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Abstract

The purpose of this article is to develop a new approach to the robust regulation problem for plants which
do not necessarily admit coprime factorizations. The approach is purely algebraic and allows us dealing
with a very general class of systems in a unique simple framework. We formulate the famous internal model
principle in a form suitable for plants defined by fractional representations which are not necessarily coprime
factorizations. By using the internal model principle, we are able to give necessary and sufficient solvability
conditions for the robust regulation problem and to parameterize all robustly regulating controllers.
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1. Introduction

Robustness of controllers is of fundamental im-
portance since it allows them to work under uncer-
tain conditions. Regulating controllers can asymp-
totically track a given reference signal. Robustness
means that the controller remains regulating de-
spite small perturbations of the system. For ex-
ample, modeling errors, model simplifications and
attrition of components in a real world application
can be seen as perturbations of the system. The
robust regulation problem is to find a robustly reg-
ulating controller.

Robust regulation of finite-dimensional plants is
well-understood [4, 5, 22]. The finite-dimensional
theory has been generalized to infinite-dimensional
plants and signals by several authors. See, for in-
stance, [2, 6, 7, 8, 9, 10, 16, 17, 24] and the refer-
ences therein. One of the most fundamental results
of robust regulation is the internal model principle,
which states that any robustly regulating controller
contains a suitably reduplicated model of the dy-
namics to be tracked.

In the frequency domain, the robust regulation
problem is an algebraic problem. Vidyasagar for-
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mulated and solved it by using coprime factoriza-
tions over the ring of stable rational transfer func-
tions [22]. Vidyasagar’s results state the internal
model principle, give a necessary and sufficient solv-
ability condition of the problem, and parameterize
all robustly regulating controllers in a remarkably
simple form. These results have been generalized to
fields of fractions over rings suitable for distributed
parameter systems and/or infinite-dimensional ref-
erence and disturbance signals [2, 6, 8, 10, 16, 24].
The common feature of the results is that they re-
quire the existence of coprime factorizations. This
is problematic since all plants do not possess co-
prime factorizations [1, 14], or their existence is not
known [10, 15].

In this paper, we develop robust regulation the-
ory of single-input single-output (SISO) plants
based on stabilizability results of [18]. The advan-
tage of the theory presented in [18] is that it uses
no coprime factorizations and allows us to develop
theory with very few assumptions. We only need to
define a commutative ring A of stable elements with
a unit and having no zero divisors to start with.
The plants are just elements in the field of frac-
tions over A. This makes the theory applicable in
several different classes of infinite-dimensional sys-
tems, for instance in those of [10, 13]. From the
theoretic point of view, the choice of A is irrelevant,
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but when applying the results, the choice of A de-
pends naturally on the problem at hand. Examples
of rings motivated by systems theoretic applications
involve H∞ and the Callier-Desoer algebra where
all stabilizable plants have coprime factorizations,
A := R[x2, x3] of Example 5.1 with plants without
weakly coprime factorizations, and P of [10], for
which the existence of (weakly) coprime factoriza-
tions of stabilizable transfer functions is not known.

The abstract algebraic approach to robust regula-
tion has received only little attention this far. In the
last chapter of his book [22], Vidyasagar discussed
the generalization of finite-dimensional stabiliza-
tion and regulation theory to infinite-dimensional
systems. Unfortunately, the part concerning robust
regulation uses coprime factorizations and therefore
is not applicable for general rings. The same is true
for the theory developed in [16]. In addition, both
of the above references use topological notions in
the study of robustness. It is possible to do with-
out by defining the robustly regulating controllers
so that they are exactly the ones that are regulat-
ing for every plant they stabilize. This definition
splits the robust regulation problem into two parts:
robust regulation that involves constructing an in-
ternal model into the controller and robust stabi-
lization that involves the topological aspects of the
problem. In this article, we focus on the former.
Robustness of stability is well-understood in many
physically interesting algebraic structures [3, 22] as
well as in the abstract setting [19, 23].

By using the fractional representation approach,
we generalize the theory of [22] to the plants which
do not necessarily possess coprime factorizations.
The main contributions of this article are:

• We give a reformulation of the internal model
principle without using coprime factorizations.

• We give a checkable necessary and sufficient
condition for solvability of the robust regula-
tion problem.

