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Abstract— In this study mathematical model order reduction
is applied to a nonlinear model of a network of biophysically
realistic heterogeneous neurons. The neuron model describes a
pyramidal cell in the hippocampal CA3 area of the brain and
includes a state-triggered jump condition. The network displays
synchronized firing of action potentials (spikes), a fundamental
phenomenon of sensory information processing in the brain.
Simulation of the system is computationally expensive, which
limits network size and hence biological realism. We reduce the
network using advanced variations of Proper Orthogonal De-
composition and Discrete Empirical Interpolation Method. The
reduced models should recreate the original spiking activity. We
show that reduction methods with online adaptivity achieve the
most accurate reduction results. Some of the reduced models
consume less computational resources than the original, at the
cost of changes in population activity of the tested network
model.

I. INTRODUCTION

In the field of neuroscience, there is a great demand to
incorporate molecular and cellular level detail in large-scale
models of the brain in order to recreate phenomena such
as learning and behavior [9]. This cannot be achieved with
the computing power available today, since detailed models
are complex and often computationally too demanding for
large-scale network or system level simulations. Model order
reduction (MOR) is a mathematical method for improv-
ing computational efficiency of simulations of mathematical
models. However, in computational neuroscience the use of
MOR is not common. Instead, efficient models are typically
derived by eliminating variables and making assumptions of
system behavior.

Neuronal activity can be modeled in detail with the
Hodgkin-Huxley (HH) formalism [10]. Less detailed, sim-
plified neuron models are motivated by computationally effi-
cient large scale simulations [11]. Morphologically accurate
models of branching neurons have been simplified algorith-
mically to derive efficient models [15], [16]. However, the
simplification approach is not suitable for the current trend in
neuroscience, in which multiple physical scales of the brain
are incorporated in simulations and the consequent analysis
of neural phenomena. Instead comprehensive models with
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full system dynamics are needed in order to increase under-
standing of different actors in one brain area.

In this paper, we study the effectiveness of MOR methods
to reduce a nonlinear biophysical network model describing
synchronized population bursting behavior of heterogeneous
pyramidal neurons in the brain [21]. Modeling studies in
computational neuroscience are typically interested in the
spatial and temporal evolution of the membrane voltage of
neurons. Neurons communicate by swiftly changing their
membrane voltage to create action potentials (spikes) that
propagate from cell to cell. Spiking is the fundamental
method of sensory information processing in the brain, and
synchronized spiking is an emergent property of biological
neuronal networks. MOR should preserve this network be-
havior. Here we reduce the network model with four varia-
tions of Proper Orthogonal Decomposition (POD) [14] and
Discrete Empirical Interpolation Method (DEIM) [4] that are
developed to reduce nonlinear systems. These methods are
DEIM, Localized DEIM (LDEIM) [18], Discrete Adaptive
POD (DAPOD) [28] and Adaptive DEIM [20]. DEIM and
the variations are used here in combination with POD.

The neurons in our network model feature a state-triggered
jump condition. Such resets are often used in simplified
neuron models to efficiently simulate the spiking behavior
of a neuron [11] as an alternative to explicitly modeling ion
channel kinetics. In the present model, the jump condition
implements a biological boundary to ions that are in limited
supply in the neural matter.

Many versions of DEIM have been developed. Unassem-
bled DEIM improves the reducibility of finite element mod-
els [24]. Matrix DEIM improves the efficiency of evaluating
the Jacobian matrix [26]. Localized DEIM uses machine
learning to compute multiple reduced bases offline and
choose between them in the online phase appropriately [18].
Temporally Localized DEIM, a recent approach to rapidly
changing local subspaces was introduced in [3]. Adaptive
DEIM with online updates to the DEIM basis and inter-
polation points has been developed to better handle unseen
states in the simulation phase [20]. Non-negative DEIM adds
structure preservation guarantees to the reduced model [1].
Furthermore, several recent studies address the performance
of DEIM in noisy environments and propose randomized
oversampling and QR-decomposition inspired basis compu-
tation methods [6], [19]. Finally, an algorithm that adapts
the POD basis online, Discrete Adaptive POD, has been
published [29]. It can be combined with many of the DEIM
algorithms. Our reduction methods in choice are described
in detail in Section III.



