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Abstract— In this paper robust output regulation of distributed In the infinite-dimensional case the problem of robust stabi
parameter systems with infinite-dimensional exosystems is dis- |ization is difficult. In fact an infinite-dimensional clogéoop
cussed. We divide the problem into two parts, namely robust system cannot be exponentially stabilized, in generahgfeix-

stabilization and robust regulation, and focus on the latter. Our L. . . .
aim is to give a unified treatment of the problem in time and osystem is infinite-dimensional [11]. Thus one should cbeisi

frequency domains by using blocking zeros. some weaker type of stability. However, unlike exponential
stability, strong stability of a system can be destroyed by a
|. INTRODUCTION arbitrarily small perturbation of the system parameters. O

the other hand, some perturbations can make the system even
In this paper we discuss robust output regulation problefhore stable. This underlines the importance of the separati
Robustness is of fundamental importance, since when modgf-the stabilization part and the regulation part.
ing real world phenomena the models are inevitably subfect t |n the frequency domain the problem of robust regulation
some inaccuracies. To tackle this problem, one should desig well understood for rational transfer functions [12].[1Ir8]
a controller that is able to regulate all the systems (in somgbust regulation with a generator having an infinite number
sense) close to the model, i.e. to design a robustly regglatiof poles on the imaginary axis, was considered/itt-setting.
controller. It was shown, that for the problem to be solvable the system’s
We focus on the frequency domain setting, but we motivateansfer function should not vanish at infinity. This is a 013
our study by presenting the related state-space theorynd] dimitation and in sharp contrast to the state-space reseifs
compare the results in both domains in a unifying manngg, Example 17] where a robustly regulating controller was
Especially, we generalize the transmission zero condiiion found for a plant with transfer function that approacheszer
[2] to infinite-dimensional setting. It provides a naturalkl at infinity with rateO(—L-). In the state-space setting one can
between state-space and frequency domain considerationsecompensate the vanishing transfer function by setting some
The problem of robust regulation have been extensivedynoothness assumptions on the reference signals. Thig is no
studied in various setups by several authors. For finitpessible in frequency domain #f/°°-stability is considered.
dimensional results we refer to Francis and Wonham [3hus, like exponential stability in state-space settiff?-
and Davison [4]. These results were generalized for infinitstability in frequency domain is a too strong stability tyje
dimensional systems with finite-dimensional exosystems kyis paper we propose a new ring for stable transfer funstion
Pohjolainen [5], Fimalainen and Pohjolainen [6] and Rebar- The role of transmission zeros in regulation is also well
ber and Weiss [7]. Robust regulation problem with infiniteknown in the finite-dimensional case. In [2] Francis and
dimensional exosystem was considered in [1], [8] and [9]. Wonham show, that a controller is robustly regulating if and
In [1] Paunonen and Pohjolainen divided the robust outpanly if the transfer function of the extended system from the
regulation problem into two parts, namely robust stalicta exosystems state to the error has a blocking zero of suitable
and robust regulation, see also [10] and [11]. When solvimgultiplicity at the poles of the exosystem. In this paper the
the regulation part one tries to find the essential featuréseo above result is generalized for infinite-dimensional syste
controller that guarantee regulation under the assumptian To the authors knowledge, the result is new for in infinite-
the controller stabilizes the system. These features ammch dimensional setting.
terized by the internal model principle, first stated fortBai  The paper is organized as follows. In Section Il notations
dimensional systems by Francis and Wonham [3]. Roughéyd preliminary results are introduced. In Section Il weegi
speaking the internal model principle states that a ropust blocking zero condition for robust regulation. Sectioni$v
regulating controller must contain a reduplicated modehef dedicated for frequency domain results. We consider a weake
dynamics to be controlled. type of stability thanH>° stability in order to facilitate the



possibility for systems to be strictly proper. The blockieyo following controller
condition is discussed in frequency domain terms. Finally i

Section V we summarize the results and give some directions £(t) = Gr2(t) + Gae(t) 2(0) =20 € 7, (42)
for future research. u(t) = Kux(t), (4b)
1. NOTATIONS AND PRELIMINARY RESULTS whereg, is a generator of &,-semigroup andj, and K are

