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Abstract— In this paper robust output regulation of distributed
parameter systems with infinite-dimensional exosystems is dis-
cussed. We divide the problem into two parts, namely robust
stabilization and robust regulation, and focus on the latter. Our
aim is to give a unified treatment of the problem in time and
frequency domains by using blocking zeros.

I. I NTRODUCTION

In this paper we discuss robust output regulation problem.
Robustness is of fundamental importance, since when model-
ing real world phenomena the models are inevitably subject to
some inaccuracies. To tackle this problem, one should design
a controller that is able to regulate all the systems (in some
sense) close to the model, i.e. to design a robustly regulating
controller.

We focus on the frequency domain setting, but we motivate
our study by presenting the related state-space theory [1] and
compare the results in both domains in a unifying manner.
Especially, we generalize the transmission zero conditionin
[2] to infinite-dimensional setting. It provides a natural link
between state-space and frequency domain considerations.

The problem of robust regulation have been extensively
studied in various setups by several authors. For finite-
dimensional results we refer to Francis and Wonham [3]
and Davison [4]. These results were generalized for infinite-
dimensional systems with finite-dimensional exosystems by
Pohjolainen [5], Ḧamäläinen and Pohjolainen [6] and Rebar-
ber and Weiss [7]. Robust regulation problem with infinite-
dimensional exosystem was considered in [1], [8] and [9].

In [1] Paunonen and Pohjolainen divided the robust output
regulation problem into two parts, namely robust stabilization
and robust regulation, see also [10] and [11]. When solving
the regulation part one tries to find the essential features of the
controller that guarantee regulation under the assumptionthat
the controller stabilizes the system. These features are charac-
terized by the internal model principle, first stated for finite-
dimensional systems by Francis and Wonham [3]. Roughly
speaking the internal model principle states that a robustly
regulating controller must contain a reduplicated model ofthe
dynamics to be controlled.

In the infinite-dimensional case the problem of robust stabi-
lization is difficult. In fact an infinite-dimensional closed loop
system cannot be exponentially stabilized, in general, if the ex-
osystem is infinite-dimensional [11]. Thus one should consider
some weaker type of stability. However, unlike exponential
stability, strong stability of a system can be destroyed by an
arbitrarily small perturbation of the system parameters. On
the other hand, some perturbations can make the system even
more stable. This underlines the importance of the separation
of the stabilization part and the regulation part.

In the frequency domain the problem of robust regulation
is well understood for rational transfer functions [12]. In[13]
robust regulation with a generator having an infinite number
of poles on the imaginary axis, was considered inH∞-setting.
It was shown, that for the problem to be solvable the system’s
transfer function should not vanish at infinity. This is a major
limitation and in sharp contrast to the state-space results, e.g.
[9, Example 17] where a robustly regulating controller was
found for a plant with transfer function that approaches zero
at infinity with rateO( 1

s
√
s
). In the state-space setting one can

compensate the vanishing transfer function by setting some
smoothness assumptions on the reference signals. This is not
possible in frequency domain ifH∞-stability is considered.
Thus, like exponential stability in state-space setting,H∞-
stability in frequency domain is a too strong stability type. In
this paper we propose a new ring for stable transfer functions.

The role of transmission zeros in regulation is also well
known in the finite-dimensional case. In [2] Francis and
Wonham show, that a controller is robustly regulating if and
only if the transfer function of the extended system from the
exosystems state to the error has a blocking zero of suitable
multiplicity at the poles of the exosystem. In this paper the
above result is generalized for infinite-dimensional systems.
To the authors knowledge, the result is new for in infinite-
dimensional setting.

The paper is organized as follows. In Section II notations
and preliminary results are introduced. In Section III we give
a blocking zero condition for robust regulation. Section IVis
dedicated for frequency domain results. We consider a weaker
type of stability thanH∞ stability in order to facilitate the



possibility for systems to be strictly proper. The blockingzero
condition is discussed in frequency domain terms. Finally in
Section V we summarize the results and give some directions
for future research.

II. N OTATIONS AND PRELIMINARY RESULTS

The sets of integers, complex numbers, real numbers and
imaginary numbers are denotedZ, C, R and iR. The set of
complex numbers, with real part greater thanβ ∈ R is denoted
Cβ . NotationH∞

β is used for the set of complex functions
analytic and uniformly bounded inCβ , and ifβ = 0 shorthand
notationH∞ is used. The set of all matrices over a setΓ is
denotedM(Γ). Domain of a functionf is denotedD (f). The
spectrum of a linear operatorL is denotedσ (L).

