(n+1)t0
Z / e BT (s)xds

nto

BR(\, Az = B/ e T (s)wds =
0

n=0

oo (n+1)to
= Z/ e A0 As7m0) BT (s — it )T (ntg)zds
n=0"Y"

to

00 to
= Ze_)‘”to/ e BT (s)T(nty)xds
n=0 0

oo to
= Z e~ mto / Te M=) BT (ty — s)T'(nty)xds
0

n=0

— Ze_’\"to [V_gFA} (to)T (ntg)x.

n=0

Here Fy(t) = Ie7*0™) and F) € X, with [|[F)|lsc = sup,co e = 1. For
simplicity, we will denote V' = V. We can estimate the norm by
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IBR(A, A)z|| = [[Y_ e [VE(to)T (nto)x|
n=0
< Z|€_m°|IIVIIIIFAIIooIIT(nto)III [eal
L n=0
- 00 o Rean M2e(w2—Re)\)to
< IVl a3 e ] Jafl < {nvn T e | I

Because B € SV the operator V' is bounded with ||[V|| < 1. Since the last term goes
to zero as the real part of A goes to infinity, we have for some w3 > wy and 0 < ¢ < 1
that

IBR(A, A)z|| < qllzll, vz e D(A)

for all A € C with Re A > ws. Since D(A) is dense in X and BR(\, A) € L(X), the
uniqueness of the extension in theorem A.14 tells us that

IBRONLA)| <q<1, VAeC with Red > ws. (4.8)

Since B € S%W, the perturbed operator A + B generates a Cy-semigroup S(t) with
growth bound wy(S(t)) on X. Choose

w > max{wy(S(t)), w1, ws}.

Let A € C such that Re A > w. Now we have by equation (4.8) and theorem A.17 that
the spectral radius of BR(\, A) satisfies

r(BR(\, A)) < ||BR(M\ A)| < 1.

Therefore 1 € p(BR(), A)) and we can make an estimate

IR(L, BROLA)l = (1Y (BROA,A)"[ < Y IBR(, A)|"
1 1

< :
L—[[BR(A A~ 1—¢
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Since Re A > w > ws, we also have A € p(A). The identity

(M — A— B) = (I — BR(\, A))(\ — A)

then implies that A € p(A + B) and

R\, A+ B) = R(\, A)R(1, BR(), A)).

Since w > wy(S(t)), we know that A + B — wl generates a bounded Cp-semigroup on
X. Finally, for r,s € R with r > 0 and s # 0 we get using (4.7) and (4.9) that

|R(r+is,A+ B—wl)| = |R(r+w+is,A+B)]

= ||R(r+w+is,A)R(1, BR(r +w +is, A))||

< |IR(r+w+1is, A)||||R(1, BR(r + w + is, A))]|
My 1 M
Is|] 1—q s

By theorem 2.17 the operator A + B — wl then generates an analytic semigroup
e wRez8(2) on X and A+ B = (A + B — wl) + wl generates an analytic semigroup
ewRezegmwRezG(5) = S(2) on X. O

4.5.1 Class & Perturbations

First results concerning unbounded perturbations and general Cy-semigroups were
presented as early as in the 1950’s. One of these concerns a class of perturbations
called class & perturbations. Basic theory can be found for example in [7] or [9].
We will show here that class &2 perturbations can in fact be seen as Miyadera-Voigt
perturbations. The proof is by the author, but the result is not new.

Definition 4.30. An operator B with domain D(B) D D(A) is a class & perturbation
if B is closed and for every ¢ > 0 there exists a constant K (t) such that

IBT()all < K(t)]lal]  for = € D(A)
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and K (t) can be chosen so that

/01 K(t)dt < oc.

To prove that class &2 perturbations are Miyadera-Voigt perturbations, we will show
that they satisfy conditions of corollary 4.22. Let B be a class & perturbation.

We will first have to show that B € £(X;, X). By remark 4.19 it suffices to show that
B is A-bounded. Since A is closed as a generator of a Cy-semigroup and B is closed
with domain D(B) D D(A), this follows directly from lemma A.9.

It remains to show that we can choose tg > 0 so that
to
[ 1T <alell vee D
0
for some 0 < ¢ < 1. Because for x € D(A) we have
to to
[ iBT@slar < [ Kodelal,
0 0
it suffices to show that we can choose ¢, > 0 such that fgo K(t)dt < 1. Now, since

/0 K0t < oo

we know that K(t) € L'([0,1];R"). Now lemma A.20 guarantees that we can find
0 > 0 such that for all a < b with b — a < J we have

/abK(t)dt <1

Thus, choosing any 0 < ty < 6 we have

to
/ K(t)dt < 1.
0
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This shows that the operator B satisfies the conditions of corollary 4.22 and thus
B e S%W for some ty > 0.

4.6 The Perturbation Theorem of Kaiser and Weis

In their article [13], Kaiser and Weis presented sufficient conditions for an operator
A+ B in Hilbert space to generate a semigroup that is strongly continuous on (0, 00).
Batty later proved in [2] that the semigroup S(¢) generated by A + B approaches
the identity operator in the strong operator topology as t — 07 and thus S(¢) is a
Co-semigroup. The main result is presented in theorem 4.31. The theorem presented
here is a slightly modified version of the one presented in the article by Batty [2]: The
original version required the condition (4.11) to hold for all z € D(B). We prove here
that it is sufficient that this holds for all = € D(A).

Theorem 4.31. Let A be a generator of a Cy-semigroup T(t) on a Hilbert space X
and let B be a closed operator on X with domain D(B) D D(A). Assume that there
exist constants 0 < ¢ < 1 and \g € R such that

{AeC|Rer> N} Cp(A)

and

IBR(A, A
1R\, A)B||

q (4.10)

<
< q|lz|]| Vxe D(A) (4.11)

whenever Re X > A\g. Then A+ B generates a Cy-semigroup on X.

The proof presented here follows [2, Thm 1] and is based on the following result from
24, Thm 1.1].

Lemma 4.32. A linear operator A on a Hilbert space X is a infinitesimal generator
of a Cy-semigroup T(t) satisfying

IT(t)| < Me*, vt >0,
for some M > 1, wy € R if and only if

(i) A is a closed densely defined operator



CHAPTER 4. ROBUSTNESS OF Cy-SEMIGROUP GENERATION 57

(ii)) {A € C| ReX > wo} C p(A) and for any A = w +is € C with w > wy the
resolvent estimates

sup (w — wo)/ |R(w +is, A)x|’ds < 0o, Vo€ X

w>wo —00

and

sup (w — wo)/ |R(w +is, A¥)z|*ds < 0o, VzeX

w>wo —00

are satisfied.

Proof of theorem 4.31. We can assume that ||T'(¢)|| < M for all £ > 0 and that A\ <0
(if this is not the case, we consider the rescaled semigroup generated by A —wl where
w > max{wo(T'(t)), Ao}. See section 2.1 for details).

Let x € D(A). Since 0 € p(A), we have from (4.10) that

|Bz|| = [|BA™ Az| < q]| Az]|

and thus the A-bound of B must be less than 1. Thus the operator A + B is closed
[14, Thm IV.1.1]. Because D(A) is dense in X (see theorem 2.6), the operator A + B
is also densely defined.

Let z € X and a > 0. Consider the mapping

f(t) = { 8 Tt iig

Now, since by theorem 3.2 we have f € L*(R, X) and

[e.e]

R(a+is,A)x = /000 e_(a“S)TT(T)l‘dT = / e " f(r)zdr = (Ff) (s)

—00

where F denotes the Fourier transform. By Plancherel’s Theorem [8, Thm C.14]
|Ffll2 = v2r| f||2 and thus

/_ |R(a+is, Ayr|?ds = / \(Ff) (8)|Pds = [ FFI2 = 2n] £

- / ()2t = / 21| T (1)t <

M3

e
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Similarly, considering the mapping

f(t) = { 8 Ty iig

we get an estimate

[e'e) M2
/ |R(a + is, Ay zllds < 27 ||z

a

—00

Denote by R|p(a) the restriction of R(a+is, A)B to D(A). Because ran R(a+is, A)B C
D(A) and (4.11) holds, R|p(4) is a bounded operator on D(A). Since D(A) is dense
in X, we know by theorem A.14 that R|p4) can be extended to a bounded operator
R € L(X) with ||R|| < g. This immediately tells us that r(R) < |[|[R|| < ¢ < 1 and
thus 1 € p(R) = p(R|p(a)) (see lemma A.19).