) linear bounded operators. Combining (1), (3) and (4) we find
The sets of integers, complex numbers, real numbers gpd closed-loop system to be

imaginary numbers are denot&] C, R andiR. The set of
complex numbers, with real part greater thag R is denoted Go(t) = Auzo(t) + B w; (1)
Cs. Notation Hg® is used for the set of complex functions ¢ ere Nwm(t) = yres(t) )’

analytic and uniformly bounded i3, and if 5 = 0 shorthand wy(t)

notation H> is used. The set of all matrices over a $eis et) = Cewe(t) + De (wm(t) - yref(t)> ’

denotedM(T"). Domain of a functionf is denotedD (f). The

spectrum of a linear operatdr is denoteds (L). wherez.(0) = fﬁeof1 Xe = );;; Z,C.=(C DK]), D. =
Definition 1: Let 0 < [ € Z. Assume, thatP : D (P) C _ _ 0

C — C™™™ is meromorphic in an open s&tC C. " (0 Fr), A G2C  Gi + gzDK> and Be <O Qz>'
If P(s) is analytic ats, € D(P) and lim, (s — The transfer function is given by

s0) "' P(s) exists, then we say th#(s) has a blocking zero of P.(s) = C.R(s, A)B. + D. s € p(Ay).
order at least at so. If at so € T limit lim,_, ¢, (s — 50)" P(s) ’ ’
does not exists or differs from zero, then we say tH&t) has We next present the robust output regulation problem.

a full pole of order at least at s;. However, since the precise definition requires even more
definitions, we settle only to describe the problem. Dethile
A. State space notations definition can be found in [1] or [10]. The robust output
In state space the plant is given by regulation problem is to find such controller parameterat th

) 1) A. generates a strongly stabi&-semigroup.

#(t) = Ax(t) + Bu(t) +ws(t)  2(0) =zo € X, (1a) 2) Regulation erroe approaches zero asymptotically for all

y(t) = Cx(t) + Du(t) + wn(t), (1b) zeo € X, and all sufficiently smooth reference signals.
3) If the operatorsA, B, C, D, E and F are perturbed

in such a way that the perturbed closed loop system

(AL, B.,C!,D.) is strongly stable and the Sylvester

where the state-spack is a Hilbert-space, input and output
spacesU andY are finite-dimensional complex spaces and
B, C and D are linear bounded operators. The disturbance . / .
signalsw, andw,, are defined below. The system operator equationxs = A% + B; <§> has a solution then 2)
is the generator of &))-semigroup. holds for the perturbed system.

Next we define the exosystem. For this we consider a Hilbdie have used a vague term 'sufficiently smooth reference sig-
spacelV with orthonormal basis vectors,, wherek € Z and nal’ above. The smoothness of the reference signals isetelat
I =1,...,n.. Constants, are uniformly bounded. We defineto the existence of the solution to the Sylvester equatitins.
operators can be controlled either by restricting the set of initiatss of
the exosystem [1] or by restricting the set of allowed opert
F.., Fs and E [9], [14].

The conditional robustnesgl0] can be written as a condi-
tion that for any operatordl, B, C, D, E, and F' we have

E E
Sv=">" S, (2b) XS =AX+ Be (F) = CeX+ D <F> =0. (3
keZ

Sk =iwi (L Oh) + Y (k) (iwndl + 071, (22)

=2

and

This property guarantees that if for some perturbationef t
with domainD (S) = {v € W[ 3, [[Skv[|* < oo}. The parameters of the plant the closed-loop system is strongly
exosystem generating the reference and disturbance signaktable, then the regulator error decays to zero asympligtica
given by The nature of the studied robustness is the same as in [1]
and [10], i.e., conditional robustness which requires that

o(t) = Su(t), v(0) = v €W, (3a) robust regulation is achieved for any reference and diahoe
yr(t) = Fsv(?), (D) signals generated by an exosystem with arbitrary operators
Wy, (t) = Fpo(t), (3c) E and F. This follows (roughly) from the fact that for any
w,(t) = Bv(t), (3d) Laplace transformable functions;, w;,, andy,.; we have

where F;, F,, and E are linear bounded operators. Define é(iwy) = Po(iwy) ( Wy ) —0 vk € 7.

e(t) = y(t) — y.(t) and F = F,, — F;. We consider the Wi, = Yref



i restricting the operatorg’ and E or the initial statevy. Here
&

Yr e u Y we just restrict the sequencés;;) and(by;). Let f = (fx)kez
C P be a bounded sequence of strictly positive real numbers. We
define the set of appropriate reference and disturbancalsign
by setting
Fig. 1. The closed loop system Yr(f) _ {yr(S) ‘ IM >0 : ||akl|| < Mfk}
and

B. Frequency domain notations

Let S be a commutative ring with an multiplicative unit and D(f) = {d(s) [3M > 0 : [[bal| < M i}
no zero divisors. We calb the ring of stable functions. The We say thatC' is a regulating controllerfor P if det(I +
set of all transfer functiong is the field of fractions ofS. PC) # 0 and (I + PC)~'y, and (I + PC)~!'Pd are stable
We say that a matri/ € M(G) is stableif M € M(S). for all y, € Y,.(f) andd € D(f).

