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Abstract—Mathematical modeling of biological neuronal net-
works is important in order to increase understanding of the
brain and develop systems capable of brain-like learning. While
mathematical analysis of these comprehensive, stochastic, and
complex models is intractable, and their numerical simulation
is very resource intensive, mean-field modeling is an effective
tool in enabling the analysis of these models. The mean-field
approach allows the study of populations of biophysically detailed
neurons with some assumptions of the mean behaviour of the
population, but ultimately requires numerical solving of high-
dimensional differential equation systems. Mathematical model
order reduction methods can be employed to accelerate the anal-
ysis of high-dimensional nonlinear models with a purely software-
based approach. Here we compare state-of-the-art methods for
improving the simulation time of a neuronal mean-field model
and show that a nonlinear Fokker-Planck-McKean-Vlasov model
can be accurately approximated in low-dimensional subspaces
with these methods. Using Proper Orthogonal Decomposition
and different variations of the Discrete Empirical Interpolation
Method, we improved the simulation time by over three orders
of magnitude while achieving low approximation error.

I. INTRODUCTION

The human brain possesses unmatched information process-
ing and generalization capabilities. Hence, machine learning
has drawn inspiration from neuroscience and understanding
the mechanisms of learning in biological neuronal networks of
the brain continues to be of utmost importance for developing
efficient and effective machine learning algorithms [1]. Some
interesting properties of these networks are their natural capa-
bility to process data with a temporal dimension (see Reservoir
Computing) [2], use of an energy efficient continuous com-
putation paradigm which can be imitated with neuromorphic
hardware [3], [4], and diverse synaptic plasticity rules [5].
Utilizing these features together with brain-like computation
units could result in improved performance in classification
and regression tasks [6]. Indeed, by understanding how the
brain implements biological intelligence, progress can also
be made in deep learning [7], [8]. To that end, insight into
biological neuronal networks can be gained with mean-field
methods [9]. Here, we show how the simulation of a compu-
tationally expensive mean-field model can be accelerated with
mathematical model order reduction (MOR) methods [10].

Biological systems are naturally noisy and rarely behave
identically between repeated measurements [11]. This stochas-
ticity, be it intrinsic or external, is believed to serve a

purpose such as enhancing detection of weak signals [12].
The effects of noise in neuronal signaling have been studied
with stochastic models of neuronal systems in the molecu-
lar [13], single cell [14] and network [15] levels. However, the
added biological relevance achieved with stochastic modeling
comes with the burden of mathematical intractability and
increased computation time, as specialized numerical methods
are needed for simulating stochastic systems and analysis of
system dynamics relies on Monte Carlo methods. Understand-
ing network plasticity in the presence of this randomness is
one step towards more brain-like machine learning algorithms.

The dynamics of stochastic neuronal network circuits can
be studied with mean-field models that use deterministic
descriptions of the underlying network [9]. The mean-field
framework encompasses multiple methods that result in mod-
els of different levels of complexity, ranging from simple
firing rate equations to probability density functions to models
with multiple spatial dimensions. In this work, we will study
a Fokker-Planck-McKean-Vlasov-type mean-field model that
describes the time evolution of the probability density function
of the state of a large neuronal population of stochastic
FitzHugh-Nagumo (FN) neurons [16]–[18]. The model is
mathematically intractable, and studying it requires numerical
solving methods.

We show that numerical simulation of a mean-field model
can be made significantly faster by employing reduced or-
der models, created with mathematical MOR methods. MOR
methods require no simplifications of the modeled system and
allow every variable therein to be reconstructed at any time.
When choosing MOR methods appropriately, no linearization
is required, which allows more dynamics to be retained
in the reduced model [19]. Hence, these methods can be
applied directly to nonlinear systems, which in the field of
computational neuroscience is highly advantageous. Moreover,
the chosen MOR methods allow approximating linear and
nonlinear components independently, in order to approximate
the original system accurately.

In Section II, the model we studied is introduced together
with mean-field theory, and the MOR methods employed here
are described. In Section III, numerical simulation results
of the original and reduced models are shown. Finally, in
Section IV the significance of our results is discussed together
with directions for future research.