Since D(A + B) = D(A), we have the identity

(a+is) —A—-B = ((a+1is)] —A)(I — R(a+1is,A)B)
= ((a+is) — A)(I — Rlpa))-

This tells us that a +is € p(A + B) and

R(a+1is,A+ B)x = R(1,R|p))R(a+1is,A)x

Z Rlpay) R(a+is, A)w.

n=0

This identity allows us to estimate

| IR@ris At BalPds < [ S Rlocl "I+ s A

o0 % Ln=0
o) . 2
¢ [FlRotider,,
M2

IN

ai =gl
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Since condition (4.10) implies that ||R(X, A)*B*2’|| < g||«’|| for all 2’ € D(B*) and
D(B*) is dense in X (B is closed), we can make another estimate

0o M2

This shows that A+ B satisfies the assumptions of lemma 4.32 and thus A+ B generates
a Cp-semigroup on X. O]

We will introduce for the perturbations satisfying assumptions of theorem 4.31 a
notation similar to the one we have adapted from Engel and Nagel [8] for Desch-
Schappacher (Stlgs) and Miyadera-Voigt (Sthfv) perturbations. This will help us discuss
the stability of the pertubed semigroup later in the thesis.

Definition 4.33. Let A generate a Cy-semigroup on a Hilbert space X and let B be

a closed operator on X with domain D(B) D D(A). We say that B € S¥W if there
exist constants 0 < ¢ < 1 and Ay € R such that for all A € C with Re A > Ag

IBR(A Al < ¢
[R(X, A)Bz|| < qllz]l Ve eD(A)

Definition 4.33 does not require that the set {)\ e C | ReX > )\0} belongs to the
resolvent set of A. However, since A is a generator of a Cy-semigroup 7'(t) on X, we
know from theorem 2.6 that for all w > wy(7'(t)) we have A € p(A) whenever Re A > w.
If we choose max {\g,w} as the new )g, then all the assumptions of theorem 4.31 are
satisfied.

It is now clear from theorem 4.31 that if A is a generator of a Cjy-semigroup on a Hilbert
space X and B € S¥W, then the operator A + B with domain D(A + B) = D(A) is a
generator of a Cj-semigroup on X.

It should be noted that conditions (4.10) and (4.11) are not completely unfamiliar to
us. We saw in the proof of proposition 4.29 that if B € SNV, then there exists a
A1 € R such that

|IBR(NA)| <g<1, forall A€ C with ReA > ;. (4.12)

In other words, all Miyadera-Voigt perturbations satisfy condition (4.10) for some .
Relating Desch-Schappacher perturbations to the ones considered in this section is
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not as straightforward because the perturbed operators differ in form. Recall from
section 4.4 that if A generates a Cp-semigroup on X, then for B € Sggs the perturbed
operator is constructed as (A_; + B)|x. Also, B is defined on all of X. In the proof
of proposition 4.18 we found that for a perturbation B € St]gs there exists a Ay € R
such that

IR(N,A_1)B|| <¢<1, forall AeC with Rel > A;. (4.13)

As we mentioned, the forms of the perturbations in this case differ too much for
us to state as strong an implication as in the case of Miyadera-Voigt perturbations.
Nevertheless, the property (4.13) has similar features compared to condition (4.11).

SEW compared to the

There are also strong differences between perturbations of class
classes St]gs and S%[V. Perturbations of class SXWV are required to be closed operators
on a Hilbert space, while perturbations of classes SP° and S}V are not required to be

closed and it suffices that the underlying space is a Banach space.

Similarly to the case of Miyadera-Voigt perturbations in section 4.5, we can prove the
following result concerning the preservation of regularity properties for perturbations
in S¥W. The result and proof are by the author.

Proposition 4.34. Let A generate an analytic semigroup on X and let B € SKW.
Then A+ B generates an analytic semigroup on X.

Proof. Let A generate an analytic semigroup 7'(z) on X and choose w; € R such that
wy > wo(T'(t)). Then the operator A — w; generates a bounded analytic semigroup
on X and by theorem 2.17 there exists a constant M; > 0 such that for all r,s € R
with r > 0 and s # 0

|R(r +is, A—w )] <

& |R(r +wy +is,A)|| < — (4.14)

Since B satisfies the assumptions of theorem 4.31, we know that A 4+ B is a generator
of a Cy-semigroup S(¢) on X.

Furthermore, from our assumptions we know that there exists a Ay € R such that for
some 0 < ¢ < 1 we have ||BR(X, A)|| < g and X € p(A) for all A € C with Re A > ).
Choose

w > max {w(S(t)), w1, Ao}
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Let A € C be such that ReA > w. Since ReA > w > A\, we have A € p(A) and
theorem A.17 implies that the spectral radius of BR(\, A) satisfies

r(BR(A, A)) < |BR(A, A)|| < L.
Therefore 1 € p(BR(A, A)) and we can make an estimate

IR(L, BRI A)l = (1Y (BR(A,A)"[ < Y IBRO, A)|"

1 1
- < . 4.15
L—|[BR(AA)| ~ 1—¢ (415)

The identity
(M —A—-DB)=(I—BR(\A)\N —A)

now implies that A € p(A + B) and

R(\ A+ B) = R(\, A)R(1, BR(), A)).

Since w > wy(S(t)), we know that A + B — wl generates a bounded Cp-semigroup on
X. Finally, for r,s € R with » > 0 and s # 0 we get using (4.14) and (4.15) that

|R(r+is, A+ B—wl)|| = |R(r+w-+is, A+ B)||

= ||R(r+w+is,A)R(1, BR(r +w +is, A))||

< |IR(r+w+1is, A)||||R(1, BR(r + w + is, A))||
M 1 _M
Is| 1—q s

By theorem 2.17 the operator A + B — wl then generates an analytic semigroup
e wRezS(2) on X and A+ B = (A + B — wl) + wl generates an analytic semigroup
ewReze=wRezG(2) = §(2) on X. O



Chapter 5

Stability Criteria for Perturbed
Co-Semigroups

In this chapter we apply the stability criteria studied in chapter 3 to the case of
perturbed Cy-semigroups. Our aim is to find sufficient conditions for the stability
of the Cy-semigroup generated by the perturbed operator. We will consider different
types of perturbations separately.

In case of bounded perturbations we can easily derive such a sufficient condition. Let
A generate an exponentially stable Cy-semigroup 7'(t) satisfying

1T () < Me™

for some M > 1 and w > 0. Theorem 4.1 now tells us that for any B € L£(X) the
operator A + B generates a Cy-semigroup S(t) satisfying

HS(t)H < Me(—w MBIt
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This gives rise to the following simple sufficient condition for the stability of the
perturbed semigroup.

Corollary 5.1. Let A generate a Cy-semigroup T'(t) on a Banach space X statisfying
IT@)|| < Me™** for some M > 1 and w > 0. Let B € L(X). Then A+ B generates
an exponentially stable Cy-semigroup on X if | B|| < 57

If we have a perturbation of form A 4 ¢B where B € £(X) and ¢ € C, the previous
corollary states that the perturbed Cy-semigroup is exponentially stable for all ¢ satis-
fying

el <

w
M|BII

Even though the result of corollary 5.1 seems like a crude estimate, it turns out to be
the sharpest bound we can achieve if we need to cover all Cy-semigroups and bounded
perturbations. To see this, consider again the case of example 4.9. Applying corol-
lary 5.1 we see that A + B generates an exponentially stable Cy-semigroup whenever
|B|| = |B| < 1. If we choose § = 1, we can see that the perturbed operator becomes

(A+ B)(xr) = ((=k + 1)xy)

and thus it generates a Cy-semigroup S(t) with

S(t)(xy) = (eTF DIz,

Now choose e; € ¢?(C) such that e; = (1,0,0,...). We see that S(t)e; = e; does not
decay as t grows and thus the Cy-semigroup S(¢) is not stable. This means that there
exists a perturbation B with norm ||B|| = % such that the Cy-semigroup generated

M
by A 4+ B is not exponentially stable.

As we saw in chapter 4, generation results are far more complicated when the
perturbing operator is not bounded. In addition, it turns out that obtaining condi-
tions for the exponential stability of the perturbed Cy-semigroup is more tricky. One
of the obvious reasons is that we do not have any definite way to measure the ”size”
of the perturbation since ||B|| is not defined. Since we are only considering relatively
bounded perturbations, the first intuitive attempt would be to use the A-bound of
B instead of ||B||. However, this will not work because the spectrum of the operator
A is not guaranteed to stay in the left half-plane of the complex plane C even for
perturbations with small A-bound. We will use a different approach. We will formu-
late conditions for the stability of the perturbed Cy-semigroup using the norms of the
operators



CHAPTER 5. STABILITY CRITERIA FOR PERTURBED Cy-SEMIGROUPS 64

BR(A\,A) or R(\A_)B

on the open half-plane of the complex plane C.

The results presented in section 5.1 are based on the application of theorem 3.4 and
corollary 3.6 to the case of perturbed Cy-semigroups. We will first present sufficient
conditions for the stability of the perturbed Cy-semigroup when the perturbing oper-
ator is a relatively bounded operator for which the perturbed operator is generator on
X. We will then proceed to formulate this condition particularly for the perturbations
belonging to classes Sg\fv or S¥W. The differences in Desch-Schappacher perturba-

SE¥W make separate treatment neces-

tions compared to the ones of classes Sé}fv and
sary. We will, however, be able to derive a similar sufficient condition for this class of
perturbations. Finally, we will formulate a separate condition for the perturbation of
exponentially stable Cy-semigroups of contractions. This case is dealt with separately,
because the results concerning perturbation of contractive Cy-semigroups allows us to

weaken the conditions for the exponential stability of the perturbed semigroup.