• We parameterize all robustly regulating con-
trollers for signal generators with a weakly co-
prime factorization.

The internal model principle and the solvability
condition can be found in the preliminary version
[11] of this article. However, in this article, we
require only weakly coprime factorizations instead
of coprime factorizations, which extends some of
the results of [11]. Theorem 4.6 and Corollary 4.8,

which give a parametrization of all robustly regulat-
ing controllers, are new. We formulate the results
of this paper using fractional representations. For
fractional ideal approach, see [11].

The remaining part of the paper is organized as
follows. Notations, preliminary results, and the
problem formulation are given in Section 2. The
internal model principle is considered in Section 3.
Section 4 contains solvability considerations and,
by using the results of the section, we are able to
give a parametrization of all robustly regulating
controllers. In Section 5, we illustrate the theo-
retical results by examples. Finally, the concluding
remarks are made in Section 6.

2. The problem formulation

Let A be an integral domain, namely a commu-
tative ring with a unit element 1 and without zero
divisors [20]. We denote by Al×m the A-module of
l ×m matrices with entries in A and by

Q(A) :=
{n
d
| 0 6= d, n ∈ A

}
the field of fractions of A.

Definition 2.1. 1. An element h ∈ Q(A) (resp.,
a matrix H ∈ Q(A)l×m) is said to be stable if
we have h ∈ A (resp., H ∈ Al×m) and unstable
otherwise.

2. A controller c ∈ Q(A) stabilizes p ∈ Q(A) if the
closed loop system of Figure 1 from (yr d)T

to (e u)T given by

H(p, c) :=


1

1− p c
p

1− p c
c

1− p c
1

1− p c


is stable, i.e., if we have H(p, c) ∈ A2×2.

Let Stab(p) be the set of all the stabilizing con-
trollers of p. Note that c ∈ Stab(p) is equivalent to
p ∈ Stab(c).

Definition 2.2. Let Θ ∈ Q(A). Then, we have:

1. A fractional representation of Θ is defined by
Θ = γ

θ , where 0 6= θ, γ ∈ A.

2. A fractional representation Θ = γ
θ is called a

coprime factorization if there exist α, β ∈ A
such that αγ − β θ = 1.
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Figure 1: The control configuration

3. A fractional representation Θ = γ
θ is called a

weakly coprime factorization if we have:

∀ k ∈ Q(A) : k γ, k θ ∈ A =⇒ k ∈ A.

The approach developed in this article is based
on the stabilizability results of [18]. The following
theorem combines Theorems 1 and 2 of [18].

Theorem 2.3. The plant p is stabilizable if and
only if there exist a, b ∈ A such that:{

a− p b = 1,

p a ∈ A.
(1)

Moreover, a controller c stabilizes p if and only if
it is of the form c = b

a , where 0 6= a, b ∈ A satisfy
(1). In this case, we have that a = (1− p c)−1 and
b = c (1− p c)−1.

If 0 6= a, b ∈ A satisfy (1), then all the stabilizing
controllers of c are parametrized by

c(q1, q2) :=
b+ q1 a

2 + q2 b
2

a+ q1 p a2 + q2 p b2
, (2)

where q1, q2 ∈ A are such that the denominator of
(2) does not vanish.

We make a standing assumption that all the ref-
erence and disturbance signals are generated by a
fixed signal generator Θ ∈ Q(A), i.e., the reference
and disturbance signals are of the form:

yr := Θ y0, d := Θ d0, y0, d0 ∈ A.

Definition 2.4. 1. We say that a controller c is
regulating p with the signal generator Θ if

e =

(
1

1− p c
p

1− p c

)
Θ

(
y0

d0

)
∈ A,

for all y0, d0 ∈ A, or equivalently if we have:

Θ

(
1

1− p c
p

1− p c

)
∈ A1×2. (3)

2. A controller c is called robustly regulating with
the signal generator Θ if we have:

i. c stabilizes p, i.e., c ∈ Stab(p).

ii. c regulates every plant it stabilizes, i.e., if
for all p′ ∈ Stab(c), we then have:

Θ

(
1

1− p′ c
p′

1− p′ c

)
∈ A1×2.

The robust regulation problem is the problem
of finding a robustly regulating controller.

