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Abstract: In this study a nonlinear mathematical model of plasticity in the brain is reduced
using the Proper Orthogonal Decomposition and Discrete Empirical Interpolation Method.
Such methods are remarkably useful for connecting reduced small scale models via the inputs
and outputs to form optimally performing large scale models. Novel results were obtained as
mathematical model order reduction has not been applied in neuroscience without linearization
of the mathematical model and never to the model presented here. The reduced order model
consumes considerably less computational resources than the original while maintaining a low
root mean square error between the original and reduced model.
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1. INTRODUCTION

Dimensionality reduction is a commonly used method in
engineering sciences, such as control theory, in improving
computational efficiency of simulations of complex non-
linear mathematical models. In the field of neuroscience,
there is a great demand to incorporate molecular and cellu-
lar level detail in large-scale models of the brain in order to
reproduce phenomena such as learning and behavior. This
cannot be achieved with the computing power available
today, since the detailed models are complex and often
computationally too demanding for large-scale network or
system level simulations.

In the field of systems biology, models are typically simpli-
fied by completely eliminating variables, such as molecular
entities, from the system, and making assumptions of the
system behavior, for example regarding the steady state
of the chemical reactions. However, this approach is not
suitable for the current trend in neuroscience, in which
multiple physical scales of the brain are incorporated in
simulations and the consequent analysis of neural phe-
nomena. Instead comprehensive models with full system
dynamics are needed in order to increase understanding of
different actors in one brain area.

The information loss typically induced by eliminating
variables of the system can be avoided by mathematical
reduction methods that strive to approximate the entire
system with a smaller number of dimensions compared to
the original system. Here we demonstrate the effectiveness

of mathematical model order reduction methods in ap-
proximating the behavior of all the variables in the original
system by simulating a model with a radically reduced
dimension.

In this study, mathematical model reduction is applied in
the context of an experimentally verified signaling pathway
model of plasticity. This nonlinear chemical equation based
data-driven model was published in Kim et al. (2013),
and it describes the biochemical calcium signaling steps
required for plasticity, and hence for learning, in the sub-
cortical area of the brain. In addition to nonlinear charac-
teristics, the model includes time-dependent terms, which
pose an additional challenge both computational efficiency
and reduction wise. The chosen biophysical model is one of
the most comprehensive models out of those that are cur-
rently able to explain aspects of plasticity on the molecular
level with chemical interactions and the law of mass action.
The original model is too detailed for utilization in large-
scale network simulations, which serves as motivation for
the present study. Moreover, with this case study the aim
is to demonstrate that the behavior of the model can be
analysed faster yet with satisfactory accuracy by using a
reduced order model.

The model order reduction method employed in this study
is Proper Orthogonal Decomposition with Discrete Em-
pirical Interpolation Method (POD+DEIM), a subspace
projection method for reducing the dimensionality of non-
linear systems. By applying these methods, the simulation
time of the plasticity model is radically compressed al-



though approximation errors are present if the model is
reviewed on large time scales. The tolerated amount of
approximation error depends on the final application of
the model. Based on these promising results, POD+DEIM
are recommended for dimensionality reduction in compu-
tational neuroscience.

Algorithms to achieve the elimination-type reduction for
nonlinear neuronal models have been proposed for instance
in Woo et al. (2005), Sorensen and DeWeerth (2006)
and later in Shin et al. (2009). However the studies rely
on several assumptions of the model structure and are
only suitable in very specific scenarios. Recently, a vari-
able elimination strategy was used to reduce a model of
astrocyte metabolism in Diekman et al. (2013). Addition-
ally, mathematical reduction of neuronal dendrite using
a linearization approach has been performed in Kellems
et al. (2009) and a nonlinear model discretized from partial
differential equations has been reduced in Du et al. (2014).

An empirical interpolation method for reducing the com-
plexity of nonlinear functions was first proposed by Bar-
rault et al. (2004). The discrete version Discrete Empir-
ical Interpolation Method (DEIM) was then introduced
in Chaturantabut and Sorensen (2010). The previous five
years have seen DEIM developed further with localized,
adaptive and stability conserving variants in Peherstorfer
et al. (2014); Peherstorfer and Willcox (2015); Amsallem
and Nordström (2016) as well as a monotonicity preserving
variation for reaction diffusion systems in Chaturantabut
(2016). DEIM is a method that complements POD by
reducing the nonlinear term so that together the two arrive
at a reduced model which no longer depends on the original
dimension of the system. Alternatively, DEIM can be used
for standalone reduction of nonlinear functions.