Definition 1: Let 0 < l ∈ Z. Assume, thatP : D (P ) ⊆
C → C

n×m is meromorphic in an open setΓ ⊆ C.
If P (s) is analytic at s0 ∈ D (P ) and lims→s0(s −

s0)
−lP (s) exists, then we say thatP (s) has a blocking zero of

order at leastl at s0. If at s0 ∈ Γ limit lims→s0(s− s0)
lP (s)

does not exists or differs from zero, then we say thatP (s) has
a full pole of order at leastl at s0.

A. State space notations

In state space the plant is given by

ẋ(t) = Ax(t) +Bu(t) + ws(t) x(0) = x0 ∈ X, (1a)

y(t) = Cx(t) +Du(t) + wm(t), (1b)

where the state-spaceX is a Hilbert-space, input and output
spacesU and Y are finite-dimensional complex spaces and
B, C and D are linear bounded operators. The disturbance
signalsws andwm are defined below. The system operatorA

is the generator of aC0-semigroup.
Next we define the exosystem. For this we consider a Hilbert

spaceW with orthonormal basis vectorsφl
k, wherek ∈ Z and

l = 1, . . . , nk. Constantsnk are uniformly bounded. We define
operators

Sk = iωk

〈

·, φ1
k

〉

+

nk
∑

l=2

〈

·, φl
k

〉

(iωkφ
l
k + φl−1

k ), (2a)

and

Sv =
∑

k∈Z

Skv, (2b)

with domainD (S) = {v ∈ W |
∑

k∈Z
‖Skv‖

2 < ∞}. The
exosystem generating the reference and disturbance signals is
given by

v̇(t) = Sv(t), v(0) = v0 ∈ W, (3a)

yr(t) = Fsv(t), (3b)

wm(t) = Fmv(t), (3c)

ws(t) = Ev(t), (3d)

whereFs, Fm and E are linear bounded operators. Define
e(t) = y(t) − yr(t) and F = Fm − Fs. We consider the

following controller

ż(t) = G1z(t) + G2e(t) z(0) = z0 ∈ Z, (4a)

u(t) = Kx(t), (4b)

whereG1 is a generator of aC0-semigroup andG2 andK are
linear bounded operators. Combining (1), (3) and (4) we find
the closed-loop system to be

ẋe(t) = Aexe(t) +Be

(

ws(t)
wm(t)− yref (t)

)

,

e(t) = Cexe(t) +De

(

ws(t)
wm(t)− yref (t)

)

,

wherexe(0) = xe0 ∈ Xe = X × Z, Ce =
(

C DK
)

, De =
(

0 IY
)

, Ae =

(

A BK

G2C G1 + G2DK

)

andBe =

(

I 0
0 G2

)

.

The transfer function is given by

Pe(s) = CeR(s,Ae)Be +De, s ∈ ρ(Ae).

We next present the robust output regulation problem.
However, since the precise definition requires even more
definitions, we settle only to describe the problem. Detailed
definition can be found in [1] or [10]. The robust output
regulation problem is to find such controller parameters, that

1) Ae generates a strongly stableC0-semigroup.
2) Regulation errore approaches zero asymptotically for all

xe0 ∈ Xe and all sufficiently smooth reference signals.
3) If the operatorsA, B, C, D, E and F are perturbed

in such a way that the perturbed closed loop system
(A′

e, B
′
e, C

′
e, D

′
e) is strongly stable and the Sylvester

equationΣS = A′
eΣ + B′

e

(

E′

F ′

)

has a solution then 2)
holds for the perturbed system.

We have used a vague term ’sufficiently smooth reference sig-
nal’ above. The smoothness of the reference signals is related
to the existence of the solution to the Sylvester equations.It
can be controlled either by restricting the set of initial states of
the exosystem [1] or by restricting the set of allowed operators
Fm, Fs andE [9], [14].

The conditional robustness[10] can be written as a condi-
tion that for any operatorsA, B, C, D, E, andF we have

ΣS = AeΣ+Be

(

E

F

)

⇒ CeΣ+De

(

E

F

)

= 0. (5)

This property guarantees that if for some perturbations of the
parameters of the plant the closed-loop system is strongly
stable, then the regulator error decays to zero asymptotically.