Mathematical MOR of nonlinear systems in neuroscience
has been studied before in limited settings. Kellems et al.
(2010) reduced a partial differential equation (PDE) model
that described a single branching neuron with HH dynam-
ics [12]. They compared how an action potential travels from
stimulus injection point along the neuron in the original and
reduced models, using POD-DEIM as the MOR method.
Du et al. (2014) built on the work of Kellems et al. by
including linearization of weakly excitable (passive) parts of
the neuron [7]. Amsallem and Nordström (2016) studied a
branching neuron and introduced stability and nonnegativity
properties to the reduced basis [1]. Finally, Lehtimäki et al.
(2017) reduced a chemical reaction based nonlinear model
of synaptic plasticity [13] using POD-DEIM.

Nonlinear MOR studies of population activity of neurons
have been conducted to model the cardiac and muscular
systems. A model of electrical properties of the cardiac
system has been reduced in [2] via POD and in [27] via
POD-DEIM. Both studies used a simple phenomenological
neuron model. Additionally, POD-DEIM has been employed
in reduction of bidomain and monodomain electromyography
models describing muscle fibers in [17], [8], where the more
biophysically accurate HH formalism was employed.

In Section II we describe the biophysics and construction
of the network model. Section III explains our MOR ap-
proach and methods in more detail. Our results are presented
in IV and we conclude by discussing the significance of
our work and ideas for future studies in sections V and VI,
respectively.

II. BIOPHYSICAL NETWORK MODEL

The biophysical network model describes pyramidal neu-
rons from the CA3 area of the hippocampus [21]. The
morphology of the cell is considered by a spatial modeling
approach, where the cell is split into compartments, and the
membrane voltage of each compartment is coupled with the
voltage of adjacent compartments via electrotonic coupling
as described by the neuronal cable theory [22]. Each neuron
is modeled in a biophysical manner, so that the membrane
voltage of one compartment behaves according to ionic
currents in HH formalism [10]. Ion channels model the active
propagation, and cable theory models the passive propagation
of membrane potential along the cell. The single-cell model
itself is a simplified version of an originally 19 compartment
model of the same cell type [25].

A network of these cells is formed by coupling them in
a random, directed graph manner. The interesting property
of the modeled network is its capability to bring about and
sustain periodic, oscillating population level activity, where
neurons spike in their somas in a synchronized manner.
We wish to determine whether this behavior is preserved
throughout the MOR process.

Each single cell model consists of ten ordinary differential
equations (ODEs). The ODE of the somatic membrane

potential Vs is

Cm
dVs
dt

=− Ileak(Vs)− INa(Vs,m, h)− IK−DR(Vs, n)

+
gc
p
(Vd − Vs) +

Is
p
,

(1)
where Vd is the voltage of the dendritic compartment, Ileak
is a leak current, Is is an injected current, INa is a sodium
current, IK−DR is a potassium delayed rectifier current, m,h
and n are HH-type voltage gated ion channel activation
variables of sodium and potassium (delayed rectifier), gc is
the electrotonic coupling conductance between the two com-
partments and p is the relative size of the soma compartment.

The ODE of the dendritic compartment is comparable
to the somatic compartment, however in place of sodium
currents and potassium delayed rectifier current the voltage
of the dendritic compartment depends on calcium, calcium-
activated potassium and afterhyperpolarization potassium
currents. Their respective activation variables are s, c and q.
Additionally, excitatory synaptic currents from NMDA (S)
and AMPA (W ) are included. Moreover, Ca in the dendritic
compartment as well as the synaptic AMPA and NMDA
concentrations are modeled with their respective ODEs. [21]

The kinetics of the gating variables h, n, s, c and q are
modeled by ODEs of the form

dy

dt
=(y∞(U(t))− y)/τy(U(t)), (2)

where U(t) is either the somatic or dendritic membrane
voltage or calcium (Ca) concentration at time t, depending
on the gating variable, and

y∞ =αy/(αy + βy) (3)

and
τy =1/(αy + βy) (4)

where αy and βy are distinct for every gating variable
m,h, n, s, c. For example, for gating variable n we have

αn =
0.016(35.1− Vs)
e(35.1−Vs)/5−1

,

βn =0.25e0.5−0.025Vs ,

hence the model contains very fast nonlinear dynamics. The
sodium activation gate m is instantaneous and is modeled
only with Equation 3.