II. METHODS

Mean-field approximation was originally used to describe
the spin of electrons in theoretical physics. In the field of
computational neuroscience the method can be used to model
the behaviour of populations of neurons [9]. The single neuron
model, which will be taken to the mean-field limit, is in
itself stochastic. These neurons can prove to be challenging
to incorporate into models, and are often preprocessed by in-
troducing tractable randomness in the form of Markov chains.
In such a Markov chain the transition probabilities of neuronal
states obey the master equation, from which the Fokker-Planck
equation can be derived. In general, the mean-field approxi-
mation consists of dividing neurons into statistically similar
populations, in which the population behaviour is uncorrelated.
This is true when the population size is theoretically infinite.

In this work we examine a mean-field model derived
in [16], representing a population of FN neurons. This second-
order nonlinear partial differential equation (PDE) has three
independent variables and describes the time evolution of the
probability density function p(t, V,W, Y ) of the state of the
neuron population. It gives a deterministic description of the
underlying stochastic system. The model is
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where ȳ(t) =
∫∫∫

yp(t, v, w, y) dv dw dy, V is the neuronal
membrane voltage, W is the recovery variable of the FN
model, Y is the synaptic conductance of the neurons in this
population, and Iext is external current stimulus. For additional
details of the model, see [16].

Equation (1) must be discretized in space prior to numerical
simulation. The discretization results in a system of ordinary
differential equations of dimension (number of equations to
solve) ν3 with ν being the number of discretization points
in one variable of the PDE, assuming an equal amount of
discretization points in every variable. A fine discretization
grid is required so that fast dynamics of the model are
captured, making ν a large integer.

Spatial discretization of Equation (1) is carried out with a
fourth-order central difference scheme and the triple integral

ȳ(t) is evaluated with the Newton-Cotes method of order six.
After discretization, we write the system in state-space format

x′(t) =Ax(t) + f(x(t)), (2)

where x ∈ Rn is the current state of the system, A ∈ Rn×n

is the state matrix with linear coefficients, f(x(t)) ∈ Rn is
a vector of nonlinear functions, n = ν3, and ν = 50. For
numerical simulations we use parameters from [16].

We construct reduced order models (ROMs) with the Dis-
crete Empirical Interpolation Method (DEIM) [20] and two of
its advanced variants, namely LDEIM and QDEIM. DEIM is
a MOR method that is used in conjunction with the Proper
Orthogonal Decomposition (POD) [21] and is based on the
method from [19]. These methods are applicable to general
nonlinear systems such as the model used here.

POD is a projection based MOR method that approximates
the original system of dimension n in a reduced linear
subspace. A reduced basis with orthonormal column vectors
Vk ∈ Rn×k where k < n is computed using singular value
decomposition (SVD). This POD basis is constructed from
snapshots Y = [y1, y2, · · · , ys] that are a set of solutions to
the original system [22], collected for example with numerical
simulation. Then, a reduced state vector V T

k x(t) = x̃(t) ∈ Rk

is obtained by a linear transformation. Projecting the system
described in Equation (2) onto Vk by Galerkin projection
results in a reduced system

x̃′(t) =V T
k AVk︸ ︷︷ ︸

Ã

x̃(t) + V T
k f(Vkx̃(t))

(3)

where Ã can be precomputed before the online (simulation)
phase. At any point, an approximation of the original, full-
dimensional state vector can be computed with x(t) ≈ Vkx̃(t).

However, while POD itself can be applied to nonlinear
systems, there is no guarantee of computational savings as
the nonlinear part f(Vkx̃(t)) of the reduced system must be
evaluated in the original space. Efficient evaluation of the
nonlinear term can be achieved with DEIM [19], [20]. DEIM
extends the subspace projection approach with an interpolation
step for nonlinear functions. To construct an approximation of
the nonlinear term, the algorithm gives

f̃(x, t) ≈ Um(PT
mUm)−1PT

mf(x, t), (4)

where the DEIM basis Um = [u1, u2, · · · , um],m < n is
computed via SVD of the snapshots of the nonlinear function
outputs, PT