3. The internal model principle

The first main result of this paper is the formu-
lation of the internal model principle given by the
next theorem, namely Theorem 3.2. This result
gives a necessary and sufficient condition for a sta-
bilizing controller to be robustly regulating.

Lemma 3.1. A stabilizing controller c is regulating
p if and only if there exist α, β ∈ A such that:

Θ = α+ β c. (4)

Proof. Let us first assume that c is regulating.
Then, we have α = (1 − p c)−1 Θ ∈ A and β :=
−(1− p c)−1 pΘ ∈ A, and thus we get:

Θ =
1− p c
1− p c Θ =

Θ

1− p c −
Θ p

1− p c c = α+ β c.

Let us now assume that there exist α, β ∈ A
such that (4) holds. Since c stabilizes p, we have
(1−p c)−1, c (1−p c)−1, (1−p c)−1 p ∈ A, and thus

Θ

1− p c = α
1

1− p c + β
c

1− p c ∈ A,

Θ p

1− p c = α
p

1− p c + β
p c

1− p c ∈ A,
(5)

which proves that c is regulating.

Theorem 3.2. A controller c is robustly regulating
if and only if it stabilizes p and there exist α, β ∈ A
such that Θ = α+ β c.

Proof. The necessity can be proved like in
Lemma 3.1. In order to show the sufficiency, we
assume that there exist α, β ∈ A such that we have
Θ = α+β c. For all p′ ∈ Stab(c), the stability of the
closed loop H(p′, c) yields (1−p′ c)−1, c (1−p′ c)−1,
(1 − p′ c)−1 p′ ∈ A, so we obtain (5) where p is re-
placed by p′. Thus, c is robustly regulating.



Theorem 3.2 proves that for SISO plants, every
stabilizing regulating controller is robustly regulat-
ing. This result is well-known in the literature for
plants admitting coprime factorizations [22].

According to Theorem 3.2, we will say that a con-
troller c contains an internal model of the generator
if there exist α, β ∈ A such that Θ = α+ β c. This
means that the instability generated by the signal
generator Θ must be built into a robustly regulating
controller c.

Next, we ask whether the instability generated
by the signal generator Θ can be represented by a
single stable element θ. By this, we mean that a
controller c that solves the robust regulation prob-
lem with the signal generator θ−1 is also robustly
regulating with Θ. The following corollary shows
that the denominator θ of any factorization is such
an element.

Corollary 3.3. Let Θ = γ
θ be a fractional repre-

sentation of the signal generator. If c ∈ Stab(p)
and there exist α, β ∈ A such that θ (α + β c) = 1,
then c solves the robust regulation problem.

Proof. If c ∈ Stab(p) and if there exist α, β ∈ A
such that θ (α + β c) = 1, then θ 6= 0 and θ−1 =
α + β c, which yields Θ = γ

θ = (γ α) + (γ β) c and
proves the result by Theorem 3.2.

However, θ−1 in Corollary 3.3 may not be a
“minimal” internal model in the sense that a ro-
bustly regulating controller with the signal gener-
ator Θ is not necessarily robustly regulating with
θ−1. The next theorem shows that the denomina-
tor of a weakly coprime factorization is minimal in
this sense.

Theorem 3.4. If Θ = γ
θ is a weakly coprime fac-

torization, then c solves the robust regulation prob-
lem if and only if c ∈ Stab(p) and there exist
α, β ∈ A such that θ (α + β c) = 1, i.e. c is ro-
bustly regulating for the signal generator θ−1.

Proof. By Theorem 3.2, θ (α + β c) = 1 is equiva-
lent to that c is robustly regulating with θ−1. The
sufficiency follows from Corollary 3.3. In order to
show the necessity, we assume that c is a robustly
regulating controller. Since c is stabilizing, The-
orem 2.3 shows that there exist a, b ∈ A satis-
fying (1) such that c = b

a . Since c is regulating
γ a
θ = Θ a = Θ (1 − p c)−1 ∈ A and θ aθ = a ∈ A.

Weak coprimeness of the factorization Θ = γ
θ im-

plies that a
θ ∈ A. Similarly, we can show that

a p
θ ∈ A. By (1), we get

1

θ
=
a

θ
− a p

θ
c

which completes the proof.