We say thatN € M(S) and D € M(S) are right [left] Let a plantP and a controlleiC' be given. We say thaf’
coprime if there exists matrice¥ € M(S) andV € M(S) robustly regulatesP if
such, thatU N + VD = I [NU + VD = I]. We call a pair 1) ¢ is a stabilizing and regulating controller fd?.
(N, D) a right [left] coprime factorizationof a P € M(G) if  2) If C is a stabilizing controller for a plant, thenC is
det(D) §£ 0, P = ]Vl)i1 [P = DilN] and N and D are also regu'ating_
right [left] coprime. The set of all matrices with both cape
factorizations is denoted.

In this paper we consider the closed loop system depic

In F'gure 1,a”‘?' denote (P, C). The closed loop tranSfer:strong stability of the closed loop system and the existerfice

function £ is given by solution to the Sylvester equation, under which the regrat
e\ ([ {I+PC)! —(I+pPC)"tpP Yr property should hold. In Chapter IV we will discuss the role
(u) o (C’(I +PC)yt T-C(I+ PC’)lP) (d) of the existence of the solution in frequency domain terms.

We say that the systemi(P, C) is stableif det(I + PC) # 0 Note that the above results are independent of the ring
and P, is stable. If (P é) is stable, we say thaf’ is a of stable transfer functions. We next define a new ring of

stabilizing controller forP stable transfer functions and all the stability considerest

The following result is well known, but for completenesén freq'uency dgmam are done r'es'pect to this ring unlgss
we provide a short proof for it. otherwise mentioned. In general it is very hard to describe

Lemma 1: Assume, thaP® € M(G) has right [left] coprime stror_lg stability in freq_uency quain. However, for_cert@ln
factorization(Np, Dp) [(Dp, Np)]. C € M(G) is a stabiliz- semigroups, pol_ynomlal stability can be characterize@ims
ing controller if and only ifC' has such a left [right] coprime ©f the polynomial boundedness of the resolvent operator on
factorization(Dc, N¢) [(Ne, De)], that Ne Np + Do Dp = thg imaginary axis [16, Lemma 2..3]. The'éetse.mlgroup are
[ [NpNe + DpDe = 1. unl_formly bounded an_d the imaginary axis is in 'Fhe rgsolvent
Proof: Sufficiency follows from [15, Lemma 3.1]. Ne- of |ts_generat0r. _Our ring of stgble transfer functions isdzh
cessity follows by showing, that choosin§e = Dp'(I + O this observation and is defined to be

CP)~'CandDc = ((I+CP)Dp) "' gives the desired left-  p— {f | v8>0:f¢€ HZ and 3a > 0: f € A()}.
coprime factorization ofC'. The left analog is shown in a ) . )
similar manner. m The setA(«a) is the set of complex functions that are analytic

The signalsy,(s) we want to regulate are the analytid" Some open set containing the closed right half plahe
continuations of Laplace transforms of the reference sign&nd area-polynomially bounded on the imaginary axis, i.e.

The robust regulation problem usually needs some topology.
The definition above is quite different. It is close to the one
have in state space, where we have two assumptions, the

in (3). Direct calculation gives | f(iw)] < M (1 + |w])* for someM > 0.
yr(8) = Fy(sI — S)*lvo I11. BLOCKING ZERO CONDITION IN STATE SPACE
- ! In this section we show that the conditional robustness of
= Z Z {vo, ¢§€> Z % FSQ% ) the controller can be characterized by the closed-loopenyst
kez \ =1 = (s — lwg )17 transfer function having blocking zeros of high enough csde

. . at the frequenciesw; of the exosystem. In the condition
Herevy and F; are arbitrary, so the references and disturbance : . .