The ODE of the NMDA concentration is particularly
interesting as it is connected to a reset condition that keeps
the value of S bounded so that

dS

dt
=
∑

jH(Vs,j − 10)− S/150,

S(t) =min(S(t), 125),
(5)

where Vs,j is the somatic voltage of the synaptic connection
from cell j and H(x) = 1 if x ≥ 0 and 0 otherwise. The
constants keep S(t) in a biologically justified range. From
this equation the nonlinear nature of synaptic connections
is also apparent. For full details of the single cell model,



see [21] and for an implementation that accounts for the
errata of the original publication, see [5].

Our network model consists of heterogeneous neurons.
The calcium conductance in the dendritic compartment can
vary by 10%, with the amount drawn from the uniform
distribution. Each cell receives synaptic input from 20 other
randomly chosen cells. We use in total 50 cells, obtaining
an ODE system of 500 variables. To study the population
behavior we use numerical integration with fixed step 4th
order Runge-Kutta method. One cell is stimulated with a
current pulse at t = 5ms for t = 50ms and the simulation
is executed for 1000ms with a timestep of dt = 0.02ms.
To measure population behavior, at each time instance the
number of cells that are spiking is counted. An action
potential (membrane voltage spike) is considered to occur
when a threshold level is exceeded. Here, the threshold is
Vt = −40mV, as in [21].

The network model we study is nonlinear with

x′(t) =Ax(t) + f(x(t)) +Bu(t), (6)

where A is the state matrix, B is the input matrix, u(t) is
a vector of time dependent inputs and f(x(t)) is a vector
of nonlinear functions. A ∈ R10ν×10ν and B ∈ R10ν×4ν

are block diagonal matrices composed of the state and input
matrices of the cells in the network, and f(x(t)) ∈ R10ν ,
where ν is the number of cells in the network. The system
has a stable steady state where each cell in the network is
at resting potential, thus no cell is spiking, and if the system
is stimulated with current injection every cell will eventually
return to the resting potential after the stimulus has stopped.

III. MODEL ORDER REDUCTION

We create reduced order models (ROMs) with variations
of POD [14] and DEIM [4]. These methods are applicable to
general nonlinear systems and their suitability to models with
Hodgkin-Huxley type ion channel kinetics has been studied
before in [1], [7], [8], [12], [17]. Furthermore, we wish to
avoid linearizations, since for the present system it is very
challenging to determine robust linearization points. These
methods also allow the implementation of reset conditions
that are a part of the studied model, similarly as in [2].

POD is a projection based MOR method that approximates
the original n dimensional system in a reduced order linear
subspace. A reduced basis with orthonormal column vectors
Vk ∈ Rn×k where k < n is determined using singular value
decomposition (SVD). This POD basis is constructed from
snapshots Y = [y1, y2, · · · , ys] that are a set of solutions
to the original system [23]. By setting x(t) ≈ Vkx̃(t) and
projecting the system described in Equation 6 onto Vk by
Galerkin projection, a reduced system

x̃′(t) =V Tk AVk︸ ︷︷ ︸
Ã

x̃(t) + V Tk f(Vkx̃(t)) + V Tk B︸ ︷︷ ︸
B̃

u(t)
(7)

is obtained. In Equation 7 Ã and B̃ can be precomputed
before the online (simulation) phase. However, while POD
itself can be applied to nonlinear systems, there is no

guarantee of computational savings as the nonlinear part of
the system must be evaluated in the original space.