We end this section by showing that a robustly
regulating controller of a plant admitting a coprime
factorization (e.g., p ∈ A) necessarily contains the
denominator of a fractional representation of the
generator as an internal model.

Theorem 3.5. Let p admit a coprime factorization
p = n

d and c stabilize p. Then, c is robustly regu-
lating if and only if the generator Θ admits a frac-
tional representation Θ = z

x , where x is the denom-
inator of a coprime factorization c = y

x . In partic-
ular, we have x (α + β c) = 1 for some α, β ∈ A.
Finally, if Θ admits a coprime factorization Θ = γ

θ ,
then x = δ θ for a certain δ ∈ A.

Proof. Let us suppose that c robustly regulates p.
If p = n

d and c = y
x are coprime factorizations, then

a standard result asserts that c stabilizes p if and
only if d x−n y = u, where u is an invertible element
of A, i.e. u−1 ∈ A [22]. Then, we have:

Θ

1− p c = u−1 d xΘ ∈ A,

pΘ

1− p c = u−1 nxΘ ∈ A.

Therefore, we get

xΘ = x (u−1 d xΘ)− y (u−1 nxΘ) ∈ A,

and thus there exists z ∈ A such that Θ = z
x . More-

over, we have:

x (u−1 d− u−1 n c) = 1. (6)

Conversely, if Θ = z
x , where x is the denominator

of a coprime factorization c = y
x and z ∈ A, then

we have d x−n y = u, where u is a unit of A, which
yields (6) and proves that c robustly regulates p by
Corollary 3.3.

Finally, if Θ = γ
θ is a coprime factorization, then

there exist ε, ν ∈ A such that θ ν − γ ε = 1. Then
we have Θ = γ

θ = z
x , i.e., x = z

γ θ, and

δ :=
z

γ
=
z (θ ν − γ ε)

γ
= x ν − z ε ∈ A.



4. Solvability of the robust regulation prob-
lem

In this section, we give necessary and sufficient
conditions for the solvability of the robust regula-
tion problem. The first lemma gives a solvability
condition for stable plants.

Lemma 4.1. If p ∈ A, then the robust regulation
problem is solvable if and only if:

∃ α, β ∈ A : αΘ−1 − β p = 1. (7)

Proof. Let us first assume that c is a robustly reg-
ulating controller. Theorem 2.3 shows that c = b

a ,
where a, b ∈ A satisfy (1). Since c is regulating, we
have aΘ ∈ A. Thus, 1 = a− b p = (aΘ) Θ−1 − b p,
which proves the necessity.

Let us now assume that there exist α, β ∈ A such
that we have (7). If α = 0, then

hΘ−1 − (1− hΘ−1)β p = 1,

where h ∈ A \ {0} is chosen so that hΘ−1 ∈ A.
Thus, without restricting generality, we can assume
that α 6= 0. Since β p ∈ A, we see that αΘ−1 ∈ A,
and pαΘ−1 ∈ A. Thus, the equation (7) implies
that c := β

α Θ stabilizes p by Theorem 2.3. Further-
more, Θ (1 − p c)−1 = ΘαΘ−1 = α ∈ A, which is
enough to show that c is robustly regulating.

We now state the main results of this section:
two necessary and sufficient solvability conditions
for the robust regulation problem. In the next the-
orem, we convert the problem of solvability into
a robust regulation problem of a stable plant. A
checkable condition for the solvability follows (see
Corollary 4.4). Let us first state a useful lemma.

Lemma 4.2. Let c ∈ Stab(p), a := (1−p c)−1 ∈ A,
b := c (1− p c)−1 ∈ A and ci ∈ Stab(b p). Then, we
have:

cr := c (1 + ci) ∈ Stab(p). (8)

Hence, the controllers of the form

c̃(q̃) = c

(
1 +

q̃

1 + b p q̃

)
, (9)

where q̃ ∈ A, stabilize p, i.e., c̃(q̃) ∈ Stab(p) for all
q̃ ∈ A. The controllers of the form (9) are obtained
by choosing q1 = b q̃ and q2 = −(a p) q̃ in (2), and
we have:

1

1− p c̃(q̃) := a (1 + b p q̃). (10)

Finally, if ci robustly regulates b p, then cr is ro-
bustly regulating for p.