Some of these conditions are similar to the ones presented by Thieme for locally Lips-
chitz continuous integrated semigroups and positive perturbations in [26]. However,
the assumptions used in the article are relatively restrictive compared to the case of
general Cy-semigroups.

Also the results presented by Pritchard and Townley in [23] are related to the condi-
tions presented in section 5.1. We analyze this relationship in section 5.1.6.

In section 5.2 we will present situations where we are able to determine the stability
of the perturbed Cy-semigroup directly from the spectrum of the operator A + B.
More precisely, we present conditions under which the negative spectral bound of the
operator A + B determines the stability of the perturbed Cy-semigroup. Since we
lack proper perturbation theory for the spectral bound of an unbounded operator, the
theory will be of use mainly when the spectrum of A+ B is known or can be obtained
easily.

5.1 Conditions On The Resolvent

In this section we consider unbounded perturbations considered in chapter 4 and
discuss the stability of the perturbed Cy-semigroup. Our results are based on appli-
cation of theorem 3.4 and corollary 3.6. Because of the conditions in these results, we
will throughout this section assume that X is a Hilbert space.
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Like we already stated, we will first formulate sufficient conditions for the exponential
stability of the perturbed Cy-semigroup when the perturbation is a relatively bounded
operator. This is done in section 5.1.1. We will go on to formulate this condition
for classes S%[V and SXW in sections 5.1.2 and 5.1.3. These sections also contain
results concerning the perturbations of form B, where B is a perturbation of the class
mentioned and ¢ is a real or complex parameter. The conditions derived in section 5.1.1
are not applicable to perturbations of class Sggs. A similar condition for exponential
stability under perturbations of this class is derived in section 5.1.4. Finally, we will
in section 5.1.5 formulate separate conditions for perturbation of exponentially stable

Cp-semigroups of contractions.

The results obtained in this section are compared to the existing ones for bounded
perturbations in section 5.1.6.

All the results and proofs presented in this section are by the author.

5.1.1 Conditions for General Perturbed Cj-Semigroups

In this section, we will present conditions for the stability of the perturbed Cy-
semigroup. The first result applies to the case of relatively bounded perturbations for
which the perturbed operator is a generator of a Cy-semigroup on X. The following
is the main result of this section.

Proposition 5.2. Let A generate an exponentially stable Cy-semigroup T'(t) on a
Hilbert space X and let B : X D D(B) — X be an A-bounded perturbation such that
the operator A+ B with domain D(A+ B) = D(A) generates a Cy-semigroup S(t) on
X. If there exists a real constant 0 < q¢ < 1 such that

IBR(X,A)| <q for all \ € C*,

then S(t) is exponentially stable.

Proof. We will show that the operator A + B satisfies conditions of theorem 3.4. By
theorem A.17 we now know that

r(BR(\ A)) < |BROL A)] < q <1

and thus 1 € p(BR(\, A)) and R(1, BR(\, A)) € L(X). Since T'(t) is exponentially
stable, we have A € p(A) for all A € C*.
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The identity
M —A—B=(I—-BR(NA)N —A)

implies that A € p(A+ B) whenever A € p(A) and 1 € p(BR(\, A)). This means that

{AXeC|ReA>0} Cp(A+ B)

and for all A € C* the resolvent can be expressed as

RO\ A+ B) = R\, A)R(1, BR(\, A)).

We can make an estimate

sup || R(1, BR(A, A)| = sup | (BR(AA)"|| < sup Y [[BR(X A)|"
Re A>0 Re A>0 n—0 Re A>0 n—0
= su ! < su L
Rorco L= [BROS A~ roazo 1 — g
1
= 1——(] < 0
and thus
sup [R(\ A+ B)|| < sup [[R(A, A)R(L, BR(A, A))|
Re A>0 ReA>0
< sup [RONA)[|R(1, BR(A, A))|
ReA>0
< sup ||[R(A A)[l sup [[R(1, BR(A, A))|| < oc.
E{e)\>0 JBe)\>0 .
< 0 < oo

Theorem 3.4 now tells us that the Cy-semigroup generated by A + B is exponentially
stable. ]

Since bounded perturbations are also relatively bounded, we can see that the condi-
tions of proposition 5.2 are clearly satisfied for perturbations B € £(X). This case is
further addressed in section 5.1.6.

Before moving on, we will note that if A is a generator of an exponentially stable Cy-
semigroup on X and B is a relatively bounded perturbation, the operator BR(\, A)
is always bounded for all A € C*. This follows directly from the A-boundedness of
B and the fact that R(\, A) is bounded for all A € C*. In addition, the condition
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presented in proposition 5.2 then requires that BR(-, A) is uniformly bounded on C*
with supremum less than 1.

5.1.2 Miyadera-Voigt perturbations

In this section we will consider Miyadera-Voigt perturbations. We will first reformulate
proposition 5.2 in the case B € S)'V.

Corollary 5.3. Let A generate an exponentially stable Cy-semigroup on a Hilbert
space X. If B € Stj‘fv and for some 0 < ¢ <1

IBR(X,A)|| <q for all A\ € C*,

then the Cy-semigroup generated by A + B is exponentially stable.

Proof. Because B € L(X1, X), remark 4.19 tells us that B is A-bounded. Since the
operator A + B with domain D(A + B) = D(A) is a generator of a Cy-semigroup
on X, the assumptions of proposition 5.2 are satisfied. Therefore the Cy-semigroup
generated by A 4+ B is exponentially stable. O

We saw in the proof of proposition 4.29 that if A generates an exponentially stable
Co-semigroup and B € S}V, then ||BR(-, A)|| is uniformly bounded on C*. We can
use this to obtain the following result concerning perturbations of form ¢B.

Proposition 5.4. Let A generate an exponentially stable Cy-semigroup on a Hilbert
space X. If B € St](‘)/fv, we can choose 0 < ¢y < 1 such that A + €B generates an
exponentially stable Cy-semigroup for all e € C with 0 < |e] < &y.

Proof. Let A generate an exponentially stable Cy-semigroup 7'(¢) on X and let B €
Stl\fv. Due to corollary 5.3, it suffices to show that there exists 0 < ¢y < 1 such that
for all 0 < |e] < ey we have eB € S%W and for some 0 < ¢ < 1

leBR(A, A)|| < q forall A e Ct.

We will first show that for all 0 < |¢| < 1, we have eB € S)'V. Recall from section 4.5
that

SNV = { B e L(X,,X) | Vf € LX), <1}

V3
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where

(VEF)(t)x = /OtF(s)BT(t —s)xzds for t € [0,t], x € Xy

Since B € SMV, we have B € £L(X1, X) and || Bz|| < M,||z||; for some M; > 0. Now

to

leBa|| = lell| Bz|| < [e[ M|y

and thus eB € L(X;, X). For all x € X; and ¢ € [0,¢y] we have

t t
(V2 ) (t)x = / F(s)eBT(t — s)ads = / F($)BT(t — s)ds — e(ViF) ()
0 0
Since V7 is closable, clearly also Vi is closable, Vi € L(X;,) and

IVasll = lelllVE] < lel < 1
This means that eB € S)'V.
Now, since T'(t) is exponentially stable, we have for some M > 1 and w > 0 that
IT@)] < Me™".
As in proof of proposition 4.29, we can achieve an estimate

- Me(—w—Re Ato
IBRO, Al < VB + ey

Since we are considering A € C with Re A > 0, and the second term is a decreasing
function of Re A, we can estimate

_ Me(—w—ReNto _ Me o Mem«to
IBROS AN < VB + oo < Vel + T—= <1+

_ e*WtO 1 _ e*“}to :

Let 0 < ¢ < 1 be a constant and choose
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1 — —wto
om0 o)

14 Mo 14 (M —1)emwho

Now, for all ¢ € C with 0 < |g] < g

q Mefwto
BR(\ A)|| = BR(MN A 1 =q.
IO A = FIBRO. A < - (14 1257 ) =

Corollary 5.3 now tells us that with this choise of ¢y the Cy-semigroup generated by
A + €B is exponentially stable for all 0 < |e| < e. O

5.1.3 The Perturbation Theorem of Kaiser and Weis

We will now consider perturbations of class SXV and formulate the conditions of
proposition 5.2 in this particular case. The following corollary states the main result.

Corollary 5.5. Let A generate an exponentially stable Cy-semigroup on a Hilbert
space X and let B be a closed operator on X with domain D(B) D D(A). If there
exist constants 0 < g < 1 and p € R such that for all A € C*

IBR(X, A)|l < q

and for all A € C with Re A > p

IR(A, A)Bz|| < ql|z|  Va € D(A),
then A+ B generates an exponentially stable Cy-semigroup on X.

Proof. We will first show that A+ B generates a Cy-semigroup on X by showing that
the assumptions of theorem 4.31 are satisfied. Since A generates an exponentially
stable Cy-semigroup T'(¢t) on X, we know from theorem 2.6 that

{AeC|ReA>0} Cp(A).