The nature of the studied robustness is the same as in [1]
and [10], i.e., conditional robustness which requires thatthe
robust regulation is achieved for any reference and disturbance
signals generated by an exosystem with arbitrary operators
E and F . This follows (roughly) from the fact that for any
Laplace transformable functionsws, wm andyref we have

ê(iωk) = Pe(iωk)

(

ŵs

ŵm − ŷref

)

= 0 ∀k ∈ Z.
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Fig. 1. The closed loop system

B. Frequency domain notations

Let S be a commutative ring with an multiplicative unit and
no zero divisors. We callS the ring of stable functions. The
set of all transfer functionsG is the field of fractions ofS.
We say that a matrixM ∈ M(G) is stable if M ∈ M(S).

We say thatN ∈ M(S) and D ∈ M(S) are right [left]
coprime, if there exists matricesU ∈ M(S) and V ∈ M(S)
such, thatUN + V D = I [NU + V D = I]. We call a pair
(N,D) a right [left] coprime factorizationof a P ∈ M(G) if
det(D) 6= 0, P = ND−1 [P = D−1N ] and N andD are
right [left] coprime. The set of all matrices with both coprime
factorizations is denotedC.

In this paper we consider the closed loop system depicted
in Figure 1 and denote itΣ(P,C). The closed loop transfer
functionPc is given by

(

e

u

)

=

(

(I + PC)−1 −(I + PC)−1P

C(I + PC)−1 I − C(I + PC)−1P

)(

yr
d

)

We say that the systemΣ(P,C) is stableif det(I +PC) 6= 0
and Pc is stable. IfΣ(P,C) is stable, we say thatC is a
stabilizing controller forP .

The following result is well known, but for completeness
we provide a short proof for it.

Lemma 1:Assume, thatP ∈ M(G) has right [left] coprime
factorization(NP , DP ) [(DP , NP )]. C ∈ M(G) is a stabiliz-
ing controller if and only ifC has such a left [right] coprime
factorization(DC , NC) [(NC , DC)], thatNCNP +DCDP =
I [NPNC +DPDC = I].

Proof: Sufficiency follows from [15, Lemma 3.1]. Ne-
cessity follows by showing, that choosingNC = D−1

P (I +
CP )−1C andDC = ((I +CP )DP )

−1 gives the desired left-
coprime factorization ofC. The left analog is shown in a
similar manner.

The signalsyr(s) we want to regulate are the analytic
continuations of Laplace transforms of the reference signals
in (3). Direct calculation gives

yr(s) = Fs(sI − S)−1v0

=
∑

k∈Z





nk
∑

l=1

〈

v0, φ
l
k

〉

l
∑

j=1

1

(s− iωk)l+1−j
Fsφ

j
k



 .

Herev0 andFs are arbitrary, so the references and disturbance
signals are of formyr(s) =

∑

k∈Z

∑nk

l=1(s− iωk)
−lakl where

(akl) is an absolutely summable sequence of vectors. The
disturbance signalsd(s) =

∑

k∈Z

∑nk

l=1(s − iωk)
−lbkl are

generated in the same way.
As in state space we want to control the smoothness of the

reference signals in some way. In state space, this was done by

restricting the operatorsF andE or the initial statev0. Here
we just restrict the sequences(akl) and(bkl). Let f = (fk)k∈Z

be a bounded sequence of strictly positive real numbers. We
define the set of appropriate reference and disturbance signals
by setting

Yr(f) = {yr(s) | ∃M > 0 : ‖akl‖ < Mfk}

and

D(f) = {d(s) | ∃M > 0 : ‖bkl‖ < Mfk}.

We say thatC is a regulating controller for P if det(I +
PC) 6= 0 and (I + PC)−1yr and (I + PC)−1Pd are stable
for all yr ∈ Yr(f) andd ∈ D(f).

Let a plantP and a controllerC be given. We say thatC
robustly regulatesP if

1) C is a stabilizing and regulating controller forP .
2) If C is a stabilizing controller for a plantG, thenC is

also regulating.

The robust regulation problem usually needs some topology.
The definition above is quite different. It is close to the one
we have in state space, where we have two assumptions, the
strong stability of the closed loop system and the existenceof
solution to the Sylvester equation, under which the regulation
property should hold. In Chapter IV we will discuss the role
of the existence of the solution in frequency domain terms.

