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Abstract— We use frequency domain methods to study robust
output regulation of a stable plant in a situation where the
controller is only required to be robust with respect to a
predefined class of perturbations. We present a characterization
for the solvability of the control problem and design a minimal
order controller that achieves robustness with respect to a given
class of uncertainties. The construction of the controller is
illustrated with an example.

I. INTRODUCTION

In this paper we study the robust output regulation problem
for a stable system

P (·) ∈ H∞(C+;Cp×m).

In particular, our aim is to design an error feedback controller
in such a way that the output y(t) of the plant converges
asymptotically to a given reference signal

yref (t) =

q∑
k=1

ake
iωkt, ak ∈ Cp \ {0}, (1)

and the control law tolerates small perturbations in the
transfer function P (·) of the plant. Any reference signal that
is a sum of sinusoids or a finite dimensional approximation
of a general periodic signal, e.g. of a sawtooth function, may
be presented in the form (1).

The well-known internal model principle [1], [2] states
that the robust output regulation problem is solved by any
controller that contains p copies of the every frequency iωk
of the reference signal and for which the closed-loop system
is stable. In particular, it has been shown in [3], [6], [11]
that for a stable system the robust output regulation problem
can be solved with an error feedback controller of the form

C(s) = ε

q∑
k=1

Ck
s− iωk

, (2)

where Ck ∈ Cm×p are chosen in such a way that the
eigenvalues of P (iωk)Ck ∈ Cp×p have negative real parts.
With such choices of parameters there exists ε∗ > 0 such
that for any 0 < ε ≤ ε∗ solves the robust output regulation
problem [3]. The internal model principle is visible in the
controller (2) in the property that the matrices Ck have full
ranks rankCk = p.

In this paper we concentrate on a situation where the
controller is not required to be robust with respect to arbitrary
small perturbations, but instead it is only required to tolerate
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uncertainties from a predefined class of perturbations. Such a
situation may occur in the case of parameter uncertainties or
component failures [4], [9]. Recently, in [9], [10] it has been
shown that robust output regulation may be achievable with
a controller with strictly less than p copies of the frequencies
iωk of the exosystem for a predefined class of perturbations.
This result leads to design of controllers with so-called
reduced order internal models [7], [8]. To this date, robust
output regulation with restricted classes of perturbations has
only been studied using state space techniques. The purpose
of this paper is to study the control problem and to develop
methods for construction of controllers in the frequency
domain.

As our first main result we present a characterization for
the solvability of the robust output regulation problem for a
given class O of perturbations. In particular, we show that
if the controller (2) stabilizes the closed-loop system, then it
solves the control problem if and only if

ak ∈ R(P̃ (iωk)Ck), ∀k ∈ {1, . . . , q} (3)

for all perturbed plants P̃ (·) ∈ O. Similarly as in [9], this
type of characterization immediately implies that robustness
with respect to certain classes O of perturbations can be
achieved without a full internal model in the controller. Our
result further shows that in the frequency domain the concept
of a reduced order internal model means that some of the
matrices Ck ∈ Cm×p in the controller (2) satisfy rankCk <
p.

We show that the condition (3) implies a lower bound for
the ranks of the matrices Ck in the controller. In particular,
if p = m and P̃ (·) ∈ O are invertible at iωk and if
the controller (2) is robust with respect to the class O of
perturbations, then the lower bounds for the ranks of Ck are
given by

rankCk ≥ pk := dim span{ P̃ (iωk)−1ak | P̃ (·) ∈ O }. (4)

In the second part of the paper we construct a reduced
order controller to solve the robust output regulation problem
for a given class of admissible perturbations O. The found
controller shows that the lower bound in (4) is optimal, since
our controller has ranks equal to pk. The design procedure
for the controller with a reduced order internal model is
illustrated with an example in Section V.

II. THE ROBUST OUTPUT REGULATION PROBLEM

In this section we introduce the notation used in this paper
and state the robust output regulation problem.