Proof. We clearly have:

1

1− p cr
=

1

(1− p c) (1− b p ci)
. (11)

Moreover, we also have:

cr
1− p cr

=
c

(1− p c)
(1 + ci)

(1− b p ci)
,

p

1− p cr
=

p

(1− p c)
1

(1− b p ci)
. (12)

Now, using c ∈ Stab(p) and ci ∈ Stab(b p), we ob-
tain cr ∈ Stab(p). Since b p ∈ A, considering a′ = 1
and b′ = 0, we get a′ − b′ (b p) = 1 and using (2),
all the stabilizing controllers of b p are of the form

q
1+b p q for all q ∈ A, which shows that c̃(q̃) of (9)
stabilizes p.

By (2), all the stabilizing controllers of p are

c(q) :=
b+ q

a+ p q
,

where q := q1 a
2 + q2 b

2 and q1, q2 ∈ A. Using (1),
we then have:

c(q) = c
a (b+ q)

b (a+ p q)
= c

(
1 +

q

b (a+ p q)

)
.

Considering q1 = b q̃ and q2 = −(a p) q̃ for q̃ ∈ A,
we get q = q1 a

2 + q2 b
2 = a b q̃ (a− b p) = a b q̃ and:

c(q) = c

(
1 +

a b q̃

a b+ a b2 p q̃

)
= c

(
1 +

q̃

1 + b p q̃

)
.

Substituting q = a b q̃ into a+ p q, we get (10).
If it is assumed that ci robustly regulates b p, then

Θ (1−p b ci)−1 ∈ A. Thus, (11) and (12) both mul-
tiplied by Θ are stable, and cr is robustly regulat-
ing.

Theorem 4.3. The robust regulation problem is
solvable if and only if there exists a stabilizing con-
troller c = b

a such that (1) holds and there exist
α, β ∈ A such that:

αΘ−1 − β b p = 1. (13)

Proof. If c = b
a , with a and b satisfying (1), is

robustly regulating, then we have aΘ ∈ A and
1 = a − b p = (aΘ) Θ−1 − b p. This shows the
necessity.

We next show the sufficiency. Lemma 4.1 shows
that there exists ci that robustly regulates b p. Now
cr = c (1 + ci) solves the robust regulation problem
by Lemma 4.2.



Corollary 4.4. Let c = b
a be a stabilizing controller

of p such that a, b ∈ A satisfy (1). The robust reg-
ulation problem is solvable if and only if there exist
α, β, q1, q2 ∈ A such that:

αΘ−1 − β (b+ q1 a
2 + q2 b

2) p = 1. (14)

Proof. The result follows from Theorem 4.3 and the
parametrization (2) of stabilizing controllers.

Remark 4.5. If (14) holds, then a stabilizing con-
troller that satisfies the condition of Theorem 4.3
is given by c = b+q1 a

2+q2 b
2

a+q1 p a2+q2 p b2
. The controller ci in

(8) is to be designed so that it robustly regulates
the stable plant (b + q1 a

2 + q2 b
2) p. Following the

proof of Lemma 4.1, one such controller is ci = β
α Θ.

For the rest of the section, we consider a genera-
tor Θ which admits a weakly coprime factorization.
The next theorem is a simplification of Theorem 4.3
with such a generator.

Theorem 4.6. If Θ = γ
θ is a weakly coprime

factorization, then the robust regulation problem is
solvable if and only if the plant p is stabilizable and
if there exist α, β ∈ A such that α θ − β p = 1.

Proof. We may assume that p is stabilizable. Let c
be a stabilizing controller, i.e. there exist a, b ∈ A
such that c = b

a and (1) holds.
In order to show the necessity, let us assume that

c is robustly regulating. By Theorem 3.4, there
exist α0, β0 ∈ A such that θ (α0 + β0 c) = 1. By
(1), we have

1 = α0 θ + θ β0 c = α0 θ + θ β0 c (a− b p)
= (α0 + β0 b) θ − (β0 θ c b) p.

Since α0 +β0 b ∈ A and (β0 θ c) b = (1−θ α0) b ∈ A,
the necessity follows.