Note that the above results are independent of the ring
of stable transfer functions. We next define a new ring of
stable transfer functions and all the stability considerations
in frequency domain are done respect to this ring unless
otherwise mentioned. In general it is very hard to describe
strong stability in frequency domain. However, for certainC0-
semigroups, polynomial stability can be characterized in terms
of the polynomial boundedness of the resolvent operator on
the imaginary axis [16, Lemma 2.3]. TheseC0-semigroup are
uniformly bounded and the imaginary axis is in the resolvent
of its generator. Our ring of stable transfer functions is based
on this observation and is defined to be

P = {f | ∀β > 0 : f ∈ H∞
β and ∃α > 0 : f ∈ A(α)}.

The setA(α) is the set of complex functions that are analytic
in some open set containing the closed right half planeC0

and areα-polynomially bounded on the imaginary axis, i.e.
|f(iω)| < M(1 + |ω|)α for someM > 0.

III. B LOCKING ZERO CONDITION IN STATE SPACE

In this section we show that the conditional robustness of
the controller can be characterized by the closed-loop system
transfer function having blocking zeros of high enough orders
at the frequenciesiωk of the exosystem. In the condition
presented in the following theorem the higher order terms
are directly linked to the derivatives ofPe(s) (which is
holomorphic atiωk for k ∈ Z) since for alll ∈ {2, . . . , nk}

CeR(iωk, Ae)
lBe =

(−1)l−1

(l − 1)!

[

dl−1

dsl−1
Pe(s)

]

s=iωk

.



Theorem 1:Assume thatS is a block diagonal operator as
in (2) and thatσ (Ae) ∩ σ (S) = ∅. Then condition (5) is
satisfied if and only if for allk ∈ Z and j ∈ {2, . . . , nk}

Pe(iωk) = 0, (6a)

CeR(iωk, Ae)
jBe = 0, (6b)

i.e. the transfer functionPe(s) has blocking zeros atiωk for
all k ∈ Z and

P (j)(iωk) = 0, ∀k ∈ Z, j ∈ {0, . . . , nk − 1},

whereP (j)(s) = dj

dsj
P (s).

Proof: We will first prove sufficiency of the blocking zero
condition. Assume (6) is satisfied. If the Sylvester equation
ΣS = AeΣ+Be

(

E
F

)

has a solution, then applying the both

sides of the equation toφl
k we obtain for allk ∈ Z and l ∈

{1, . . . , nk}

Σφl
k =

l
∑

j=1

(−1)l−jR(iωk, Ae)
l+1−jBe

(

E

F

)

φ
j
k.

We now use shorthand notatioñP (l)
e = CeR(iωk, Ae)

lBe. We
now have for anyk ∈ Z and l ∈ {1, . . . , nk}

[

CeΣ+De

(

E

F

)]

φl
k

= Pe(iωk)

(

E

F

)

φl
k +

l−1
∑

j=1

(−1)l−jP̃ (l+1−j)
e

(

E

F

)

φ
j
k = 0,

since (6) are satisfied. Since
{

φl
k

∣

∣ k ∈ Z, l = 1, . . . , nk

}

form a basis ofW , this concludes thatCeΣ + De = 0 and
thus (5) is satisfied.

To prove the necessity, assume the condition (5) is satisfied.
Let k ∈ Z and let {xj

E}
nk

j=1 ⊂ X and {yjF }
nk

j=1 ⊂ Y

be arbitrary. Choose the operatorsE ∈ L(W,X) and F ∈
L(W,Y ) as

E =

nk
∑

j=1

〈·, φj
k〉x

j
E , and F =

nk
∑

j=1

〈·, φj
k〉y

j
F .

We then have from [1, Lem. 3.2] that the Sylvester equation
ΣS = AeΣ+Be

(

E
F

)

has a solutionΣ ∈ L(W,Xe), and for
all k ∈ Z

Σφnk

k =

nk
∑

j=1

(−1)nk−jR(iωk, Ae)
nk+1−jBe

(

E

F

)

φ
j
k.