We denote the class of the function that bounded and ana-
lytic in the right half plane C+ := { s ∈ C | Re(s) > 0 } by
H∞. The set of all matrices of arbitrary size and of all n×m-
matrices over a set S are denoted byM(S) andMn×m(S),
respectively. We denote the rank, the range, the kernel, and
the Moore-Penrose pseudoinverse of a matrix M ∈ M(C)
by rank(M), R(M), N (M), and M+, respectively.

A. Robust Output Regulation for a Class O of Perturbations

We assume that the class O of perturbations has the
following properties.
• The nominal plant belongs to the class O, i.e., P (·) ∈
O.

• Every P̃ (·) ∈ O is analytic at the points {iωk}qk=1.
In this paper we assume that the error feedback controller

is of the form,

C(s) =

q∑
k=1

Ck
s− iωk

+ C0(s) (5)

where Ck ∈ Cm×p and where C0(·) is analytic at iωk for
all k ∈ {1, . . . , q}. This in particular means that the poles
of the controller locate at the frequencies iωk the reference
signal (1) and that their order is at most one. The plant and
controller form the closed loop depicted in Fig. (1). There d̂
is an external disturbance. The closed loop transfer function
from (ŷref , d̂) to (ê, û) is

H(P,C) =

[
(I − PC)−1 (I − PC)−1P
C(I − PC)−1 I + C(I − PC)−1P

]
.

✲ ❥+ ✲ ✲ ❥+ ✲❄ ✲
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Fig. 1. The closed loop.

The Robust Output Regulation Problem. Given a class
O of admissible perturbations, choose the parameters C0(·)
and C1, . . . , Cq of the controller (5) in such a way that
(a) The controller C(·) stabilizes the plant P (·), i.e.

H(P,C) ∈M(H∞).

(b) If P̃ (·) ∈ O is such that C(·) stabilizes P̃ (·), then

(I − P (·)C(·))−1ŷref (·) ∈M(H∞) (6)

If condition (6) is satisfied, we say that C(·) regulates
P̃ (·) ∈ O.

III. CHARACTERIZATION OF ROBUSTNESS FOR A CLASS
OF PERTURBATIONS

In this section we present a characterization for controllers
that are robust with respect to a given class O of pertur-
bations. The following theorem is the main result of this
section.

Theorem 3.1: Assume the controller is of the form (5).

• If P̃ (·) ∈ O is such that C(·) stabilizes P̃ (·), then C(·)
regulates P̃ (·) if and only if

ak ∈ R(P̃ (iωk)Ck) (7)

for all k ∈ {1, . . . , q}.
• If C(·) stabilizes P (·), then it solves the robust output

regulation problem for the class O of perturbations if
and only if (7) is satisfied for all P̃ (·) ∈ O that are
stabilzed by the controller C(·).

The proof of Theorem 3.1 is based on the following two
lemmata.

Lemma 3.2: Assume that the controller C(·) stabilizes the
plant P̃ (·). Then C(·) also regulates P̃ (·) if and only if

lim
s→iωk

(I − P̃ (s)C(s))−1ak = 0. (8)

Proof: Assume P̃ (·) ∈ O is stabilized by C(·). Suppose
first that C(·) regulates P̃ (·). For all s ∈ C \ {iωk}qk=1 we
have

(I − P̃ (s)C(s))−1ŷref (s) =

q∑
k=1

(I − P̃ (s)C(s))−1ak
s− iωk

.

From this it is clear that the condition (6) can only be
satisfied if (8) holds.

On the other hand, since the only poles of the func-
tion ŷref (·) are {iωk}qk=1, and since (I − P̃ (·)C(·))−1 ∈
M(H∞), we have that the condition (8) implies (6), and
thus C(·) regulates P̃ (·).

Lemma 3.3: If H is a n×n-matrix and F (s) is an analytic
n × n-matrix valued function approaching zero as s → 0.
If s = 0 is a pole of order one of (H + F (s))−1, then
(H+F (s))−1x is bounded near 0 if and only if x ∈ R(H).

Proof: Denote

h(s) := (H + F (s))−1x

and assume h(·) is bounded near 0. Due to our assumptions,
this is equivalent to lims→0 h(s) = z for some z ∈ Cn. Now
x = (H+F (s))h(s) = Hh(s)+F (s)h(s)→ Hz as s→ 0,
which shows that x ∈ R(H).