If > 0, choose \g = p. Otherwise we can choose Ay to be any positive real number.
This shows that the conditions of theorem 4.31 are satisfied and thus A + B generates
a Cp-semigroup S(t) on X.
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Because the closedness of B and D(B) D D(A) imply that B is A-bounded (see
lemma A.9), the assumptions of proposition 5.2 are satisfied. This shows that the
Co-semigroup generated by A + B is exponentially stable. O

We will again present a direct consequence of the previous result concerning perturbed
operators of the form eB.

Corollary 5.6. Let A generate an exponentially stable Cy-semigroup on a Hilbert
space X and let B be a closed operator on X with domain D(B) D D(A). If there
exist constants My, My > 0 and p € R such that for all A € C*

IBR(A, A)|| < M,

and for all A € C with Re A > p

R\, A)Bz|| < Myl|lzf| Vo € D(B), (5.1)

then there exists a constant ey > 0 such that A+ B generates an exponentially stable
Co-semigroup on X for all 0 < & < g.

Proof. Choose
. 1 1
€0 < Q'mln{ﬁlvm}

for some 0 < ¢ < 1. Clearly D(¢B) = D(B) and eB is closed. Because for all A € C*

leBR(A, A)|| = [ell BR(A, A)ll < ¢

and for all A € C with ReA >

RN, A)e Bl = [el| R(X, A) Bl < g,

the operator B satisfies conditions of corollary 5.5 for all 0 < |e] < gp. This shows
that A + B generates an exponentially stable Cy-semigroup on X. [

We will now present an example of an application for the theory presented in this
section. This example is a modification of the one in [13, Sec 6].
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Example 5.7. Let X = L*(R,C) and choose k € N. Consider an operator Ay such

that

Az = iz

where (%) denotes the 2kth distributional derivative of z. Let the domain of this
operator be

D(Ag) ={z e X | 29 abs. cont. fori € {1,...,2k —1}, ® € L*(R,C) }.

Operator Ay then generates a Cy-semigroup Ty(t) on X [1, Sec 8.1] and o(Ay) C iR.
Choose a real constant w such that w > wy(Ty(t)). Since wo(To(t)) > s(Ap), we know
that w > 0. The operator Ay — wl with

(Ag —whx = iz® —wz,  D(A) = D(A)
now generates an exponentially stable Cy-semigroup T'(¢) on X.

Consider a perturbing operator B on X such that

Bx =V .20

with domain

D(B):{xEX’V-x(i) abs. cont. fori e {1,...,1—1}, V-x(l)EX}

where V' € L*(R, C) is a potential function and [ € Ny such that [ < k. It is shown in
[13] that for A € C\ (iR)

IBRO, Ao)| < V]2

= 2¢(Re \)L-1/(2k)—1/(4k) (5.2)

for some real constant ¢ > 0. Since by our assumption we have that 1 — ﬁ — ﬁ > 0,
this immediately implies that for all A € C* we have

IBR(AA)| = [[BR(X, Ag —wI)|| = [[BR(A +w, Ao)|

V]l2 _ 1V]l2
~  2¢(Re )\ + Rew)-1/(@k)=1/(4k) = 9¢(Rew)l -1/ (2k)—-1/(4k)"
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This means that for any potential function V' € L*(R, C) whose norm satisfies

V]2 < 2¢(Rew)!~H/@R)-1/(k) (5.3)

we have for some 0 < ¢ < 1 and for all A € C* that || BR(\, A)|| < ¢.
It can also be shown [13, Proof of Prop 6.1] that the estimate in (5.2) holds for Aj
and B* instead of Ay and B. This means that also for all x € D(B) we have

(Re A + Rew) /(@R ~1/(4)

|R(\, A)Bz|| = || RN + w, Ag) Bz || < 5
and for all potential functions satisfying (5.3) we have

IR(A, A)Bz|| < q||

for all A € C*. This shows that the conditions of corollary 5.5 are satisfied for any
real ;o > 0 and thus the operator A + B,

(A+ Bz =iz® + V.20 —wz, DA+ B) =D(A),

generates an exponentially stable Cy-semigroup on X.

5.1.4 Desch-Schappacher perturbations

Results similar to the ones in previous sections can also be formulated for Desch-
Schappacher perturbations, but because of the differences this case must be dealt with
separately. The following proposition states the main result of this section.

Proposition 5.8. Let A generate an exponentially stable Cy-semigroup on a Hilbert
space X. If B € Stfs and for some 0 < q < 1

IR\ AL)Bl <q  forallXeC",
then the Cy-semigroup generated by (A_1 + B)|x on X is exponentially stable.

Proof. By theorem A.17 we now know that
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PR A)B) < [ROLAL)B| < g <1

and thus 1 € p(R(\, A_1)B) and R(1,R(\,A_1)B) € L(X). Since T(t) is exponen-
tially stable, we have A € p(A) for all A € C*.

The identity
M—(A4+B)lx=\N—-A){I—-R\NA_)B)

now implies that A\ € p((A + B)|x) whenever A € p(A) and 1 € p(R(\, A_1)B). This
means that

{AeC|ReA>0} Cp((A+ B)lx)

and the resolvent can be expressed as

RO\ (A1 + B)|x) = R(1, RO\ A )B)R(), A).

We have an estimate

sup [|[R(1, R(\,A_1)B)|| = su < su RN, A_1)B|"
IR ROADB) = s 7 (RO A)B] < s 31RO A 5]
1 1
= su sup ——
sl T TROL A B] = e T— g
1
= 1—_q<OO
and thus
sup [RO(Ay + B < sup [|R(L RO A_)B)RO, A)|
Re A>0 Re A>0
< sup [[R(1, R(A, A1) B)[[[[R(A, A)|
Re A>0
< 2 IR RO AB) sup IROLA)] < o
ReA>0 ReA>0 )

vV Vv
< o0 < oo

Theorem 3.4 now tells us that the Cy-semigroup generated by (A + B)|x is exponen-
tially stable. O]

We will again note that if A generates an exponentially stable Cy-semigroup T'(t) and
B € 8P5, then R(\, A_1)B is a bounded linear operator on X for all A € C*. Because

to
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this is not as evident as the boundedness of BR(\, A) in section 5.1.1, we will prove
it here.

Let A € C*. From the exponential stability of T'(¢) and section 2.2.1 we know that
wo(T-1(t)) = wo(T'(t)). This also implies that 0, A € p(A_;). Thus, by part (ii) of
lemma 2.18, the norms defined by ||A~ 1z and || R()\, A_;)z|| are equivalent. Because
of this and the fact that B € £(X, X_1), we have that for some real positive constants
M and C

IR(A, A1) Bz|| < C|AZ)Ba|| = C||Bx[|-y < CM||z|| Vo € X.

This means that R(\, A_1)B € L(X).

As a direct consequence of proposition 5.8, we get the following result concerning the
stability of an operator (A_; +¢B)|x where B € §2° and ¢ is a constant.

Proposition 5.9. Let A generate an exponentially stable Cy-semigroup on a Hilbert

space X. If B € 825, we can choose 0 < g9 < 1 so that (A_y + eB)|x generates an
exponentially stable Cy-semigroup for all e € C with 0 < |e] < &y.

Proof. Due to proposition 5.8, it suffices to show that there exists 0 < g < 1 such
that for all 0 < || < ey we have eB € S and for some 0 < ¢ < 1

IR\, A_1)eB|| < q forall A e C*.

We will first show that for all 0 < |¢| < 1, we have eB € Sggs. Recall from section 4.4
that
St]f))s ={BeL(X,X) ‘ Ve € L(X,), Vsl <1}

where

t
(VeF)(t)x = / T (t —s)BF(s)xds for te[0,t)], z€ X
0
Since B € SP5, we have B € L(X, X_) and || Bz| -y < M||z|| for some M; > 0. Now

leBxf| 1 = |e[| B[] -1 < [e[ M|

and thus eB € L(X, X_4). Since for all z € X and ¢ € [0, t]
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t t
(Vop F)(t)x = / T \(t— $)eBF(s)ads — = / T \(t — $)BF(s)zds = (Vi F)(t)x
0 0
and Vg € L(X,,), then also V. € L(X;,) and

IVenll = lelllVall < lel < 1.

This means that eB € ngs.

Now, since T'(t) is exponentially stable and wo(7-1(t)) = wo(7'(t)), we have for some
M > 1 and w > 0 that

IT- )] < Me™.
As in proof of proposition 4.18, we can achieve an estimate

Me(—w—Re/\)to
HR()VA*l)BH < HVBH + 1 — e(—w—ReX)to

Since we are considering A € C such that Re A > 0 and the second term is a decreasing
function of Re \, we get

Me(—w—ReA)to Me—wto Me—wto
RN, Ay) B < ||VB]| + [~ oo Reniy = [Va|l + T o—ato < 1+ T oato”
Let 0 < ¢ < 1 and choose
o q _q(l—e¥h)
0 — 1+MLMO - 1+(M_1)6—wt0.