Again denoteP̃ (l)
e = CeR(iωk, Ae)

lBe. The condition (5)
now in particular implies that

0 =

[

CeΣ+De

(

E

F

)]

φnk

k

= Pe(iωk)

(

E

F

)

φnk

k +

nk−1
∑

j=1

(−1)nk−jP̃ (nk+1−j)
e

(

E

F

)

φ
j
k

= Pe(iωk)

(

xnk

E

ynk

F

)

+

nk−1
∑

j=1

(−1)nk−jP̃ (nk+1−j)
e

(

x
j
E

y
j
F

)

= Pe(iωk)

(

xnk

E

ynk

F

)

+

nk
∑

l=2

(−1)l−1P̃ (l)
e

(

xnk+1−l
E

ynk+1−l
F

)

Since for all j ∈ {1, . . . , nk} the elementsxj
E ∈ X

and y
j
F ∈ Y were arbitrary, we must havePe(iωk) and

CeR(iωk, Ae)
jBe = 0 for all j ∈ {2, . . . , nk}. Sincek ∈ Z

was arbitrary, this concludes that the blocking zero condi-
tion (6) is satisfied.

For a diagonal exosystem the condition (6) simplifies to the
following form.

Corollary 1: Assume S = diag(iωk)k∈Z and σ(Ae) ∩
σ(S) = ∅. Then the condition (5) is satisfied if and only
if

Pe(iωk) = 0, ∀k ∈ Z,

i.e. the transfer functionPe(s) has blocking zeros atiωk for
all k ∈ Z.

Writing out Taylor series ofPe(s) at iωk for arbitraryk ∈ Z

and using Theorem 1, we find the following result.
Corollary 2: Assume thatS is a block diagonal operator

as in (2) and thatσ (Ae) ∩ σ (S) = ∅. The condition (5) is
satisfied if and only ifPe(s) has blocking zeros of order at
leastnk at iωk for all k ∈ Z.

IV. ROBUST REGULATION IN FREQUENCY DOMAIN

In the next example we show whyH∞ is not a good
choice for the ring of stable transfer functions. There we
see, that if the reference signals have an infinite number
of poles approaching infinity, then the there cannot exist
a stabilizing and regulating controller if the plant transfer
function approaches zero at infinity.

Example 1:Set S = H∞ and let P ∈ C. Let C be
a stabilizing and regulating controller. By Lemma 1 there
exists coprime factorizations of the plant and the controller,
such thatNPNC + DPDC = I. Simple calculation reveals,
that (I + PC)−1 = DCDP . Choosek0 ∈ Z and set
akl = a if k = k0 and l = 1 and akl = 0 otherwise.
Since C is a regulating controller forΣ(P,C) this means,
that (s − iωk0

)−1(I + P (s)C(s))−1a is uniformly bounded
in C0 for an arbitrary vectora. We necessarily have, that
DC(s)DP (s) → 0 and NP (s)NC(s) → I as s → iωk0

.
Thus there exists ans0 near iωk0

such, thatNP (s0) is right
invertible,‖NP (s0)‖ < 2‖NC(s)‖∞ andDP (s0) is invertible.
SinceP (s) = NP (s)D

−1
P (s) andDP (s) ∈ M(H∞) we have

shown that there exists a sequence(sk)k∈Z in C0 such, that



sup
k∈Z

sup
ω∈R

{fk|iω + 1|−α|ω − ωk|
−nk · ‖

[

(I + P (iω)C(iω))−1 −(I + P (iω)C(iω))−1P (iω)
]

‖} < ∞. (1)

P (sk) have uniformly bounded right inverses and|sk| → ∞
as k → ±∞. This shows, for example thatP (s) cannot be
any strictly proper rational matrix.

For the rest of this section we setS = P. The next lemma
gives a sufficient condition for robust regulation. It states, that
if the controller includes the dynamics generating the reference
signals, then it is a robustly regulating controller. This actually
is the internal model principle in frequency domain stated in
[13] for stable plants. Here we do not have necessity, because
it requires additional assumptions.

Lemma 2:Assume, that there existsθ ∈ S such, thatyr ∈
Yr(f) andd ∈ D(f) can be written in formyr = θ−1y0 and
d = θ−1d0 for some stabley0 and d0. Let P ∈ C. If the
controllerC is such, that it stabilizesΣ(P,C) and has a such
right [left] coprime factorization(DC , NC) [(DC , NC)], that
θ−1DC ∈ M(S), thenC is robustly regulating.

Proof: By Lemma 1 there exists a left coprime fac-
torization (DP , NP ) of P and right coprime factorization
(D̃C , ÑC) of C such, thatNP ÑC + DP D̃C = I. Since
D̃C = UDC for someU ∈ M(S) [15, p. 881]. Thusθ−1D̃C

is stable. Furthermoreθ−1(I + PC)−1 = θ−1D̃CDP and
θ−1(I + PC)−1P = θ−1D̃CNP are stable.