Efficient evaluation of the nonlinear term can be achieved
with DEIM [4]. DEIM extends the subspace projection
approach of POD with an interpolation step for nonlinear
functions. To construct a reduced order approximation of the
nonlinear vector, the algorithm determines

f̃(x, t) ≈ Um(PTmUm)−1PTmf(x, t), (8)

where the DEIM basis Um = [u1, u2, · · · , um],m < n is de-
termined via SVD of snapshots of nonlinear function outputs,
PTmf(x, t) := fm(x, t) is a nonlinear function with m com-
ponents chosen from f according to DEIM determined in-
terpolation points p1, · · · , pm and Pm = [ep1 , ep2 , · · · , epm ]
with epi being the standard basis vector i of Rn. Note that
the POD dimension k and DEIM dimension m do not need
to be equal, although empirically it has been observed that
k = m leads to most accurate reduced models [8], [19].
Together POD and DEIM form a ROM

x̃′(t) =Ãx̃(t) + V Tk Um(PTUm)−1︸ ︷︷ ︸
N

fm(Vkx̃(t)) + B̃u(t),

(9)
where N can be precomputed in the offline phase. Thus in
the online phase it remains to compute Vkx̃ so that fm can
be evaluated at the m interpolation points.

Each cell in the network model has a state determined
jump condition, as seen in Equation 5. This condition must
be checked at every evaluation of the state of the system.
To determine the jump condition, the reduced state vector
x̃ must be projected to the original space. Numerically
we implement this check before every evaluation of the
nonlinear vector fm(x, t), that also requires the state in the
original space. However, after resolving jump conditions the
state needs to be projected back to the reduced space in
order to evaluate Ãx̃, which creates an extra computational
step that would not be otherwise required. The cost of this
step depends on the chosen POD dimension k.

A. Versions of the Discrete Empirical Interpolation Method

In addition to DEIM as described in [4] we test the effi-
cacy of Localized Discrete Empricial Interpolation Method
(LDEIM) [18]. In LDEIM, a clustering algorithm is em-
ployed in the offline phase to group solution snapshots be-
fore DEIM basis generation. Several bases and interpolation
points (Um1

, Pm1
), · · · , (Ump

, Pmp
) are computed to obtain

a set of local bases, one from each cluster of snapshots,
in contrast to the global basis used in DEIM. Each local
basis has the same dimension, and LDEIM should achieve
a similar error estimate as a global basis but with a smaller
dimension. In the online phase a local precomputed DEIM
basis is chosen adaptively. The features used to derive
and choose the bases are a subset of outputs from the
nonlinear function. LDEIM requires the number of clusters
and features as user defined parameters, and the size of the
feature vector is a decision between classification power
and computational efficiency. The premise of LDEIM is



to use multiple smaller yet accurate reduced subspaces to
compensate for the extra online computation time that is
needed for basis selection.

Another further development of DEIM that we use is
Adaptive DEIM (ADEIM) [20]. In ADEIM, the DEIM
basis and interpolation points are updated online. Initially,
(Um, Pm) are computed offline, and at step s of the simu-
lation (Us, Ps) are determined. The adaptivity is performed
via low-rank updates to (Us−1, Ps−1). A random set of size
sp of unique additional sampling points of the nonlinear
function is drawn from the uniform distribution and added to
the set of total sampling points, then the nonlinear function
is evaluated at these points in length w window of past
solutions. The resulting online snapshots are used to compute
an updated basis and sampling points. This online adaptivity
does not change the dimension of the reduced subspace. The
algorithm involves considerable online computation, but is
more capable of reducing models with trajectories that were
not sampled in the offline phase.

Finally, we implement Discrete Adaptive POD (DA-
POD) [29], [28] with DEIM. DAPOD adapts the dimension
and structure of the POD basis V online. In the online phase,
new snapshots are incorporated and existing ones eliminated
from the snapshot ensemble based on adaptivity criteria that
weigh importance and age of snapshots. The basis size is
determined with an error bound parameter ε decided by the
user. A smaller ε corresponds to a tighter error bound, which
results in a larger POD dimension and greater run time.
DAPOD can be combined with DEIM to reduce nonlinear
models more efficiently. However, as the POD basis V now
changes online, the DEIM projection matrix N of Equation 9
cannot be precomputed, which adds some additional online
computational burden.

IV. RESULTS

The network displays a temporally synchronized activity
pattern, where the majority of the neurons spike at similar
times, which replicates the behavior from [21]. This is seen
as oscillations in the number of neurons spiking at any
given time. Figure 1 illustrates the trajectory of the somatic
membrane voltage of the stimulated neuron (top) along with
network level activity (bottom) as a raster plot. In the raster
plot, a red dot is marked at every time instance on the x-axis
if the somatic voltage of a neuron in the y-axis is greater than
a voltage threshold Vt = −40ms. The stimulated neuron is
at index 0 in the raster plot.