Assume now that x ∈ R(H). Due to our assumptions, the
Laurent series of (H + F (s))−1 at s = 0 is of the form

(H + F (s))−1 = s−1X0 +X1 + sX2 + · · ·
The identity (H +F (s))−1(H +F (s)) = I implies X0H =
0, which further shows that (H+F (s))−1x is bounded near
s = 0.

Proof of Theorem 3.1. The second part of the Theorem 3.1
is a direct consequence of the first part and the statement
of the robust output regulation problem. To prove the first
part, let P̃ (·) ∈ O be such that C(·) stabilizes P̃ (·) and let
k ∈ {1, . . . , q} be arbitrary. Since P̃ (·) is analytic at iωk,
we can write

P̃ (s) = P̃ (iωk) +H0(s)

where H0(s) is an analytic function such that H0(s)→ 0 as
s→ iωk. Define

C0k(s) := C0(s) +
∑
l 6=k

1≤l≤q

Cl
s− iωk

.



Using the structure (5) of C(·) we can write

(I − P̃ (s)C(s))−1

= (I − (s− iωk)−1(P̃ (iωk) +H0(s))

× (Ck + (s− iωk)C0k(s)))−1

= (iωk − s)(P̃ (iωk)Ck + F (s))−1

where F (s) is an analytic function approaching zero as s→
iωk. Since C(·) stabilizes P̃ (·) we have (I−P̃ (s)C(s))−1 ∈
M(H∞). Because of this, the above equation implies that
(P̃ (iωk)Ck +F (s))−1 can have a pole of order at most one
at iωk. Since

(I − P̃ (s)C(s))−1ak = (iωk − s)(P̃ (iωk)Ck + F (s))−1ak,

we have that lims→iωk
(I − P̃ (s)C(s))−1ak = 0 if and only

if (P̃ (iωk)Ck + F (s))−1ak is bounded near s = iωk. By
Lemma 3.3 this is in turn equivalent to ak ∈ R(P̃ (iωk)Ck).
Since k ∈ {1, . . . , q} was arbitrary, we have that (8) is
equivalent to (7). This completes the proof. �

If the controller C(·) solves the robust output regulation
problem for a class O of perturbations, then Theorem 3.1
gives us the following lower bounds for the ranks of the
matrices Ck.

Theorem 3.4: Let σ be the minimum number of elements
over the sets K of linearly independent vectors such that
P̃−1(iωk)ak ∩ spanK 6= ∅ – here P̃−1(iωk)ak is the
preimage of ak – for all P̃ (·) ∈ O. If C(·) of the form
(5) solves the robust output regulation problem for a class
O of perturbations, then the rank of Ck is greater than or
equal to σ.

Proof: Let σ0 be the rank of Ck, and let x1, . . . , xσ0

be linearly independent columns of Ck. We set K′ =
{x1, . . . , xσ0

}. Since C(·) is robustly regulating, Theorem
3.1 implies that for all P̃ (·) ∈ O there exists a vector h such
that

ak = P̃ (iωk)Ckh = P̃ (iωk)

σ0∑
j=1

αjxj .

Thus, P̃−1(iωk)ak ∩ spanK′ 6= ∅. By the assumption σ0 ≥
σ.

Corollary 3.5: If C(·) of (5) robustly regulates and
P̃ (iωk) is invertible for all P̃ (·) ∈ O, then the rank of Ck
is greater than or equal to

pk := dim
(

span{ P̃−1(iωk)ak | P̃ (·) ∈ O }
)
.

Proof: The corollary follows by the previous theorem
because P−1(iωk) is a unique element.

IV. CONTROLLER DESIGN FOR STABLE P (·)
In this section we construct a controller of the form

C(s) = ε

q∑
k=1

Ck
s− iωk

(9)

to solve the robust output regulation problem for a class O
of perturbations. We in particular present appropriate choices
for the matrices Ck, and show that for all sufficiently small
ε > 0 the closed loop system H(P,C) is stable.