1_€—wt0

Now for all € € C with |¢| < g

_ q Me= \
IR A-eBl = FIIRO. AP < s (147 ) =

Proposition 5.8 now tells us that with this choise of g the Cy-semigroup generated by
(A_1 4 eB)|x is exponentially stable for all 0 < |e| < . O
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5.1.5 (j-semigroups of Contractions

As we saw in section 4.3, some perturbations of Cy-semigroups of contractions result
again in contractive Cy-semigroups. Using corollary 3.6 concerning the stability of
uniformly bounded Cy-semigroups we can derive a stability result for a particular type
of Cp-semigroup. This section deals with Cj-semigroups that are both contractive
and exponentially stable. This means that the Cy-semigroup 7'(t) satisfies the norm

estimate
IT(t)[] < e

for some w > 0. The following proposition contains the main result of this section.
Proposition 5.10. Let A generate a Cy-semigroup T(t) on a Hilbert space X satis-
fying

IT@)] < e

for some w > 0. Let B with domain D(B) D D(A) be dissipative and A-bounded with
A-bound ag < 1. If there exists a constant 0 < q < 1 such that

IBR(Ai, A)|| < g

for all A € R, then the operator A+ B generates an exponentially stable Cy-semigroup
on X.

Proof. Since B satisfies the assumptions of theorem 4.10, the operator A+ B generates
a Co-semigroup of contractions S(t) on X. We will now show that A + B satisfies the
assumptions of corollary 3.6 and thus the perturbed Cy-semigroup is exponentially
stable.

Let A € R. Since A is exponentially stable, we know that \i € p(A). Since
theorem A.17 now tells us that

r(BR()i, A)) < | BR(Mi, A)| < 1,

we have 1 € p(BR(\i, A)). Furthermore, the identity

Xil — A— B = (I — BR(Xi, A))(\il — A)

implies that A\i € p(A + B) and
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R(Xi, A+ B) = R(\i, A)R(1, BR()i, A)).

We need to show that sup,cp||R(Ni, A+ B)|| < co. The previous identity allows us to
estimate

sup| RO\, A+ B)l| = sup| RO\, A)R(1, BR(Ni, A))]
AER AER
< sup|[ RN, A)|| RO BRO, 4))|
S

IN

sup|| RO\, A)| sup|| R(L, BR(Ai, A))]|
AER AER

Thus it suffices to show that sup,cp||R(A\i, A)|| < oo and sup, || R(1, BR(Ai, A))| <
0.

Since T'(t) is exponentially stable, it follows from remark 3.5 that
sup||R(\i, A)|| < oo.
XER

Let A € R. To show that sup,cp|R(1, BR(Xi, A))| < oo, we estimate

IR(L, BR(Xi, A))I| = [y (BR(A, A)"[| < ) _|IBR(A, A)||"

1 _ !
L—[[BR(N, A)| — 1—¢

and thus ]
sup||R(1, BR(\i, A))|| < sup =—— < 0.
AeR xrl—q 1—g¢

This shows that
sup||R(Ni, A+ B)|| < o0
AER

and thus by corollary 3.6 the Cy-semigroup generated by A+ B on X is exponentially
stable. 0

In closing, we will present a simple example of a perturbation of an exponentially
stable Cy-semigroup of contractions.
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Example 5.11. Consider again the case of example 4.12. We showed that the operator
A+ B generates a Cy-semigroup of contractions on X = ¢?(C). We will now show that
the perturbed Cy-semigroup is exponentially stable.

Let A € R and (zx) € X. The resolvent operator R(\i, A) is given by

RN, A)(e) = (Aﬁ k)

and thus

1BR0G A = [[(<2a || = S8
’ N —k 2N =k

= |5|QZ )\2 +k2|xk|2
k=1

This shows that | BR(\i, A)|| < |B]. Now /\Qk—jkg — 1 when k — oo. If we choose (x)
such that
1 k=i
Tl 0 kA

and let ¢ — oo, it is easy to see that ||BR(Ai, A)|| > |3|. This means that for all A € R

IBR(Ai, A)[| = |3].

Because we assumed || < 1, this means that the conditions of proposition 5.10 are
satisfied and thus the Cy-semigroup generated by A + B is exponentially stable.

5.1.6 Comparison of Results

From the definition of relative boundedness it is easy to see that all bounded oper-
ators are also relatively bounded. Furthermore, we know from theorem 4.1 that for
all bounded perturbations the perturbed operator generates a Cy-semigroup on X.
Because of this, the condition presented in proposition 5.2 is also applicable in the
case B € L(X). The following corollary is a formulation of proposition 5.2 for these
perturbations.



CHAPTER 5. STABILITY CRITERIA FOR PERTURBED C,-SEMIGROUPS 79

Corollary 5.12. Let A generate an exponentially stable Cy-semigroup T(t) on a
Hilbert space X and let B € L(X). If there exists a real constant 0 < q¢ < 1 such
that

IBR(X,A)| <q for all \ € C*, (5.4)

then A+ B generates an exponentially stable Cy-semigroup on X.

Because B is bounded, we can use the inequality

IBEA, Al < [IBI[IIRA, Al VA € p(A)

to derive a sufficient condition for the condition (5.4) to hold. If we have for some
O0<g<1

q

1Bl < ,
SUPRe )\>0HR()‘7 A) ||

(5.5)

then for all A € CT we also have
|BR(A, A)|| < [|BI[| RN, A)|| < || Bl RSgI;OHR(A,A)H <g<l

Since the unperturbed Cp-semigroup is exponentially stable, we have for some
constants M > 1 and w > 0 that the estimate ||T'(¢)|| < Me ** holds for all ¢t > 0.
The Hille-Yosida Theorem (theorem 2.7) now implies that

M M
sup [[R(MNA)|| < sup =———— = —.
Re)\EOH 3 A ReAEO Red4+w w

This means that we obtain another sufficient condition by estimating

q
SupRe)\>0HR()‘7 A)

> w
Zq— -
[—

The new sufficient condition is then [|B|| < ¢43. This, however, is equivalent to

|B|| < 47 which is the sufficient condition presented in corollary 5.1. In this sense,

the condition in corollary 5.12 is stronger than the bound in corollary 5.1.

As we stated at the beginning of this chapter, the bound in corollary 5.1 is optimal
for general Cy-semigroups and perturbing operators B € £(X). This combined with
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the fact that the condition of corollary 5.12 is stronger for all particular perturbations
means that the conditions in corollaries 5.1 and 5.12 are equivalent for the general
case of bounded perturbations.

In this sense, the sufficient condition presented in proposition 5.2 is an extension of
the condition presented in corollary 5.1.

Pritchard and Townley [23] have considered the preservation of exponential stability
under perturbations of form BDC where the operators are bounded operators between
different spaces. The unboundedness of the perturbation can be embedded in the
choise of those spaces (for example by using Sobolev spaces of different orders). The
conditions for exponential stability of the perturbed semigroups formulated in the
article involve the operator norm ||D||. The theory itself is an infinite-dimensional
generalization of the theory introduced in [12]. We will now compare the conditions
for the preservation of exponential stability presented in [23] to the ones we have
obtained in this section.

The operators of the perturbation BDC' are defined as B € L(Z, X?), D € L(Y,Z)
and C' € L(X',Y) where X is a Banach space and Y and Z are Hilbert spaces. The
spaces X! and X? restrict and extend the space X, respectively. If A generates an
exponentially stable Cy-semigroup on X and the spaces and the operators B and C'
satisfy certain assumptions, Pritchard and Townley present a stability radius rg.p
such that the operator A + BDC generates an exponentially stable Cy-semigroup on
X whenever || D|| < rgap. It is also shown that if

sup||CR(Ni, A)B|| < oo,
AR

then
1

T'stab — - .
" supper [CR(N, A)B

We will now show that these results can be used to obtain conditions similar to the
ones we have presented in this section. Let A generate an exponentially stable Cy-
semigroup on a Hilbert space X. Choose X! = X, X? =X, Y =Z2=X,B =1
and D = el where ¢ is a real parameter such that ¢ > 0. Now the perturbing
operator is eC' with C € L£(X;,X). If certain initial assumptions are satisfied and
supyer||CR(Ai, A)|| < oo, then the operator A+ C' generates an exponentially stable
Cy-semigroup on X whenever

1
SUP,\eRHCR(Ma A) || '

€<



CHAPTER 5. STABILITY CRITERIA FOR PERTURBED Cy,-SEMIGROUPS 81

This condition can also be formulated as

supl|(eC)R(Ni, A)|| = € - sup||CR(\i, A)|| < 1. (5.6)
AER AR

This condition is clearly very similar to the one in proposition 5.2. However, the initial
assumptions turn out to be relatively restrictive for our purposes. This follows from the
fact that Pritchard and Townley consider simultaneously both the perturbed operator
being a generator of a Cy-semigroup and the preservation of exponential stability. We
only want to derive conditions for the preservation of stability, that is, we already
know that the perturbed operator generates a Cy-semigroup on X. In particular, one
of the assumptions requires that for all 7' > 0 there exists a constant k such that

T
/ ICT@|2dt < k|lz|?  for all z € D(A).
0

This condition is stricter than is generally needed, for example, for C' € S%W.