2. PLASTICITY MODEL

We study a mathematical model of signaling pathways in
striatal synaptic plasticity by Kim et al. (2013). The model
is specific for the basal ganglia area of the brain and it de-
scribes how certain molecules in intercellular information
transfer points of neurons, synapses, are responsible for
plasticity, which is presumably a prerequisite for learning
in the brain. It is a biophysicochemical model that is based
on experimental data. Originally the model was employed
in studying the effects of different stimuli to the synapse
and how they could direct plasticity. Additionally, the pre-
dictions from the model have been verified experimentally
and the model itself is based on validated experimental
data.

The model is based on chemical reactions of the molecules
in the synapse. The stoichiometric equations obey the law
of mass action, which leads to a deterministic system of
ordinary differential equations. Our implementation of the
model contains n = 44 ordinary differential equations.

The model has two external stimulus variables, calcium
ion (Ca) and neurotransmitter glutamate (Glu). The state-
space model is of the form

ẋ(t) =A(t)x(t) + F (x(t)) +B ·Glu(t)

=(A0 +A1Ca(t) +A2Ca(t)2 +A3Glu(t))x(t)+

F (x(t)) +B ·Glu(t)

(1)

and the system is nonautonomous due to a Ca stimulus
being part of A(t). In our simulations, both Ca and
Glu stimuli are fixed functions in the model reduction
and testing phases. If Glu and Ca are considered inputs
to the system, the result is a nonlinear control system,
which additionally has bilinear characteristics. The five
first equations of the model are

ẋ1 =kprodAGc
· x4 − kdegAGf

· x1
ẋ2 =kPMCAc

· x15 + kNCXc
· x11 − kLeakf

· x2 · x36+

kLeakb
· x10

ẋ3 =kbufferf · Ca(t) · x19 − kbufferb · x3
ẋ4 =kprodAGf

· x21 · x7 − kprodAGb
· x4 − kprodAGc

· x4
ẋ5 =kDAG3c · x8 − kDAG4f · x5,

(2)
and they illustrate the nonlinearity of the system in
equation of ẋ2, and the time-dependence of the system
in the equation of ẋ3. In Equation (2), terms kn represent
constants and xn chemical species. This nonlinear system
has a sparse linear part and includes a time dependent
stimulus. In the numerical implementation of the model,
the linear coefficients, nonlinear function and external
inputs of the system are separated.

For the following analysis five biologially interesting
species included in the model were chosen as outputs of
the system to be studied in more detail. These were 2-
arachidonoylglycerol (Agpost), external calcium (Caext),
diacylglycerol (DAGpost), G protein with α, β and γ
subunits (Gabgpost) and phospholipase C (PLCpost). In
the present model these species are also included as state
variables. Their behavior is significant as these substances
can connect the current model to a larger, even more
detailed model and they are known to be active influencers
in the two forms of plasticity, LTP (long term potentiation)
and LTD (long term depression) (see Manninen et al.
(2010); Hellgren-Kotaleski and Blackwell (2010)).

3. MODEL REDUCTION USING POD AND DEIM

In this section we outline the Proper Orthogonal Decom-
position (POD) (see Lumley et al. (1993); Sirovich (1987);
Kellems et al. (2009, 2010); Benner et al. (2015)) and Dis-
crete Empirical Interpolation Method (DEIM) (see Chat-
urantabut and Sorensen (2010)) that are used to reduce
the order of the quadratic and nonautonomous model
discussed in Section 2. POD is a well-known method that
is used in model reduction of various types of differential
equations, partial differential equations and dynamical
systems.

The underlying idea of the POD method is to project
the system (1) onto a subspace so that the reduced
system approximates the dynamical behaviour of (1) in
the best possible way in the sense of least squares. The
POD reduction procedure is begun by simulating the full
system (1) and choosing “snapshots” x(tj) of the state

of the system at equally spaced time instances (tj)
Ns
j=1 ⊂

[0, T ] where T > 0 is the length of the time interval
(see Sirovich (1987)). The POD reduction replaces the
system (1) with an approximate system on the space
spanned by the first 1 ≤ k ≤ n singular vectors of the
matrix S = [x(t1), . . . , x(tNs

)] ∈ Rn×Ns . In particular, if



S = V ΣW ∗ is the singular value decomposition of S and
Vk consists of the first k columns of V , then the POD
reduced order model of (1) has state xk(t) = V ∗

k x(t), and
its dynamics are determined by the Galerkin projection

ẋk(t) = V ∗
k A(t)Vkxk(t) + V ∗

k F (Vkxk(t)) + V ∗
k Bu(t), (3)

where u(t) is the input vector.