mf(x, t) := fm(x, t) is a nonlinear function with
m components chosen from f according to DEIM determined
interpolation points p1, · · · , pm and Pm = [ep1 , ep2 , · · · , epm ]
with epi being the standard basis vector i of Rn. Together
POD and DEIM form a ROM

x̃′(t) =Ãx̃(t) + V T
k Um(PTUm)−1︸ ︷︷ ︸

N

fm(Vkx̃(t)),
(5)

where N ∈ Rn×m can be precomputed in the offline phase.
Thus in the online phase only m nonlinear functions are
evaluated using Nfm(Vkx̃(t)). Note that the dimension k of
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Fig. 1. Original model simulated for t = 2.2 s. The probability density
function is integrated over each of the three independent variables, Y, W and
V (plots 1) to 3) respectively) for visualization purposes.

the linear component of the reduced system does not need to
equal the dimension m of the nonlinear component.

Another algorithm we use to reduce the mean-field model
is QDEIM [23]. In DEIM, the computed basis functions Um

and interpolation points Pm depend on the sequence in which
snapshots were collected. The idea of QDEIM is to find Pm

independent of this specific sequence, and to compute a more
numerically stable basis Mm that replaces Um. Pm and Mm

are obtained with QR factorization of column pivoted U∗m.
Efficient implementations of these steps are readily available
in high performance computing software packages.

Additionally, we reduce the model with Localized Discrete
Empirical Interpolation Method (LDEIM) [24]. In LDEIM, a
clustering algorithm is employed in the offline phase to group
solution snapshots before DEIM basis generation. Several ba-
sis and interpolation point pairs (Um1

, Pm1
), · · · , (Ump

, Pmp
)

are computed to obtain a set of local bases, one from each
cluster of snapshots, in contrast to the global basis used in
DEIM. In the online phase a local precomputed DEIM basis
is chosen with nearest neighbor classification. LDEIM requires
the number of clusters and features as user defined parameters,
and the size of the feature vector is a decision between
classification power and computational efficiency. The premise
of LDEIM is to use multiple smaller yet accurate reduced
subspaces to compensate for the extra online computation time
that is needed for basis selection.

In general, hardware requirements of our approach are
decided by the model that is reduced. The reduction algorithms
need additional memory proportionally to n, m and k. To
simulate the models we use four Intel Xeon E5-2680 v3 cores
and 350GB RAM. The original model requires a considerable
amount of memory in the state space format as there are
n2, n = ν3 floats in A, here ∼ 125Gb for A. However, we
did not exploit the sparsity of A to reduce memory load, thus

Fig. 2. Reduced models constructed with DEIM. Left column shows the
approximation and right column the absolute difference between the state
seen in Figure 1 in (V, W) space. Lower rows indicate approximation of
higher dimension.

a more economical implementation is achievable. The models
take advantage of multiple cores through differential equation
solvers. We use the 4th order Runge-Kutta method with fixed
step of dt = 0.01 s.

III. RESULTS

The original model from Equation (1) was simulated for
t = 2.2 s with the Gaussian distribution as the initial state. On
average, this takes 200 minutes. The state of the model after
simulation is seen in Figure 1. As the modeled probability
density function has a 3-dimensional domain, for visualization
purposes integration over one variable is required. In plot 1) of
Figure 1, integration is done over the Y-variable, in plot 2) over
W-variable and finally over V-variable in plot 3). The reduced
models should reach the same state with minimal error. From
this point forward, only the (V, W) space will be visualized.

Figure 2 shows reduction results with the DEIM method,
after an approximation of the original system is reconstructed
using the low-dimensional model. Left column shows the state
of the reduced model integrated over the Y-variable, and right
column shows the absolute difference between the original and
reduced model at every point in the (V, W) space. Dimension
of the reduced model grows in each row, with dimensions 1, 2
and 4 illustrated. It can be seen how the reduced model rapidly
converges to the same solution as the original model.



Fig. 3. Top row: approximation error from reduced models in (V, W) space.
Bottom row: factor of acceleration gained using the reduced models. Reduced
model dimension grows to the right and color indicates reduction method.