Naturally, the assumptions used by Pritchard and Townley can be seen as additional
conditions on the perturbing operators. However, because of the nature of these
assumptions, the set of conditions obtained this way would not imply the conditions
in proposition 5.2.

It should also be noted that in (5.6) the supremum only needs to be taken over the
imaginary axis. We saw in remark 3.5 that if ||R(-, A)|| is uniformly bounded on C*,
then it is also uniformly bounded on the imaginary axis. Because the perturbing
operator (' is unbounded, this kind of relationship does not necessarily hold in this
case. Because of this, the conditions in proposition 5.2 do not imply that

sup||BR(\i, A)|| < 1
AR

holds. This means that in this particular case the conditions of Pritchard and Townley
can not be obtained from our conditions. In this sense, even though similar, the
conditions obtained in this section and the ones presented by Pritchard and Townley
are separate.

Another difference between the results is that the ones by Pritchard and Townley are
also applicable when X is a Banach space, whereas the results we have presented in
this section all require X to be a Hilbert space. The spaces Y and Z need to be Hilbert
spaces but in applications this is generally not very restrictive. It should also be noted
that our main concern are the A-bounded perturbing operators B with D(B) D D(A).
The theory by Pritchard and Townley can be used for more general restricting and
extending spaces X! and X?2.
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5.2 Spectral Conditions

As we saw in section 3.2, determining the growth bound of the Cy-semigroup from the
spectrum of its generator can be done in special cases, for example when the Spectral
Mapping Theorem holds. To this end, we will now turn our attention to classes of
regular Cyp-semigroups which have this property. However, it is not always easy to
determine when the perturbed operator generates a regular Cy-semigroup. In this
thesis, we concentrate on the case in which we know the unperturbed semigroup has
certain regularity properties which enable us to determine its growth bound from the
spectrum of its generator. After that, we will restrict our attention to perturbations
which preserve these regularity properties. The theory will then tell us that the growth
bound of the perturbed Cj-semigroup is again determined by the spectrum of the
perturbed operator. Perturbation of such Cy-semigroups is considered in sections
5.2.1 and 5.2.2. It should be noted that unlike many results presented in this thesis,
the ones in those two sections do not assume that the unperturbed Cy-semigroup is
exponentially stable.

When considering more general Cy-semigroups we can sometimes impose conditions
directly on the perturbing operator to get results close to the spectrum determined
growth condition. The underlying idea is that although the spectrum of the perturbed
operator doesn’t determine the growth bound of the perturbed Cy-semigroup alone,
we can still use it to characterize the growth bound together with another quantity.
We saw in sections 2.1.1 and 2.1.2 that both the essential growth bound wes(7'(¢)) and
the critical growth bound weit(7'()) together with the spectral bound of the generator
determine the growth bound of the Cy-semigroup. Our aim is to find perturbations
which do not increase either wess Or werit. When perturbing the generator of an exponen-
tially stable Cy-semigroup with such an operator, the growth bound of the perturbed
Co-semigroup is determined by the spectral bound of the perturbed operator and wegg
Or Wit of the unperturbed Cy-semigroup.

We shall see in section 5.2.3 that compact perturbations leave the essential growth
bound unchanged. As special cases of bounded linear operators, compact operators
are not very general. However, they are common in applications.

Describing perturbations which do not increase the critical growth bound requires more
complicated conditions. In general, however, they do not even need to be bounded
operators. These kinds of perturbations are considered in section 5.2.4.
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5.2.1 Perturbation of Analytic Semigroups

Analytic semigroups are in a sense "most regular” among the regular classes of semi-
groups considered in this thesis since they are at the same time immediately differ-
entiable and immediately norm-continuous (see Figure 3.1). Since we have stronger
results concerning the preservation of analyticity than the other regularity proper-
ties, we will consider this class separately. We saw that bounded perturbations and
perturbations of classes Sgs, Sﬁfv and S¥W preserve this property. These results are
summarized in the following corollary.

Corollary 5.13. Let A be a generator of an analytic semigroup on a Banach space
X. If B e L(X) or there exists a ty > 0 such that B € 8% or B € SMV, then A+ B
generates an analytic semigroup on X and this semigroup is exponentially stable if and
only if s(A+ B) < 0. The conclusions also hold if X is a Hilbert space and B € S¥W.

Proof. Theorem 4.4, proposition 4.18, proposition 4.29, proposition 4.34 guarantee
that A + B generates an analytic semigroup S(z) on X. By corollary 3.10 we have
wo(S(2)) = s(A+ B). O

Without restating the results, we will also mention that similar results hold for all
the perturbations considered in section 4.2. All of the cases considered there result in
an analytic perturbed semigroup. Therefore, the stability of the perturbed semigroup
being characterized by the negative spectral bound of the perturbed operator is a
direct consequence of corollary 3.10 in each of these cases.

5.2.2 Perturbation of Other Regular Cy-Semigroups

There is very little theory concerning the preservation of other regularity properties
under unbounded perturbations. However, if we only consider bounded perturbations
we can use theory in sections 4.1 and 3.2 to formulate conditions under which the
spectral bound of the perturbed operator determines the stability of the perturbed
Co-semigroup. The following results are direct consequences of the results presented
in these sections. It should also be noted that since we are only considering bounded
perturbations, we know that the perturbed operator is always a generator of a Cjy-
semigroup.

Corollary 5.14. Let A generate an immediately compact or immediately norm-
continuous Cy-semigroup on a Banach space X and let B € L(X). Then the Cy-
semigroup generated by A+ B on X is exponentially stable if and only if s(A+ B) < 0.
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If the unperturbed Cjy-semigroup is only eventually differentiable, compact or norm-
continuous we have to pose additional conditions. As in section 4.1, define the space
X as the space of all strongly continuous functions from [0, 00) to £(X) and define an
abstract Volterra operator V' on X by

¢
(VF)(t)x:/ T(t—s)BF(s)xds, FeX, t>0andz e X.
0

Using this notation, we get the following result

Corollary 5.15. Let A generate an eventually (differentiable, compact, norm-
continuous) Co-semigroup on a Banach space X. If B € L(X) and for some n € N

ran V" C {F ex ‘ F is immediately (differentiable,

compact, norm-continuous) fort > 0},

then the Cy-semigroup generated by A+ B on X s exponentially stable if and only if
s(A+ B) < 0.

5.2.3 Compact Perturbations

As we saw in section 2.1.1, the growth bound of a Cy-semigroup only depends on its
essential growth bound and the spectral bound of its generator. It turns out that this
characterization has an advantage when we are perturbing the generator of an expo-
nentially stable Cy-semigroup with a compact operator: The essential growth bound
isn’t changed under a compact perturbation and thus the stability of the perturbed
Cp-semigroup depends on the spectral bound of A + B alone. Again we can note that
since all compact operators are bounded, all the perturbed operators considered here
are automatically generators of Cy-semigroups on X.

Proposition 5.16. Let T(t) be a Cy-semigroup on a Banach space X with generator
A and let B € K(X). Denote by S(t) the semigroup generated by A+ B. Then

Wess(T(t)) = wess(S(1))-

Proof. [8, Prop IV.2.12] ]
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If we recall from section 2.1.1 that we can express the growth bound of a Cy-semigroup
T'(t) generated by A as

wo(T'(t)) = max {wess (T (1)), s(A)} ,

the previous result implies that for a compact perturbation B the growth bound of
the perturbed Cy-semigroup S(t) is given by

wo(S(t)) = max {wess(T(t)), s(A+ B)},

Since the exponential stability of T'(t) implies that wes(7'(t)) < 0, the stability of
the perturbed Cy-semigroup depends only on the spectrum of the perturbed operator.
The result is summarized in the following corollary.

Corollary 5.17. Let T(t) be an exponentially stable Co-semigroup with generator A
on a Banach space X and let B € K(X). Then A+ B generates an exponentially
stable Cy-semigroup on X if and only if s(A+ B) < 0.

5.2.4 Perturbation of the Critical Growth Bound

In their article [3], Brendle, Nagel and Poland achieved results which can be used
to characterize the stability of the perturbed Cj-semigroup in certain situations.
The article deals with unbounded perturbations B satisfying assumption 5.18. This
assumption guarantees that B is a Miyadera-Voigt perturbation, but is a stronger
condition than is in general needed for B € S}fv. We give here an introduction to
those parts of this theory which are most useful to us.

Let A generate a Cy-semigroup 7'(¢) on a Banach space X and let B be an A-bounded
operator on X. We make the following assumption

Assumption 5.18. There exists a function q : Ry — Ry for which lim;_o4 q(t) =0
such that

/0 | BT (s)ellds < q(t)]lz]

for each x € D(A) and t > 0.

Corollary 5.19. Let A generate a Cy-semigroup on a Banach space X and let B be
an A-bounded operator on X satisfying assumption 5.18. Then B € Stf‘o/fv.
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Proof. Since by assumption B is A-bounded, we have by remark 4.19 that B €
L(X;,X).