The main drawback of the reduced model (3) in terms of
computational efficiency is that the function F (Vkxk(t))
appearing in the nonlinear term needs to be evaluated
for a full-sized vector Vkxk(t) ∈ Rn×n with n = 44. The
computational cost of evaluating the nonlinear term can be
reduced by approximating the function F using the DEIM
procedure.

DEIM extends POD with an interpolation step for nonlin-
ear terms of the model, while also maintaining a subspace
projection approach. The construction of the DEIM ap-
proximation begins with the construction of the so-called
DEIM modes, vectors Um = [u1, ..., um] ∈ Rn×m. The
matrix Um consists of the first m ≤ n left-singular vectors
of the matrix [F (x(t0)), . . . , F (x(tNs

))] (these columns of
the DEIM projection matrix can be collected during the
generation of the snapshots in the POD reduction process
to minimize offline computational burden of DEIM).

In the second step of the DEIM procedure we define

P = [e℘1
, ..., e℘m

] ∈ Rn×m, (4)

where e℘j
∈ Rn are the columns of the identity matrix

I ∈ Rn×n and where {℘1, ..., ℘m} is a set of interpolation
indices. The indices {℘1, ..., ℘m} are chosen based on the
columns of Um using the algorithm presented in (Chatu-
rantabut and Sorensen, 2010, Algorithm 1). By construc-
tion the matrix PTUm ∈ Rm×m is nonsingular.

The function F : Rn → Rn is of the form F (x) =
[f1(x), . . . , fn(x)]T , where fj : Rn → R for j ∈ {1, . . . , n}.
We define Fm : Rn → Rm such that Fm(x) =
[f℘1(x), . . . , f℘m(x)]T . Finally, the DEIM approximation of
the nonlinear term F (Vkxk(t)) in the POD approximation
is given by

F(k,m)(Vkxk(t)) = V T
k Um(PTUm)−1Fm(Vkxk(t)), (5)

where the matrix V T
k Um(PTUm)−1 ∈ Rk×m can be com-

puted in the offline stage. The computational savings of
the DEIM approximation result from the fact that in the
function F(k,m)(·) we only need to evaluate m component
functions of the original nonlinear function F (·).
The final reduced order form of the system (1) becomes

ẋk(t) = Ak(t)xk(t) + F(k,m)(Vkx(t)) +Bku(t),

where xk(t) = V ∗
k x(t), Ak(t) = V ∗

k A(t)Vk, Bk = V ∗
k B, and

F(k,m) is defined in (5).

The orders k and m of the POD and DEIM model
reductions can be chosen independently of each other.

4. SIMULATION RESULTS

In order to compare the original model versus POD+DEIM
reduced models the simulation speed and error of sev-
eral subspace dimensions were measured. The original
and reduced ordinary differential equation systems were
simulated in Matlab for time span t = [0, 10000] using
the variable time step ode15s solver for stiff differential

equations. For each POD dimension k = 2 : 2 : 40 (Matlab
notation), DEIM dimension m = 5 : 5 : 30 reduced mod-
els were calculated. For each combination, 20 simulations
were performed and their average computation times and
system solutions at each time step were stored.
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Fig. 1. Root mean square error between the original
model and reduced order solutions. X-axis shows POD
dimension and y-axis the error on logarithmic scale.
Each distinctly colored plot corresponds to different
dimensions used in DEIM.

Figure 1 shows the root mean square (RMS) error between
the full dimension model and different reduced models of
each POD+DEIM combination. The y-axis contains the
error values on a logarithmic scale, while x-axis indicates
the number of POD dimensions. Each line in the plot cor-
responds to a DEIM dimension. RMS error was calculated
by

eRMS =

√√√√1

k

k∑
n=1

(Y − Ỹ )2 (6)

where Y is the matrix of solutions of the original system,
Ỹ = VkYreduced is the matrix of reduced order simulation
results transformed back into the original space and k is
the number of elements in the matrices.