Let us now show the sufficiency. Substituting

q := β a = β a (a− b p) = β a2 − (β p) a b

= β a2 − (β p) a b (a− b p)

= (1− p b)β a2 + (β p) (a p) b2

to (2), where β p = α θ + 1 ∈ A, and using the
identities α θ − β p = 1 and a − p b = 1, we obtain
the stabilizing controller

c(β a) = c
a (b+ β a)

b (a+ p (β a))
= c

(
1 +

β a

b (a+ p (β a))

)
= c

(
1 +

β

b (1 + p β)

)
= c

(
1 +

β

bα θ

)

of p by Theorem 2.3. Finally, we observe that the
fractional representation c(β a) = β+α θ b

α θ a satisfies{
α θ a− (β + α θ b) p = α θ (a− bp)− β p = 1,

α θ a p ∈ A,

i.e. it satisfies (1), and

(αa γ) Θ−1 − (β + α θ b) p = 1,

so the claim follows by Theorem 4.3.

By using Theorem 4.6, we are able to state the
second main result of this section: a parametriza-
tion of all the robustly regulating controllers.
The next theorem leading to parametrization of
all robustly regulating controllers was given in
[22] for finite-dimensional systems. The actual
parametrization will be given by Corollary 4.8.

Theorem 4.7. Assume that Θ = γ
θ is a weakly co-

prime factorization. If the robust regulation prob-
lem is solvable, then a controller c is robustly regu-
lating if and only if it is of the form c = c0

θ , where
c0 is a stabilizing controller of p0 := p

θ .

Proof. Assume that the robust regulation problem
is solvable. We first show that if c0 stabilizes p0,
then c is robustly regulating. Since we assume that
c0 stabilizes p0, Theorem 2.3 implies that there exist
stable elements 0 6= a, b ∈ A satisfying{

a− p0 b = 1,

p0 a ∈ A,
(15)

and c0 = b
a . By (15), we see that:

1

1− p c =
1

1− p0 c0
= a ∈ A. (16)

By the assumption that c0 stabilizes p0,

p

1− p c =
θ p0

1− p0 c0
∈ A, (17)

1

θ

p

1− p c =
p0

1− p0 c0
∈ A. (18)

Since the robust regulation problem is solvable,
Theorem 4.6 implies that there exist α, β ∈ A such
that α θ − β p = 1. By (15), we have

1

θ

1

1− p c =
a

θ
(α θ − β p) = aα− (a p0)β ∈ A, (19)

c

1− p c =
b

θ
=
b

θ
(α θ − β p) = b α− (b p0)β ∈ A. (20)

The controller c is stabilizing by (16), (17) and (20).
It is regulating by (18) and (19). The controller is



robustly regulating since regulation implies robust
regulation in the SISO case.

Next, we show that a robustly regulating con-
troller has the form c = c0

θ where c0 stabilizes p0.

By Theorem 2.3, c = b
a , where 0 6= a ∈ A and

b ∈ A, satisfy (1). Since c is regulating for the sig-
nal generator θ−1 by Theorem 3.4 and (1) holds,
we have: 

a− (θ b) p0 = a− p b = 1,

p0 a =
1

θ

p

1− p c ∈ A.

This completes the proof since c0 = θ c stabilizes p0

by Theorem 2.3.

Corollary 4.8. Let c be a robustly regulating con-
troller. If Θ = γ

θ is a weakly coprime factorization,
then all robustly regulating controllers are given by

c(q1, q2) =
b+ q1 a

2 + q2 b
2

θ a+ q1 a2 p+ q2 b2 p
, (21)

where a := (1 − p c)−1, b := θ c (1 − p c)−1, and
q1, q2 ∈ A are arbitrary elements such that:

θ a+ q1 a
2 p+ q2 b

2 p 6= 0.

Proof. Consider the notations of Theorem 4.7. Now
a = (1− p0 c0)−1 and b = c0 (1− p0 c0)−1 satisfy

a− p0 b = 1,

p0 a =
1

θ

p

1− p c ∈ A,

so Theorem 2.3 shows that all the stabilizing con-
trollers of p0 are of the form:

c0(q1, q2) =
b+ q1 a

2 + q2 b
2

a+ q1 a2 p0 + q2 b2 p0
.

Theorem 4.6 shows that we obtain the de-
sired parametrization by multiplying the above
parametrization by θ−1.