Since ¢(t) > 0 and lim; o4 g(t) = 0, there exists a t, > 0 such that sup,cp ) q(t) < 1.
This implies that for all x € D(A)

to
/ BT (t)z[|dt < q(to)||z]| < sup q(t)|lz]| =qllz], 0<qg<1.
0

te[0,to0]

Therefore B satisfies the conditions of corollary 4.22 and B € Stl\fv. n

For the rest of the section, let B be an A-bounded operator satisfying assumption 5.18
and denote by S(t) the Cy-semigroup generated by the operator A+ B on X. Recall
from section 4.5 that S(t) is given by the abstract Dyson-Phillips series

St) = Y _(V'T)(t), t>0, whereV =Vj,

n=0
t

(ViF) (B = /0 F(s)BT(t — s)uds, for F e X, = C((0,t], Ls(X)), = € X1

and V}; denotes the operator giving extensions (V4F)(t) : X — X of operators
(VEE)(t). The series can be written as

S(t) = Sult),
where

t
Solt) = T(#), Sa(t)r = / Su 1(t — $)BT(s)zds Va € D(A), t > 0.
0
Denote the remainder terms by

Ri(t) =) Su(t).

The following theorem gives sufficient conditions for a perturbation not to increase the
critical growth bound of a Cy-semigroup.
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Theorem 5.20. Let A generate a Cy-semigroup T(t) on a Banach space X. Let B
be an A-bounded operator satisfying assumption 5.18. If the mapping t — Ry(t) is
right norm continuous for some k € N and t > ty (see definition A.13), then for the
Co-semigroup S(t) generated by the operator A + B

wm-t(S(t)) S wcrit(T(t))'

Proof. [3, Thm 4.1] O

Theorem 5.20 immediately gives us knowledge of the growth bound of the perturbed
Co-semigroup in terms of the growth bound of the original semigroup and the spectral
bound of the operator A + B.

Corollary 5.21. Suppose conditions of theorem 5.20 hold. Then for the growth bound
of the perturbed Cy-semigroup S(t) we have

wo(S(t)) < max{we(T(t)),s(A+ B)}.

If the Cy-semigroup T'(t) is exponentially stable, its critical growth bound must be
negative. This leads us to the following corollary.

Corollary 5.22. Let A generate an exponentially stable Cy-semigroup and let B be
an A-bounded operator satisfying assumption 5.18. If the mapping t — Ry(t) is right
norm continuous for some k € N and t > ty, then the Cy-semigroup generated by
A+ B is exponentially stable if s(A+ B) < 0.

5.3 Lyapunov Equation Approach

In [19], Pandolfi and Zwart derived a sufficient condition for the stability of the
perturbed Cp-semigroup for a class of unbounded perturbations. They used the fact
that a Cy-semigroup generated by A in Hilbert space X is exponentially stable if and
only if the Lyapunov equation

(Az, Py) + (z, PAy) = —(x,y), Va,y € D(A)

has a self-adjoint positive solution P € £(X) (see theorem 3.7).
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Assuming that A generates an exponentially stable Cy-semigroup 7'(t) on X, consider
perturbations B satisfying the following assumptions

Assumption 5.23.
(i) D(B) D D(A) and A+ B generates a Cy-semigroup S(t) on X.

(ii) The number Lg defined by

2= sw / | BT (t)x|?dt (5.7)
0

z€D(A),||z[|=1
1s finite.

(iii) B is A-bounded.

Since T'(t) is exponentially stable, by theorem 3.2 the function T'(-)z € L*([0, 00), X)
for all x € X and we can the define number A by

A = sup/ |7 (t)z||*dt.
0

fl=fl=1

The following theorem gives a sufficient condition for the perturbed Cy-semigroup to
be exponentially stable.

Theorem 5.24. Let A generate an exponentially stable Cy-semigroup T(t) on a Hilbert
space X and let B be an operator satisfying assumption 5.23. If Lp (as defined in

equation (5.7)) satisfies
1

ﬂu
then the operator A+ B generates an exponentially stable Cy-semigroup on X.

Lp <

Proof. [19, Thm 2] O

The exponential stability of the unperturbed Cy-semigroup T'(t) allows us to find an
upper bound for A. Choose M > 1 and w > 0 such that

|T(#)]| < Me™*  forallt >0

and let x € X be such that ||z|| = 1. We now have an estimate
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00 M2
/ IT(t)e|Pdt < / \T@) 22l Pdt < / MPe >t =
0 0 Qw

and thus A < F This also implies that

Vw

1
> - VY
ﬂ \/§M

1
2A

ﬁ

This leads to a more concrete sufficient condition for the stability of the perturbed
Cy-semigroup.

Corollary 5.25. Assume A generates an exponentially stable Cy-semigroup T'(t) on a
Hilbert space X. Let B be an operator satisfying assumption 5.23 and let M > 1 and
w > 0 be such that
|1T)|| < Me™* vVt >0.
If Lp satisfies
Vw
< =
V2M

then the operator A+ B generates an exponentially stable Cy-semigroup on X.



Chapter 6

Conclusions

In this thesis we have studied strongly continuous semigroups of linear operators on
Hilbert spaces. Our main interest has been the preservation of exponential stability
under additive perturbations. We have considered both bounded and relatively
bounded perturbations and presented conditions under which the perturbed operator
generates an exponentially stable Cy-semigroup.

Before considering the stability of the Cy-semigroups, we needed to study which pertur-
bations preserve the property of the operator being an infinitesimal generator of a Cjy-
semigroup. In order to answer this question, we introduced a wide variety of theory
found in the literature.

Given that the unperturbed Cy-semigroup is exponentially stable and the perturbed
operator generates a Cyp-semigroup, we were able to find conditions under which the
perturbed Cy-semigroup is exponentially stable. Conditions were first derived for
the more general case of relatively bounded perturbations for which the perturbed
operator generates a Cy-semigroup and subsequently for a class of perturbations for
which the first conditions were not applicable. The condition for relatively bounded
perturbations also includes bounded perturbations as a special case. Using this fact,
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we saw that a well-known condition for the preservation of exponential stability under
a bounded perturbation follows from our conditions.

As a second approach, we formulated conditions under which the spectrum of the
perturbed operator determines the stability properties of the perturbed Cy-semigroup.
In most of these cases, certain degree of regularity is required from the unperturbed
Co-semigroup. Although this limits the generality of the theory, these special classes
of Cy-semigroups are often encountered in applications.

Finally, we introduced sufficient conditions obtained by Pandolfi and Zwart for the
preservation of exponential stability. This theory is applicable to relatively bounded
perturbations satisfying certain special assumptions.

To find alternate conditions for the stability of the perturbed Cy-semigroup, one
reasonable approach would be to use other conditions for exponential stability of a
Cy-semigroups and apply them to the case of perturbed semigroups. Possibly useful
conditions for exponential stability include the weak LP-stability in theorem 3.3 and
Quoc Phong’s condition [22]

t
sup || [ eMT(s)zds|| < oo Va € X.
AeR,t>0 Jo

Another possibly useful condition is van Neerven’s result which states that the expo-
nential stability of a Cy-semigroup 7T'(¢) in a Banach space is equivalent to the condition

TxfeZ forall f e Z,

where Z denotes either LP([0, 00), X) or Cy([0,00), X) [27]. The convolution T * f is
defined by

T = [T = s

Applying some these conditions to the case of perturbed Cy-semigroups was already
tried during the writing of this thesis. Most of them led to very impractical conditions,
but there might be ways to carry the analysis further. For example, the conditions
resulted from the application of van Neerven’s results could probably be simplified by
using more advanced theory related to convolution. Also, in this thesis we mainly
used the Dyson-Phillips -series representation of the perturbed Cpy-semigroup. The
variation of parameters -formula could be more suitable when working with some of
these conditions.
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As we saw in section 5.1.6, the conditions presented by Pritchard and Townley in [23]
can be used to derive conditions similar to the ones in section 5.1. The authors consider
simultaneously both the perturbed operator being a generator of a Cy-semigroup and
the preservation of exponential stability. The first natural question to ask is that if we
already knew that the perturbed operator generates a Cy-semigroup, could we loosen
the initial assumptions used in the article? This way, it could be possible to find new
conditions for the stability of the pertubed Cy-semigroup.

One possible topic for further research would be to incorporate perturbation theory
concerning the spectrum of linear operators to the results presented in section 5.2. At
first sight, however, the conditions needed in order to obtain bounds for the growth of
the spectral bound seem to be very restrictive. One of the directly applicable theorems
states the following: If the perturbing operator B is bounded and commutes with A,
then the distance between o0(A) and o(A + B) does not exceed ||B|| [14, Thm IV.3.6].
This implies for the spectral bounds that s(A 4+ B) < s(A) + ||B||.

One certainly interesting topic would be to see how our conditions change if we did
not require exponential stability. The next natural form of stability would be strong
stability, which means that for a Cy-semigroup T'(t) on X we have

tlim |T(t)x|| =0

for all z € X. There are actually two separate cases to study: One would be, given
an exponentially stable unperturbed Cy-semigroup, to find conditions under which the
perturbed Cy-semigroup is strongly stable. The other would be to start with a strongly
stable Cy-semigroup and see how this property is preserved under perturbations.
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Appendix A

Functional Analysis and
Integration Theory

The results presented in this appendix can be found in most of the literature containing
introductory functional analysis, for example [14, 4, 25, 18, 7]. We will also present a
couple of helpful results concerning integrable functions. This theory can be found in
[10].