Theorem 2:Assume, that there existsθ ∈ S such, thatyr ∈
Yr(f) andd ∈ D(f) can be written in formyr = θ−1y0 and
d = θ−1d0 for some stabley0 and d0. Let P ∈ C. Let a
plant P ∈ G with left coprime factorization(DP (s), NP (s))
be given. If there existsJ ∈ M(P) such, that for allβ > 0
there existsuβ > 0, such that

‖(θ(s)DP (s) +NP (s)J(s))x‖ ≥ uβ‖x‖, (7a)

for all s ∈ C
+
β andx ∈ C

n and there existsu0 > 0 andα > 0
such, that for allω ∈ R andx ∈ C

n

‖(θ(iω)DP (iω) +NP (iω)C(iω))x‖ ≥
u0‖x‖

|1 + iω|α
, (7b)

then the controllerC = θ−1J regulates robustly.
Proof: SetG := αDP + NPJ . It is easy to show, that

G is invertible and analytic in some open set containingC0.
By (7) G−1 ∈ S. Now NP (θG

−1)+DPJ(G
−1) = I and the

claim follows by Lemma 1 and Lemma 2.
We next give an example where a robustly regulating

controller is given for a polynomially decaying plant. Thenwe
show, that the transfer function cannot actually vanish faster
than polynomially atiωk ask → ±∞.

Example 2:Consider the plantP (s) = 1
s+1 and assume,

that ωk = 2πk andnk = 1, for all k ∈ Z. All the reference
and disturbance signals are of formθ−1y0 andθ−1d0, where
θ(s) = 1−e−s andy0 andd0 are stable functions. SinceP (s)
is P-stable it has a left coprime factorization(1, P ). Define

g(s) := θ(s) + P (s). We find the real part ofg(s) to be

Re (g(a+ bi)) = 1− e−a cos(b) +
a+ 1

(a+ 1)2 + b2
.

If a > β > 0, then

|Re (g(a+ bi)) | ≥ 1− e−β > 0

and if a = 0, then

|Re (g(a+ bi)) | ≥
1

1 + b2
.

The above equations show, that conditions (7) hold forJ = 1,
so by Theorem 2C = 1

θ
is a robustP-regulator.

Theorem 3:Let P ∈ C have a left coprime factorization
(DP , NP ) and letC be a stabilizing and regulating controller
with right coprime factorization(NC , DC). The numerator
NP (iωk) is right invertible and right inversesNr

P (iωk) can be
chosen so that‖Nr

P (iωk)‖ < M |iωk + 1|α for someM > 0
andα > 0.

Proof: Fix k ∈ Z. Above we have shown, that
DC(s)DP (s) → 0 ass → iωk. Since without losing generality
we can assume, thatNPNC + DPDC = I, we have that
NP (iωk)NC(iωk) = I. ThusNC(iωk) defines desired right
inverses, sinceNC ∈ M(P).

In the state space the blocking zero condition is necessary
and sufficient for robust regulation. The necessity followssince
we are allowed to choose operatorsF andE freely. The proof
has an analog in frequency domain. By similar arguments
as above we show, that(s − iωk)

−nk(I + P (s)C(s))−1 ∈
M(P). This means that(s − iωk)

−nk(I + P (s)C(s))−1 is
analytic atiωk. Thus,(I + P (s)C(s))−1 has a blocking zero
of order nk or higher at iωk. Similar arguments hold for
(I + P (s)C(s))−1P (s), so we have the following theorem.

Theorem 4:If C is a regulating controller forΣ(P,C), then
[

(I + PC)−1 −(I + PC)−1P
]

has a blocking zero of order
nk or higher atiωk for all k ∈ Z.

Above we have seen, that ifP ∈ C have a left coprime
factorization (DP , NP ) and C is stabilizing, then we can
find a right coprime factorization(NC , DC) of C such, that
(I + PC)−1P = DCNP . By Theorem 3(I + PC)−1P has
a blocking zero of order at leastnk if and only if DC has
a blocking zero of ordernk or greater. Combining this with
Theorem 4 gives the following corollary

Corollary 3: If C is a stabilizing controller of a plantP ∈
C, then

[

(I + PC)−1 −(I + PC)−1P
]

has a blocking zero
of order at leastnk at iωk for all k ∈ Z if and only if C has
a full pole of order at leastnk at iωk for all k ∈ Z.