: nr LN presented in the following theorem the higher order terms
signals are of formy,.(s) = >, ., > /%, (s —iwk) ~‘ar where

s an absolutely summable sequence of vectors. TR directly linked to the derivatives oF.(s) (which is
() : y 24 S ' lomorphic atiw,, for k € Z) since for alll € {2,...,n;}
disturbance signalsl(s) = >, ., > % (s — iwg) by are
generated in the same way.
As in state space we want to control the smoothness of the

reference signals in some way. In state space, this was done b

) -1 -1 dl—l
CeRilisn, Ac)' Be = ((z —)1)! [dsllp@(s)] -



Theorem 1:Assume thatS is a block diagonal operator asAgain denotePe(l) = C.R(iwg, A.)'B.. The condition (5)

in (2) and thato (A.) N o (S) = @. Then condition (5) is
satisfied if and only if for allk € Z andj € {2,...,n}

P, (iwg) = 0,
CeR(iWk, Ae)jBe = 07

(6a)
(6b)

i.e. the transfer functiorP.(s) has blocking zeros atu, for
all k € Z and
PY (i) = 0,

VkeZ, je{o,... ny—1},

where PU) (s) = 4 p(s).

Proof: We will first prove sufficiency of the blocking zero

condition. Assume (6) is satisfied. If the Sylvester eqmatin;S
S =AX+ Be (?) has a solution, then applying the bothjon (6) is s

sides of the equation tg! we obtain for allk € Z andl €
{1, PN 7n1€}

l
6, = Y (-1 Rl A8, (1) ol

j=1

We now use shorthand notatid?é(l) = C,R(iwy, A.)'B.. We
now have for anyk € Z andl € {1,...,n;}

{cez + D, (?ﬂ O

-1
P () ok + S0 0B (1) o <o
j=1

since (6) are satisfied. Sinde¢l, | k € Z, I =1,...,n

now in particular implies that
E
F
. E n
= P, (iwy) (F) o
()
Y

nk+1—l)

ng
175 X
> +Z(—1)l LR < 11
1=2 Yr

Since for all j € {1,...,n} the eIemenISmJE e X
and y.. € Y were arbitrary, we must havé.(iw;) and
CeR(iwy, Ae)'B. = 0 for all j € {2,...,n;}. Sincek € Z
arbitrary, this concludes that the blocking zero condi-
atisfied. ™

For a diagonal exosystem the condition (6) simplifies to the
following form.

Corollary 1: Assume S = diag(iwg)kez and o(A.) N
o(S) = @. Then the condition (5) is satisfied if and only
if

N

oz[cemDe( n

nEg—1

ye—i D= (B
NI ()
j:
nk—l
+ ) (~nmI Pt )
j=1

Nk

E
g

F

= P.(iw) (”;

nk

X
= P.(iw E
() (1

Pe(iwk) =0, Vk € Z,

i.e. the transfer functiorP.(s) has blocking zeros atv for
all k € Z.

Writing out Taylor series o, (s) atiwy, for arbitraryk € Z
and using Theorem 1, we find the following result.

Corollary 2: Assume thatS is a block diagonal operator
as in (2) and that (A.) N o (S) = @. The condition (5) is
satisfied if and only ifP.(s) has blocking zeros of order at
leastn,, atiw, for all k € Z.

IV. ROBUST REGULATION IN FREQUENCY DOMAIN
In the next example we show why/> is not a good

form a basis ofi¥/, this concludes thaf,¥ + D, — 0 and choice for the ring of stable transfer functions. There we
thus (5) is satisfied. ) ) see, that if the reference signals have an infinite number

To prove the necessity, assume the condition (5) is satjsfi&g polg; _approachmg mflnlty, then the_ there cannot exist
7 g PR a stabilizing and regulating controller if the plant traarsf
Let k € Z and let {z3,}7*, C X and {yx};%;, C Y functi h *infinit
be arbitrary. Choose the operatafs € L(W, X) and F' € unction apprgac es zero 20 Infnity.
LOW,Y) as Exar.n'pl'e 1:Set S = H and let P € C. Let C be
a stabilizing and regulating controller. By Lemma 1 there
exists coprime factorizations of the plant and the coreroll
such thatNp Ne + DpDe = I. Simple calculation reveals,
that (I + PC)~! DcDp. Chooseky, € Z and set
ap; = a if k = ky and 1 and a;; = 0 otherwise.
.Since C is a regulating controller fob(P,C) this means,
We then have from [1, Lem. 3.2] that the Sylvester equatiqp,¢ (s — iwp,)~2(I + P(s)C(s))~'a is uniformly bounded
¥S =AY+ Be (?) has a solutior> € L(W, X,), and for in C, for an arbitrary vectora. We necessarily have, that
allkeZ Dc(s)Dp(s) — 0 and Np(s)Ne(s) — I ass — iwg,.
E .