A.1 Normed Linear Spaces

We will first define the concept of quotient space.
Definition A.1. Let M be a subspace of a normed linear space X. Two elements

x,y € X are said to be equivalent modulo M it x —y € M. The equivalence class of x
is defined as

Zl={yeX|z-yeM}
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The quotient space X/ 2/ 1s defined as the set of all these equivalence classes

X/M:{[xHxEX}

The quotient space is a normed linear space with quotient norm defined by

Izl = dist(w, M) = inf |lz —y]

A.2 Operator Theory

In this section we will present some basic result of operator theory.
Definition A.2. The graph of an operator A : D(A) — Y is defined as
Gr(A)={(z,Az) |[z€eD(A)} Cc X xY
The graph norm ||| 4 is defined as
lzlla = Vll2]? + [ Az]?

97

Definition A.3. Let X be a Hilbert space with inner product (-,-) and let A be a
densely defined linear operator on X. For the adjoint operator A* : X D D(A*) — X

we have

D(A*) = {y € X | 3z such that (Az,y) = (z,z), Vz € D(A)}.

Following the notation of the definition of D(A*) the adjoint operator A* is then

defined as
Ay =z, forye DAY

Definition A.4. A linear operator A is said to be closed if for every convergent
sequence (z,,) in D(A) with z,, — x and Ax,, — y we have © € D(A) and Az =y. B
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Theorem A.5. The operator A : D(A) C X — Y is closed if and only if Gr(A) is a
closed subspace of X x Y.

Proof. [14, p. 164] ]

Theorem A.6 (Closed Graph Theorem). Let A be a closed operator from Banach
space X to Banach space Y. If D(A) = X, then A is a bounded operator.

Proof. [14, Thm I11.5.20], [25, Thm IV.5.7], [7, Thm I1.2.3] O

Definition A.7. Let X and Y be normed linear spaces. An operator A € L(X,Y) is
said to be compact if for every bounded sequence (x,) C X the sequence (Az,) has a
convergent subsequence.

Definition A.8. Let X, Y and Z be normed spaces and let A and B be linear
operators such that A: X — Y, B: X — Z and D(A) C D(B). The operator B is
said to be A-bounded if there exist constants a,b > 0 such that

| Bz|| < al|Az| + bl|z||, Vz € D(A).
The A-bound of B is then defined as

ap=inf{a>0]3b>0:|Bz| < a||Az| + b||z||, Vz € D(A) }

Lemma A.9. Let X, Y and Z be Banach spaces. If the operators A: X D D(A) =Y
and B : X D D(B) — Z are closed and D(B) D D(A), then B is A-bounded.

Proof. This proof follows [14, Remarks IV.1.4-5].

Define space X = (D(A), ||-|l4) where ||z|4 = ||z| + ||Az| for all z € D(A). We will
first show that X is Banach space with this norm.

Let (,) C X be a Cauchy sequence. Then ||z, — || < ||2n — @m]||4 and thus (z,) is
a Cauchy sequence in X and lim, . 2, =z € X. Since |Az,, — Az,|| < ||2n — 2m]| 4,
also the sequence (Azx,) C Y is Cauchy sequence in Y and lim, .., Az, = y. This
means that (z,) and (Ax,) are both convergent and since A is closed, this means that
z € D(A) = X. Thus X with norm |-||4 is a Banach space.
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Define operator B as the restriction of B to D(A). Now B can be seen as an operator
B: X — Z. We will show that B is closed.

Let (x,) C X be a sequence such that lim, ., x, =z € X and lim,, an = .
Since ||z, — x| < ||z, — z||a, also (z,) C D(B) is convergent with respect to the
norm in X. Since also (Bx,) = (an) is convergent and B is closed, we know that
Bz = Bx = y. This shows that B is closed. Since D(B) = X, theorem A.6 implies
that B € £(X,Z). This means that there exists M > 0 such that for all z € D(A)

1Bl = ||Bxll < Mx|la = M| Az| + M]|z|

and thus B is A-bounded. O

Definition A.10. Let A be a closed operator on a Banach space X. An operator B
is called (relatively) A-compact if D(A) C D(B) and B : X; — X is compact. Here
X; denotes (D(A), ||-]|a) where ||-||4 is the graph norm. B

Definition A.11. Let X be a Hilbert space. An operator A : X — X is said to be
positive if for all x € X with x # 0 we have (Az,z) > 0. B

Definition A.12. A linear operator A on a Banach space X is called dissipative if for
every x € D(A) there exists a z* € X* (the dual space of X) such that

(@, 2*) = ||o]* = [|2*||?
and Re(Az,z*) < 0. In Hilbert space X the operator is dissipative if Re(Az,z) <0

for every x € D(A). R

Definition A.13. An operator-valued mapping ¢ +— T(t), where T'(t) € L(X,Y), for
all t > 0 is called right norm-continuous for t > t, if

li T+ h) =T = for ¢ > 1.
Tim [T+ )~ T(0)] =0, for £ >ty
The mapping is called norm-continuous for t > tq if

,llin%HT(t +h)=T()|| =0, fort>t.
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Theorem A.14 (Extension principle). A bounded linear operator A on a Banach

space X with domain D(A) can be extended to a bounded linear operator on D(A) with
the same norm. The extension is unique.

Proof. [14, p. 145 & Thm II1.1.16], [18, Thm 5.8.7] O

A.3 Spectral Theory

Definition A.15. Let A be a linear operator on X. The resolvent set p(A) of A is
defined by

B B -1 exists and is a densely defined
p(d) = {A€C| RO A) = (A - 4) bounded linear operator ;-

For a A € p(A), the operator (A\I — A)~! = R(\, A) is called the resolvent operator.
The spectrum o(A) of A is defined by

a(A) = C\ p(A).

Definition A.16. Let A: D(A) C X — X be a closed operator. The spectral radius
of A is defined as
r(A) =sup{ |\ | A € o(4) }

and the spectral bound of A as

s(A) =sup{ Re | A € o(4) }.

Theorem A.17. Let A be a bounded operator on a Banach space X. Then the spectral
radius of A satisfies
r(A) < [|All

Proof. [8, Cor IV.1.4] O
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Lemma A.18. Let A € p(A) and dist(\,0(A)) = inf{ |\ — p| | p € 0(A) }. Then

' 1
dist(,o(4)) 2 e —np

Proof. [7, Cor VII.3.3] O

Let A, i € p(A). The following resolvent equation is a useful identity
R(p, A) = R(A, A) + (A — p)R(A, A)R(p, A) (A.1)

Lemma A.19. Let X be a linear space and let X be its completion. If A € L(X) and
A € L(X) is its unique linear extension, then p(A) = p(A) and hence also o(A) =
o(A).

Proof. Since A and A are bounded operators, both p(A) and p(A) are not empty [14,
Sec I11.6.2]. We will first note that a bounded operator B on a linear space Y has a
bounded inverse if and only if there exists a positive real constant « such that

|Bz|| = aljzl|, VzeY

Let A € p(A). Then there exists a real positive constant a such that [[(A — A)z| >
allz|| for all x € X.

Let 2 € X. There exists a sequence (r,) C X such that lim,_ .., 7, = 2. This implies
that

I(AT = A)z|| = lim [(AT = A)a|| = lim [[(AT = A)z|| > lim afjz,]| = o]

and thus A/ — A has a bounded inverse. It remains to show that ran(\l — A) is dense
in X. This follows directly from the fact that ran(A — A) C ran(A — A). This shows

that A € p(A) and thus p(A) C p(A).

Let A € p(A). There exists a real positive constant « such that ||[(A — A)zx| > «f|z]|
for all x € X. This implies that the same holds for all # € X and thus (A — A) has
a bounded inverse. We will now show that ran(Al — A) is dense in X.

Let y € X and € > 0. Since ran(\] — A) is dense in X, there exists z € X such that
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— €
[T =)z =] < =
Choose a sequence (z,,) C X such that lim,, .., z, = x. There exists m € N such that

3

|l — zp| < ———=
2| A = A
Now,
I = Az =yl = A = Az — (A = Az + (M — A)z —y|
< A=Az — (M = Azl + [(AM — A)z — y|
— £ £

and thus ran(\] — A) is dense in X. This shows that A € p(A4) and thus p(A) C
p(A). O

A.4 Integration Theory

Lemma A.20. Let f € L'([a,b];RT). Then for every e > 0 there exists § > 0 such
that if c,d € [a,b], ¢ < d and d — ¢ < § then

d
/ F(B)dt <
Proof. This is a direct consequence of [10, Thm 12.34]. H

The previous Lemma immediately leads us to the following corollary

Corollary A.21. Let f € L*([a,b];RT). If ¢,s € [a,b], then

s—c+

lim /Sf(t)dt 0.