In Figure 3, upper row shows approximation error as the
sum over point-wise absolute differences between the original
and each reduced model in (V, W) space. Lower row indicates
achieved speedup as median simulation time of each reduced
model divided by the median time of the original model,
with data from 20 simulations per model. Hue indicates MOR
method. Error decreases with increasing dimension using any
method, while the gained acceleration also declines. DEIM
and QDEIM are seen to be equally accurate and fast, while
LDEIM is slower due to the online adaptivity. The cost of
adaptivity diminishes as the dimension of the reduced model
increases. With the present model, LDEIM does not achieve
an increase in accuracy compared to DEIM and QDEIM of
similar dimensions.

IV. DISCUSSION AND CONCLUSIONS

Mathematical model order reduction (MOR) of nonlinear
systems in neuroscience has been studied before in lim-
ited settings. In [25]–[27] a model of a branching neuron
was reduced. A chemical reaction based model of synaptic
plasticity was reduced in [28]. MOR studies of nonlinear
neuronal populations have been conducted in a hippocampal
network [29], in cardiac and muscular systems [30], [31] and
in mono- and bidomain electromyography models [32], [33].
Mean-field models have been reduced in fluid dynamics in the
context of e.g. water flow and flame behaviour [34], [35]. The
authors are not aware of previous applications of mathematical
MOR to neuronal Fokker-Planck mean-field models.

We have shown how the numerical simulation of a high-
dimensional neuronal mean-field model can be accelerated
significantly by the use of mathematical MOR methods. We
achieved an improvement of over three orders of magnitude in
simulation time, with low approximation error. Performing this
type of numerical approximation does not render the model
any less biologically relevant, as happens with simplification
approaches that remove variables and make assumptions about
the dynamics of the system. We note that the magnitude
of acceleration gained using reduced models depends on the
number of discretization points required to numerically solve

the partial differential equation. To accurately reach a steady-
state solution a fine grid is required, and the potential speedup
is greater. The main bottleneck is the rapidly growing memory
consumption of the original model.

Improving the simulation time of computational models of
neural populations is important as the number of neural cells,
and hence variables in the model, must be large in order to
reach satisfactory levels of biological realism. While Fokker-
Planck-type mean-field models make the study of stochastic
networks easier, solving them requires spatial discretization
over every variable of the neuron model, resulting in a rapidly
growing number of dimensions and hence long computation
times. In [36] the present model was simulated efficiently
with graphical processing units (GPUs). The alternative ap-
proach described in this study does not rely on increasing
hardware resources and instead improves simulation time with
mathematical methods based on low-dimensional subspace
approximation.

The present, purely software-based implementation of math-
ematical MOR methods is especially interesting in terms of
integration into neuronal simulators such as NEURON [37],
NEST [38] and The Virtual Brain [39]. In these simulators,
approximated models could be made readily available as
components for network or compartmental cell simulations.
Alternatively, the simulator software could compute reduced
models during long simulations and finish the simulation
efficiently using the low-dimensional model. Integration is
feasible because MOR methods do not require any special
hardware, and software only needs to support matrix arithmetic
and differential equation solvers.

Neuromorphic hardware is state-of-the-art in low energy
computation and is used in neuroscience, robotics and artificial
intelligence research [3], [4]. Neuromorphic chips have paral-
lels with MOR methods in striving for accelerated simulation
of (neuronal) models. Additionally, implementing reduced
models on neuromorphic hardware, such as the SpiNNaker
system [3], could enable the study of neuronal networks in
even larger scales than before. However, not all neuromorphic
chips can be combined with MOR methods.

Based on our results, we suggest MOR methods to be
applied to other mean-field models to see whether we can
reproduce such results with different populations of neurons.
An excellent candidate would be the Hodgkin-Huxley neuronal
mean-field model discussed in [16], for which applying the
present method is straightforward. Follow-up studies should
also address the situation when simulation parameters dif-
fer from parameters used in the snapshot collection phase.
Additionally, the benefit gained from the methods introduced
in [40] should be addressed in the context of computational
neuroscience.
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