nk

J=1

ng
E=Y (.¢l)a%, and F
j=1

Thus there exists agy neariwy, such, thatNp(sg) is right
invertible, || Np(so)|| < 2||Nc(s)|leo andDp(so) is invertible.
Since P(s) = Np(s)Dp'(s) and Dp(s) € M(H>) we have
shown that there exists a sequereg)icz in Cy such, that

nk
Sept =Y (—1)" I R(iwk, A)™ I B,

Jj=1



sup sup{ filiw + 1|7%|w — we 7" - || [(T + P(iw)C(iw))

keZ weR

—(I 4 P(iw)C(iw)) "' P(iw)] ||} < oc. 1)

P(si) have uniformly bounded right inverses ajwl| — oo
ask — +oo. This shows, for example thdt(s) cannot be
any strictly proper rational matrix.

For the rest of this section we s&t= P. The next lemma
gives a sufficient condition for robust regulation. It statthat
if the controller includes the dynamics generating thereafee
signals, then it is a robustly regulating controller. Thitually
is the internal model principle in frequency domain stated

[13] for stable plants. Here we do not have necessity, becaus

it requires additional assumptions.

Lemma 2:Assume, that there existsc S such, thaty, €
Y,.(f) andd € D(f) can be written in formy, = 6=y, and
d = 0~'dy for some stabley, and dy. Let P € C. If the

g(s) :=6(s) + P(s). We find the real part ofi(s) to be
. —a a+1
Re(g(a+bi)) =1 —e “cos(b) + TES

If a >8>0, then
Re (g(a+bi))|>1—e P >0
and if a = 0, then

[Re (g(a+bi)) | =

1462
The above equations show, that conditions (7) holdfet 1,
so by Theorem 20 = é is a robustP-regulator.

Theorem 3:Let P € C have a left coprime factorization

right [left] coprime factorization D¢, N¢) [(De, N¢)], that
91D € M(S), thenC is robustly regulating.

with right coprime factorization(N¢, D). The numerator
Np(iwy) is right invertible and right inverse¥}, (iwy, ) can be

Proof: By Lemma 1 there exists a left coprime facchosen so thaf N5 (iws )| < Miwy, + 1]* for someM > 0
torization (Dp, Np) of P and right coprime factorization anda > 0.

(D¢, N¢) of C such, thatNpNe + DpDe = I. Since
D¢ = UD¢ for someU e M(S) [15, p. 881]. Thust~' D¢
is stable. Furthermor®~—'(I + PC)~! = 0~'DcDp and
0~Y(I+ PC)~'P =60"'DcNp are stable. [ ]
Theorem 2:Assume, that there exisise S such, thaty,. €
Y,(f) andd € D(f) can be written in formy, = =1y, and
d = 6~ 'd, for some stabley, and dy. Let P € C. Let a
plant P € G with left coprime factorization Dp(s), Np(s))
be given. If there existd € M (P) such, that for all3 > 0
there existaug > 0, such that
1(0(s)Dp(s) + Np(s)J(s))z]| > uglz],  (7a)
for all s € CH andz € C™ and there exists, > 0 anda > 0
such, that for allv € R andz € C™

uol|z|

[1(6(iw)Dp(iw) + Np(iw)C(iw))z| > T+ i’

(7b)

then the controlleC = 6~1.J regulates robustly.

Proof: Fix k € Z. Above we have shown, that
D¢(s)Dp(s) — 0 ass — iwy. Since without losing generality
we can assume, thaVpNe + DpDe = I, we have that
Np(iwg)Ne(iwg) = I. Thus N¢(iwy) defines desired right
inverses, sinceVe € M(P). [ |

In the state space the blocking zero condition is necessary
and sufficient for robust regulation. The necessity foll@ivee
we are allowed to choose operatdfsand E freely. The proof
has an analog in frequency domain. By similar arguments
as above we show, thdk — iwy) "+ (I + P(s)C(s))™! €
M(P). This means thafs — iwy) (I + P(s)C(s))~ ! is
analytic atiwy,. Thus, (I + P(s)C(s))~! has a blocking zero
of order n; or higher atiw;. Similar arguments hold for
(I + P(s)C(s))~*P(s), so we have the following theorem.