The simple controller (9) suffices since we have a stable
plant. Choosing the matrices Ck appropriately guarantees
minimal structure of the controller, which is our aim here.
Additional structure is needed for example if the plant is un-
stable or there are some other design goals, e.g. optimization,
which together with the minimal internal model leads to the
controller (5).

A. Assumptions on the perturbation class and the nominal
plant

Before proceeding we need to do some standing assump-
tions on the given nominal plant P (·) and the perturbation
class O.

Assumption 4.1: For all k = 1, . . . , q, we denote

Vk = span{ P̃+(iωk)ak | P̃ ∈ O }

and pk = dim(Vk). We assume that
(i) ak ∈ R(P̃ (iωk)) for all P̃ ∈ O,

(ii) P ∈M(H∞), and
(iii) dim(P (iωk)Vk) = pk

for all k = 1, . . . , q.
It is an immediate consequence of Theorem 3.1 that the

robust output regulation problem can only be solvable if con-
dition (i) is satisfied. The second assumption is a simplifying
condition and the third one is needed for stabilization of the
closed loop.

In what follows, we construct a controller (9) with
rank(Ck) = pk. In the light of Theorem 3.4 this is not
optimal if σ < pk. Thus, the last assumption above may
be weakened in that case. On the other hand, if P̃ (iωk) are
invertible for all P̃ (·) ∈ O, then by Corollary 3.5 condition
(iii) is also necessary for robustness.

B. The design parameters Ck
We show how to construct a suitably reduplicated internal

model into the controller. This is done by choosing the design
parameters Ck appropriately.

Theorem 4.2: Define the design parameters Ck in the
following way:
• Choose a basis {h1, . . . , hpk} of Vk.
• Define Hk := [h1, . . . , hpk , 0, . . . , 0].
• Choose an invertible matrix Dk so that the eigenvalues

of P (iωk)HkDk are zero or have negative real parts.
• Choose Ck := HkDk.

If Assumption 4.1 holds, then rank(P (iωk)Ck) = pk and
the regulation condition (7) holds for every P̃ ∈ O.

Proof: The rank of P (iωk)Ck is pk by (iv) of As-
sumption 4.1 and the fact that Vk = RCk. Thus, it remains
to show that (7) holds for an arbitrary P̃ (·) ∈ O.

By the choice of Ck, we see that for every P̃ (·) ∈ O there
exists y such that

P̃+(iω)ak = Cky.

Left multiplying by P̃ (iω), we get

P̃ (iω)P̃+(iω)ak = P̃ (iω)Cky.



Since ak ∈ R(P̃ (iωk)) by (i) of Assumption 4.1 and
P̃ (iωk)P̃+(iωk) is an orthogonal projector on R(P̃ (iωk)),
the above equation shows that (7) holds.

The above theorem together with Theorem 3.1 show that
the controller is robustly regulating if it stabilizes P (·). The
fact that P (iωk)Ck has no positive eigenvalues was not
needed to prove the regulation condition (7). We need it to
prove the existence of an ε > 0 implying stability.

C. Stability and the choice of ε

Theorem 4.3: If Assumption 4.1 holds and Ck are chosen
as in Theorem 4.2, then there exists ε∗ > 0 such that C(·)
of (9) stabilizes P (·) for every ε ∈ (0, ε∗].

Lemma 4.4: If Assumption 4.1 holds and Ck are chosen
as in Theorem 4.2, then (I− ε

s−iωk
P (iωk)Ck)−1 is bounded

in C+ by a bound independent of ε > 0.
Proof: By Theorem 4.2, rank(P (iωk)Ck) = rank(Ck),

so N (P (iωk)Ck) = N (Ck). Because of the structure of
Ck, we know that the Jordan blocks of P (iωk)Ck related
to the eigenvalue 0 are trivial. The non-zero eigenvalues of
P (iωk)Ck have negative real parts. This means that there
exist a matrix S and a negative-definite matrix M such that

P (iωk)Ck = S

[
M 0
0 0

]
S−1,

so (
I − 1

z
P (iωk)Ck

)−1
= S

[
z (zI −M)

−1
0

0 I

]
S−1.