The next assumption relates(akl) and(bkl) and the behavior
of the closed loop system near the poles of the reference and
disturbance signals.

Assumption 1:There existsα > 0 such that the equation
(1) at the top of the page holds.



When proving the sufficiency part of the blocking zero
condition in sate space we used a solution to the Sylvester
equation. This relates to the behavior of sequences(akl) and
(bkl) ask → ±∞ in frequency domain. Next theorem shows,
that if the plant is perturbed so that the assumption above
holds, then regulation follows from stability if there exists a
uniform gap between the poles of reference signals.

Theorem 5:Let a controllerC and a plantP be given.
Assume, that|iωk − iωl| > ǫ0 > 0 wheneverk 6= l. If
Assumption 1 holds andΣ(P,C) is stable thenC is regulating.

Proof: Let P satisfy Assumption 1. We show, that(I +
PC)−1yr is stable for allyr. That (I + PC)−1Pd is stable
for all d is shown similarly.

Choose0 < ǫ < min
{

ǫ0
2 , 1

}

and denote the sets of
complex numbers for which|s − iωk| > ǫ > 0 for all k ∈ Z

by Cǫ. Define g(s) :=
∑

k∈Z

∑nk

l=1(s − iωk)
−nk−1+l(I +

P (s)C(s))−1akl. By stability there existsα1 > 0 andM1 > 0
such, that‖(I + P (iω)C(iω))−1‖ < M1|1 + iω|α1 for all
ω ∈ R.

There existsM2 > 0 such, that|s− iωk|
−nk−1+l < M2 for

all k ∈ Z, l = 1, . . . , nk ands ∈ Cǫ. For s ∈ Cǫ

‖g(s)‖ ≤
∑

k∈Z

nk
∑

l=1

M2‖(I + P (s)C(s))−1‖‖akl‖

= M2‖(I + P (s)C(s))−1‖
∑

k∈Z

nk
∑

l=1

‖akl‖.

This is uniformly bounded inCβ ∩ Cǫ for all β > 0 and
polynomially bounded oniR∩Ce, because(I+P (s)C(s))−1

is in M(P). Sinceǫ can be chosen arbitrarily small,g(s) is
uniformly bounded in any right half planeCβ for β > 0 and
we need to show polynomial boundedness oniR.

Assume now, that|ω − ωk0
| < ǫ for some fixedk0 ∈ Z.

Now

‖g(s)‖ ≤

nk0
∑

l=1

‖(s− iωk0
)−nk0

−1+l(I + P (s)C(s))−1ak0l‖

+Mk‖(I + P (s)C(s))−1‖
∑

k 6=k0Z

nk
∑

l=1

‖akl‖.

The arguments above show, that a upper limit for the
second term of the sum isM3|iω + 1|α1 , where M3 =
M1M2

∑

k∈Z

∑nk

l=1 ‖akl‖. The first term is bounded above by
nk0

fk0
|ω − ωk|

−nk0 ‖(I + P (iω)C(iω))−1‖ ≤ M4|iω + 1|α2 ,
where constantsM4 andα2 independent of the choice ofk0
exists by Assumption 1. Thus,‖g(iω)‖ ≤ M0|iω + 1|α0 for
all ω ∈ R, whereM0 = M3 + M4 andα0 = max{α1, α2}.

V. CONLUSIONS

We have considered robust regulation problem in time and
frequency domains. We have first proved that in the state space
a necessary and sufficient condition for a controller to be
robustly regulating is given as the blocking zero condition.

Motivated by the state space theory we have presented a new
ring of stable transfer functionsP, which contains transfer
functions that are uniformly bounded in every right half plane
Cβ with β > 0 and polynomially bounded on the imaginary
axis. By choosingP to be the ring of stable transfer functions
we were able to remove the restriction that the plant cannot
vanish at infinity. Finally we have discussed the blocking zero
condition in frequency domain.

Future research includes elaborating the restrictions the
Sylvester equation imposes on the reference signals in the
frequency domain. In this article we did not use any topolo-
gies, however we would like to find a topology forP to
define the robust regulation problem in more precise terms. A
natural starting point would be the graph topology related to
robust stabilization [15]. One aim is to parametrize a robustly
regulating controller for a given plant.
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