The oscillations of the population activity are an important
phenomenon of the model and one that the ROM should
recreate. The pattern is illustrated in Figure 2, which shows
the number of neurons spiking as a function of time. A
qualitative comparison of the original model to reduced order
models of several parameters, with many reduction methods,
is provided in Figure 2. The behavior of the original model is
shown in every plot, and each row corresponds to a different
reduction method. Combinations of dimensions or reduction
method specific parameters are displayed in different colors.

Fig. 1. Top: trajectory of the somaticmembrane voltage of the stimulated
neuron. Bottom: raster plot of spike events of each neuron as a function of
time.

In Figure 2 it is seen that each reduction method has
their strengths and weaknesses in recreating the original
simulation. With the present model, a 5-10% reduction,
depending on the method, causes numerical overflow errors
or flat trajectories. The overflow errors end the simulation
immediately, and a ROM with a flat trajectory is not useful.
For this reason, the analysis considers DEIM dimensions 480
and 470.

The top most plot in Figure 2 presents the performance of
the standard DEIM method from [4]. Notably, the reduced
order models display a slight temporal shift in population
activity around t = 600ms already with 4% reduction.
Moreover, an additional burst of spikes at t = 750ms is
detected and subsequent residual network activity is observed
in the DEIM reduced models, although the original network
silences itself after the last population burst. This method has
the lowest computational burden and even with the current
slight reduction is faster to simulate than the original model.

The second plot from the top in Figure 2 shows results
obtained with the LDEIM method from [18]. The trajectories
are very similar to original DEIM, although LDEIM produces
the early network activity more accurately. Both methods
show a shift in the times of occurrence and magnitudes
of synchronized spike events as the simulation progresses.
Residual network activity is also observed here. The simu-
lation time of LDEIM is greater than DEIM, since with the
present model LDEIM does not achieve a smaller dimension
than DEIM and the overhead of online basis changes reduces
the computational efficiency of the reduced models.

Results with the DAPOD-DEIM method from [29], [28]
are shown in the third plot from the top in Figure 2. DAPOD



Fig. 2. Comparison of population behavior with different reduction methods
and parameters. Methods from top to bottom are DEIM, LDEIM, DAPOD-
DEIM and ADEIM. In all plots, x-axis is time in milliseconds and y-axis
is number of neurons spiking.

is unique in the set of tested methods because it allows the
POD basis to change online phase of reduction. We keep
the error controlling value ε constant while lowering the
DEIM dimension. In our simulations, this online adaptivity
allows DAPOD to use a smaller number of POD dimensions
than what is achieved by other reduction methods. With
ε = 1e−13 the POD dimension is in the range [462, 456].
It is seen that at 470 DEIM dimensions, DAPOD-DEIM
fails to recreate the last spike in population activity, whereas
DEIM set to 480 displays it, although with a temporal and
magnitudinal shift. Remarkably, DAPOD-DEIM simulations
do not suffer from the residual activity seen in DEIM
simulations. The simulation time of DAPOD-DEIM with the
present parameters is greater than the original model.

Finally, the bottommost plot in Figure 2 displays MOR
results from the ADEIM method [20]. We used a look-back
window length of w = 25 and sp = 10 additional random
sampling points in our simulations. The results resemble
those of the DAPOD method, as the residual activity toward
the end of simulation is correctly absent. The last activity
peak occurs too early, and some of the earlier peaks have
a smaller magnitude than the original simulation. The first
population activity bursts are recreated accuracy similar to
LDEIM. With regards to simulation time, ADEIM is the
heaviest to compute, having a runtime of over tenfold the
original model.