5. Examples

In the first example, the plant does not possess
a weakly coprime factorization. The second exam-
ple shows that the results presented here extend
the classical ones obtained in H∞-framework. We
will see that the signal generator need not possess
a coprime factorization in order for the robust reg-
ulation problem to be solvable.

Example 5.1. Recall [14, Example 3.2], where
A := R[x2, x3] served as a discrete finite-time model
of some high speed electronic circuits without unit
delays. It was shown in [18, Example 4] that

p := x3−1
x2−1 ∈ Q(A) does not admit a weakly co-

prime factorization over A and that c := x2−1
x3+1 is

a stabilizing controller. In addition, a fractional
representation c = a

b that satisfies (1) is given by

a := x3+1
2 and b := x2−1

2 .
Let us consider robust regulation with the gener-

ator Θ := 1
x5−x2+2 ∈ Q(A). If we choose q1 = q2 =

0, α = 1
2 , and β = x2, then (14) holds. The robust

regulation problem is solvable by Corollary 4.4.
Let us now construct a robustly regulating con-

troller. By Remark 4.5, a robustly regulating con-
troller is given by (8) if we can find a robustly reg-
ulating controller ci for b p. Following the proof of
Lemma 4.1 we find out that ci = β

αΘ−1 robustly
regulates b p. The desired controller is:

cr = c (1 + ci) =
(x2 − 1)(x5 + x2 + 2)

(x3 + 1)(x5 − x2 + 2)
.

We end this example by parameterizing all ro-
bustly regulating controllers. By Theorem 4.7,

c0 = (x5 − x2 + 2) cr =
(x2 − 1)(x5 + x2 + 2)

x3 + 1

stabilizes p0 = p
x5−x2+2 . A fractional representa-

tion of c0 = a0
b0

that satisfies{
a0 − p0 b0 = 1,

p0 a0 ∈ A,

is given by: a0 =
1

1− p0 c0
= x3+1

2
∈ A,

b0 = a0 c0 = x2−1
2
∈ A.

By Corollary 4.8, all the robustly regulating con-
trollers of p are then given by:

c(q1, q2) =
b0 + q1 a

2
0 + q2 b

2
0

(x5 − x2 + 2) a0 + q1 p a20 + q2 p b20
.

�

Example 5.2. Choose p := 1 ∈ H∞(C+) and let
Θ ∈ Q(H∞(C+)) be such that it does not possess
a coprime factorization, e.g., see [12]. Any stabi-
lizable plant in Q(H∞(C+)) possesses a coprime
factorization [21], so Θ p is not stabilizable. How-
ever, since 1 = 0 Θ−1 + p, there exists a robustly
regulating controller by Lemma 4.1.



Let Θ = γ
θ be an arbitrary fractional representa-

tion. We choose c = θ−1
θ . It is easy to see that (1)

holds with a := θ and b := θ − 1. The controller is
stabilizing by Theorem 2.3, and admits a coprime
factorization c = θ−1

θ . The controller is robustly
regulating by Theorem 3.5. This shows that θ−1 is
the internal model built into the controller.

Above we have found a controller that solves the
robust regulation problem. We know that Θ pos-
sess a weakly coprime factorization [21]. Using it
and Corollary 4.8, we can easily parametrize all the
robustly regulating controllers. �

6. Concluding Remarks

In this article, we have developed a frequency do-
main theory of robust regulation that uses no co-
prime factorizations for SISO systems. We were
able to formulate the internal model principle and
to give necessary and sufficient solvability condi-
tions in a very general algebraic framework. In ad-
dition, a parametrization of all robustly regulating
controllers was given provided that the signal gen-
erator possesses a weakly coprime factorization, but
not necessarily a coprime factorization. Thus, the
results of this article extend the classical ones using
coprime factorization. If A = H∞, this article fully
characterizes the solvability and parametrizes all
the robustly regulating controllers since any plant
in Q(H∞) has a weak coprime factorization [21].

The advantage of the adopted approach is that
the results of this paper extend the class of systems
we can deal with, and gives a new formulation for
some classical results using only general fractional
representations. From the practical point of view,
the usefulness of the results is a consequence of the
difficulty to find coprime factorizations of the trans-
fer functions of infinite-dimensional systems. Fu-
ture work contains generalization of the results to
the multi-input multi-output case.
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