From Figure 1 it is seen that regardless of the DEIM mode,
or the nonlinear dimensionality, the error decays exponen-
tially until POD dimension 15 is reached. This suggests
that more than 15 POD dimensions is not necessary ben-
eficial for a reduced order model, since the accuracy will
not improve with additional dimensions. Depending on the
application, as little as five to ten dimensions could be
sufficient for simulating this model while keeping the error
tolerable. Moreover the RMS error is seen to not depend
radically on the DEIM dimension. Increasing the DEIM
modes from 5 to 10 reduces the error if the POD mode is
already over 15. This suggests that the linear part of the
model that is reduced with POD is dominant in terms of
approximation error and that the interpolation approach
to reducing the nonlinear complexity is effective.

Figure 2 displays the relative computational advantage
gained from the reduced model in terms of simulation
speed. In the figure, the simulation time of the original
full dimension model is plotted as a straight red line.
From Figure 2 it is seen that the simulation time is
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Fig. 2. Mean simulation times of 20 executions of each
POD+DEIM reduced model compared to the original
model, plotted as a straight red line. The y-axis shows
the simulation time in seconds, and x-axis shows
the POD dimension. Each colored plot corresponds
to a DEIM dimension. Simulation time interval was
t = [0, 10000].

approximately halved by using 20 DEIM modes, which
corresponds to halving the original dimension (44) of the
nonlinear term. The simulation times depend on POD
reduction only when less than 15 modes are chosen. In
summary, for this model, the nonlinear term is the largest
computational burden, since reducing it has the largest
effect on simulation times.

Figure 3 displays how the dynamics of selected output
species given by the reduced order model (red line) com-
pared to the original model (blue line) in the first 5000
seconds. Here y-axis shows the concentration of each sub-
stance and x-axis the time. Analyzing the solutions in
this format is important, for the absolute error measured
earlier does not take into account how the error as a
function of time is affected by dimension reduction. In the
context of neural models, it is important that the dynamics
are preserved. For example, information transmission via
calcium signaling between astrocytes and neurons has been
demonstrated to be amplitude and frequency modulated
in Wade et al. (2011), so even a slight defect might cause
the higher level behavior of the model to change.

The concentrations of molecular species participating in
specific signaling pathways are difficult, or sometimes im-
possible to measure, which emphasizes the importance of
modeling the dynamics of signaling pathways. The exper-
imental challenge is related to measurement techniques:
to this day there is no direct way to estimate the exact
concentrations of molecular entities in as a function of
time nor the possible variability of molecular entities. The
changes in concentrations are measured, as an example,
using fluorescent Ca2+ indicators which do not directly
give absolute concentrations. For some of the variables de-
scribed in this study, such as the calcium, some estimates
of measures can however be obtained from theoretical
studies. The average volume of a spine is 1 fl and resting
level concentration of Ca2+ is 0.1 µM , which means that
there are about 60 calcium ions in one spine. Moreover, it
has been estimated that when 100 calcium ions enter into

the spine head, it increases the calcium concentration in
the spine from 100 to 300 nM (depending on the volume
of the spine), which corresponds to the physiological range
of increases (see Majewska et al. (2000); Holcman et al.
(2004)).
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Fig. 3. Solutions of the dynamics of the selected biolog-
ically interesting output variables. Five species were
tracked and their behavior plotted as a function of
time. The y-axis displays the concentration of each
ion/molecule. Blue line is the original model, and red
is the approximation from the reduced order model
with 10 POD and 5 DEIM modes.

However, the reduced order is not able to predict the
behavior of the system when a simulation time longer
than the training time is used. In order to test whether
a low number of POD modes would be able to perform
a near-correct approximation for a very long time span if
the snapshots were also taken from a prolonged simula-
tion, new reduced models were generated. The employed
simulation time was 5 ∗ 109 seconds. Figure 4 shows the
approximation with 10 POD and 5 DEIM modes and it
is seen that Gabgpost and PLCpost significantly different
from the correct solution. However, a very good approxi-
mation was obtained with 30 POD and 10 DEIM modes,
which is seen in Figure 5, while almost maintaining a
simulation time of one third of the original model. The
reduced model has gained more pronounced oscillations,
although their amplitude is extremely low. Moreover, the
steady state concentrations are physiologically very close
to the original and in an acceptable range considering
the inherent errors a deterministic model such as the one
studied here always has. Whether the errors seen here
would affect the behavior of a multi-scale model remains
a question for another study.