V. DISCUSSION

There are several differences between prior MOR studies
in neuroscience and our present work. We make the fol-

lowing comparison to publications [1], [7], [12], since those
considered a biophysically detailed and morphologically
complex neuron model. First, the present network model is
built by coupling heterogeneous ODE systems, in compar-
ison to reducing discretized PDEs as in the other studies.
Second, in terms of system dynamics the above studies used
a model of a single neural cell where an action potential
was propagating as a result of current injection, whereas
we now include multiple neurons that receive and process
stimulus from several sources asynchronously. Third, bio-
physically our cells include more complexity due to a larger
number of distinct ionic currents, heterogenic parameters and
functionally specialized compartments over copying identical
compartments to create the single cell model. To make a
final distinction on network topology, we view the single cell
models of [1], [7], [12] as networks of compartments; then,
their connectivity is restricted to neighbouring compartments.
On the other hand, our network of compartmental neurons
allows random connectivity between any number of cells.

A neuron model with a reset condition was reduced
in [2] using POD. There, the reset condition was used
to create spiking behavior in a simple phenomenological
model, whereas in our study a state-dependent jump con-
dition was employed to implement a biophysical threshold
to the synaptic NMDA current. In [2] it was concluded that
significant offline efforts were needed to derive a reliable
reduced model. Our implementation of the state-dependent
jump is explained in detail in Section III. We found that the
jump condition reduces the computational efficiency of our
reduced models. It can also be a major source of reduction
error, if the jumps in reduced models occur at different
timesteps than in the original model.

With the present model, reduction error grows rapidly
as POD and DEIM dimensions get lower, which then pre-
vents the reduction methods from achieving low dimensions
with meaningful results. However, the reduction methods
described in this study were able to replicate the emergent
synchronized population activity seen in our original network
model. This is an encouraging result, especially as these
methods have originally been reported in the context of
discretized PDE systems [4]. In comparison, our model is
based on nonlinearly coupled heterogeneous neurons de-
scribed by nonlinear ODEs, making the model reduction
setting different from those in the MOR method publications.

Based on our study, DAPOD and ADEIM perform best in
preserving the spiking activity of the original network model.
However, ADEIM is too slow to be practically usable, as
the present model does not allow low enough dimensions to
offset the computational costs of online adaptivity. DAPOD
is able to find a lower dimensional POD basis online than
the other methods find offline, and has runtime close to the
original model. We deem DAPOD especially useful if the
system has ”quiet” and ”active phases”, where the slowly
evolving system could be approximated with a relatively
small POD basis and when system-wide activity starts, POD
dimension can increase to maintain a low error.

A shift in oscillation frequency, magnitude or phase of



population activity is a phenomenon seen in the reduced
order models we presented in Section IV, Figure 2. It is
difficult to exactly quantify the significance of this reduction
error. However, with the relatively small computational ef-
ficiency increases seen in this study, the error is difficult to
justify. The additional or missing population bursts in some
of the reduced models are of greater significance. From the
perspective of neuroscience, such behavior could be caused
by intracellular or extracellular factors. The reduced models
would not allow the study of these conditions, if they recreate
an incorrect number of bursts of spikes.

We found residual network activity in DEIM and LDEIM
models, seen as continued spiking activity towards the end of
the simulation when the original model is no longer spiking.
This reduction artifact could be caused by noise amplification
as described in [19]. Especially the delicate ion channel
kinetics are sensitive to approximation errors and noise.
Interestingly, the two methods that adapt the reduced basis
online, DAPOD-DEIM and ADEIM, do not display the same
residual activity seen in DEIM and LDEIM reduced models
with the same dimension. This improvement in accuracy does
come at a cost in simulation speed.

VI. CONCLUSIONS AND FUTURE STUDIES
We constructed a network model of biophysically detailed

compartmental neurons modeled with nonlinear ordinary
differential equations, implemented several projection-based
model order reduction methods and qualitatively evaluated
model reduction results. When the model is stimulated with
a current pulse, it displays synchronized population activity.
The model was reduced with DEIM, LDEIM, DAPOD-
DEIM and ADEIM. The reduced models had challenges
in recreating the desired population behavior with low di-
mensions, possibly due to delicate ion channel kinetics or
the inclusion of state-dependent jump conditions. Simulation
was most efficient with DEIM, although DAPOD-DEIM and
ADEIM capture the behavior of the model more accurately.

Future work will compare these results to reduced mod-
els obtained with TLDEIM [3] and the methods presented
in [19].
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