Theorem 4:If C is aregulating controller foE(P, C), then
[(I+PC)~' —(I+ PC)~*P] has a blocking zero of order
ny or higher atiwy, for all k € Z.

Above we have seen, that # € C have a left coprime
factorization (Dp, Np) and C' is stabilizing, then we can
find a right coprime factorizatioiN¢, D) of C' such, that

Proof: SetG := aDp + NpJ. It is easy to show, that (1 + pC)~1P = Do Np. By Theorem 3(I + PC)~'P has

G is invertible and analytic in some open set containiiig
By (7) G=t € S. Now Np(§G~Y) + DpJ(G~1) = I and the
claim follows by Lemma 1 and Lemma 2. [ ]

a blocking zero of order at least;, if and only if Do has
a blocking zero of orden; or greater. Combining this with
Theorem 4 gives the following corollary

We next give an example where a robustly regulating Corollary 3: If C is a stabilizing controller of a plan® €

controller is given for a polynomially decaying plant. Thea

C, then[(I + PC)~' —(I+ PC)~'P] has a blocking zero

show, that the transfer function cannot actually vanishefas of order at least, at iw; for all & € Z if and only if C has

than polynomially atiw, ask — +oo.
1

Example 2:Consider the plan’(s) = ;5 and assume,
thatw, = 27k andn, = 1, for all & € Z. All the reference
and disturbance signals are of fodn'y, andd~'dy, where
6(s) = 1—e~* andyy andd, are stable functions. Sinde(s)
is P-stable it has a left coprime factorizatidn, P). Define

a full pole of order at least;, atiw;, for all k£ € Z.

The next assumption relatés;,;) and(bg;) and the behavior
of the closed loop system near the poles of the reference and
disturbance signals.

Assumption 1:There existsoe > 0 such that the equation
(1) at the top of the page holds.



When proving the sufficiency part of the blocking zerd/otivated by the state space theory we have presented a new
condition in sate space we used a solution to the Sylvestarg of stable transfer function®, which contains transfer

equation. This relates to the behavior of sequerjegs and

functions that are uniformly bounded in every right halfra

(br1) ask — oo in frequency domain. Next theorem shows(Cg with 5 > 0 and polynomially bounded on the imaginary
that if the plant is perturbed so that the assumption abosgis. By choosingP to be the ring of stable transfer functions

holds, then regulation follows from stability if there esisa

uniform gap between the poles of reference signals.
Theorem 5:Let a controllerC' and a plantP be given.

Assume, thatjiwy — iw;| > € > 0 wheneverk # [. If

Assumption 1 holds anH(P, C) is stable ther is regulating.

Proof: Let P satisfy Assumption 1. We show, théf +

PC)~ 1y, is stable for ally,. That (I + PC)~'Pd is stable

for all d is shown similarly.

Choose0 < e < min{<%,1} and denote the set of
complex numbers for whichs — iwy| > ¢ > 0 for all k € Z
by Cc. Define g(s) := >,z >k (s — wy) ™™ (T +
P(s)C(s)) " tay,. By stability there exister; > 0 andM; > 0
such, that|/(I + P(iw)C(iw))7Y| < Mi|l + iw|* for all
w € R.

There existsM, > 0 such, thafs — iwy |~ 1+ < M, for
alkez, 1=1,...,n;, ands € C,. Fors € C,

lg(s)l < YD Mall(I + P(s)C(s) ™ |||

keZ l=1

nk
= My||(1 + P()C() IS Nl
keZ l=1

This is uniformly bounded inCg N C, for all 5 > 0 and
polynomially bounded oiiR N C,, becausél + P(s)C(s))~*
is in M(P). Sincee can be chosen arbitrarily smay{(s) is
uniformly bounded in any right half plan€s for g > 0 and
we need to show polynomial boundednessil&n

Assume now, thajw — wy,| < € for some fixedk, € Z.
Now

Nkq

lg(s)l <D~ (s = iwng) ™0 (I + P(s)C(5)) ™ gt
=1

M+ PECE) T S S flawl

k#koZ I=1

we were able to remove the restriction that the plant cannot
vanish at infinity. Finally we have discussed the blockingpze
condition in frequency domain.

Future research includes elaborating the restrictions the
Sylvester equation imposes on the reference signals in the
frequency domain. In this article we did not use any topolo-
gies, however we would like to find a topology f@ to
define the robust regulation problem in more precise terms. A
natural starting point would be the graph topology related t
robust stabilization [15]. One aim is to parametrize a rtlgus
regulating controller for a given plant.
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