The magnitude of the errors with a long simulation time
was further studied using the absolute and relative errors
between the original model and the 30 POD 10 DEIM
reduced model. The errors are visualized in Figure 6 and
Figure 7. The absolute errors are small, with the size being
less than 10−6 for all species except calcium, where the
range is approximately 10−2. The relative errors for PLC
and Gabg confirm that the observed variation is extremely
small. The relative errors for AG, Caext and DAG on
the other hand display oscillations in the reduced order
model and additionally, are in a different magnitude than



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

×109

-1

0

1

A
G

po
st

×10-3 Output variables (POD 10 DEIM 5)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

×109

0

2000

4000

C
a ex

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

×109

-0.02

0

0.02

D
A

G
po

st

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

×109

0

5

10

G
ab

g po
st

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s) ×109

0

2

4

P
LC

po
st

Fig. 4. Behavior the reduced order model in a long duration
simulation using ten POD and five DEIM modes. Blue
line is the original model and red is the reduced model
for each output variable. The simulation time was
5 ∗ 109 seconds.
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Fig. 5. Behavior the reduced order model in a long duration
simulation using 30 POD and 10 DEIM modes. Blue
line is the original model and red is the reduced model
for each output variable. The simulation time was
5 ∗ 109 seconds.

the two other output species, achieving 108. However, the
magnitude can be explained by numerical inaccuracy of
the denominator, since the true concentration reaches zero
at all points where a high error is seen, except at the
very beginning of the simulation where stimulus is applied.
Moreover, the relative error indicates that these three
species correctly predict the steady state concentration,
eventually, seen as the error degrading to zero.

To conclude, good results are achieved when the reduced
order model is trained in a matching time interval to the fi-
nal use case. The greatest challenge for the present method
is generalizing the reduced model to longer time intervals.
This issue is possibly solved by more recent improvements
of the DEIM algorithm introduced in Peherstorfer et al.
(2014) and Peherstorfer and Willcox (2015).

5. CONCLUSIONS

In this study Proper Orthogonal Decomposition and Dis-
crete Empirical Interpolation Method (POD+DEIM) was

Fig. 6. Relative error between the 30 POD and 10 DEIM
modes reduced model and the original model at every
106 seconds when simulated for 5 ∗ 109 seconds.

Fig. 7. Absolute error between the 30 POD and 10 DEIM
modes reduced model and the original model at every
106 seconds when simulated for 5 ∗ 109 seconds.

applied to a data-driven biological model of plasticity in
the brain. Five important molecules and ions were chosen
for analysis, since these species have the greatest potential
to link the model to a larger system comprising more brain
areas and features of the multi-scale neural system.

Model order reduction is an essential process for improv-
ing the scale and quality of future computational models
of the brain. Moreover, reduction methods will become
increasingly important when models representing other
mammalian species, such as rat and mouse, will be ex-
tended into human models. Although many methods of
model reduction exist, subspace projection methods show
most promise for they can be automatically applied, have
adjustable error bounds and scale to virtually any size
of system without compromising variables in the model.
Additionally, they are applicable to nonlinear systems,
either directly or via linearization, which greatly increases
their applicability to complex models in neuroscience.

Model reduction with POD+DEIM was found to signifi-
cantly reduce the simulation time. An additional benefit
is that the approximation can be tuned by adjusting the
POD and DEIM dimensionality independently. However,



the reduced order model did not achieve a perfect repro-
duction of the solutions of the original model in long time
intervals and the steady states also had slight deviations
from the original model. Whether the observed error is
tolerable depends on the final purpose of the model.

DEIM has already been developed further and future stud-
ies are needed to test the effectiveness of these new vari-
ations of the algorithm. The recently published Localized
DEIM looks extremely promising for maintaining a low
number of approximation modes for widely varying model
parameters, given that the conditions were present in the
offline training phase of POD+DEIM (Peherstorfer et al.
(2014)). Moreover, the adaptive version ADEIM is able
to react to unanticipated behavior on the online stage of
a simulation by efficiently querying the original system
(Peherstorfer and Willcox (2015)). All in all, subspace
projection methods seem suitable for reducing the dimen-
sionality of signaling pathway models in neuroscience.
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