Since −M is positive definite, H(z) = z (zI −M)
−1 is

analytic in C+. In addition, it approaches I as z → ∞.
Thus, it is bounded in C+. We see that (I − ε

s−iωk
M)−1 is

bounded in C+ by a bound independent of ε > 0 since
{ 1
z | 0 6= z ∈ C+ } = { ε

s−iωk
| iωk 6= s ∈ C+ }.

Thus, (I− ε
s−iωk

P (iωk)Ck)−1 is bounded in C+ by a bound
independent of ε > 0.

Proof of Theorem 4.3. First we show the stability of (I −
P (·)C(·))−1. To this end, we choose

γ < min{ |iωk − iωl| | 1 ≤ k < l ≤ q }

and define the half discs Dk := C+ ∩ { s ∈ C | |s− iωk| <
γ }. Our aim is to show the existence of ε′ > 0 such that
(I − P (·)C(·))−1 is bounded in C+ \

⋃q
k=1Dk whenever

0 < ε ≤ ε′, and of εk > 0 such that (I − P (·)C(·))−1 is
bounded in Dk whenever 0 < ε ≤ εk. Then (I−P (·)C(·))−1
is stable for all ε ∈ (0, ε∗] where ε∗ = min{ε′, ε1 . . . , εq}.

By the stability P (·) and the definition of C(·), P (·)C(·)
is bounded in C+ \

⋃q
k=1Dk. Thus, there exists small

enough ε′ > 0 such that (I − P (·)C(·))−1 is bounded in
C+ \

⋃q
k=1Dk whenever 0 < ε < ε′.

Next we show the existence of suitable εk > 0. We
decompose

(I − P (s)C(s))−1 = Q1k(s)(I − εQ2k(s)Q1k(s))−1 (10)

where

Q1k(s) =

(
I − εP (iωk)Ck

s− iωk

)−1
, and

Q2k(s) =
P (s)− P (iωk)

(s− iωk)
− P (s)

∑
l 6=k

1≤l≤q

Cl
s− iωl

.

By Lemma 4.4, Q1k(s) is bounded in Dk by a bound
independent of ε. In addition, Q2k(s) is bounded in Dk

since P (·) and
∑

l 6=k
1≤l≤q

Cl

s−iωl
are analytic in Dk. The

decomposition (10) implies that we can choose εk > 0 such
that (I − P (s)C(s))−1 is bounded in Dk for all ε ∈ (0, εk].
This completes the proof of the stability of (I−P (·)C(·))−1.

Since P (·) is stable, it remains to show that C(·)(I −
P (·)C(·))−1 is stable. By the stability of (I − P (·)C(·))−1
and the decomposition (10), we only need to show that

H(s) :=
s− iωk

ε
CkQ1k(s)

= Ck

(
s− iωk

ε
I − P (iωk)Ck

)−1
is stable. By the above discussion H(s) can only have poles
of order one. Thus, it has the representation

H(s) =
ε

s− iωk
E + F1(s), (11)

where E is the projection to N (P (iωk)Ck) along
R(P (iωk)Ck) and F1(s) is an analytic function [12]. As
was mentioned in the proof of Lemma 4.4, N (P (iωk)Ck) =
N (Ck), which implies that CkE = 0. Thus, H(s) = F1(s)
is analytic and the proof is completed. �

V. EXAMPLE

Let the given stable nominal plant be

P (s) =

− 1
s+1 0 0

0 1
s+1 0

0 0 s
s+1

 ,
and assume that the plant is subject to an upper triangular
additive perturbation ∆. This leads to the perturbation class

O = {P (·) + ∆(·) | ∆ is upper triangular }.

We want to find a controller solving the robust regulation
problem for the reference signal

yr =
α

s− i

−i20
0

+
α

s+ i

 i20
0

+
β

s

0
1
0


=

α

s− i
a1 +

α

s+ i
a−1 +

β

s
a0,

where α, β ∈ R. This is the Laplace transform of the time
domain reference signal (α sin(t), β, 0).

In order to find a robustly regulating controller, we define
a basis of

Vk = span{ (P (iωk)+∆(iωk))
+
ak | ∆ upper triangular }

for ωk = k and k = −1, 0, 1.



Let el be the lth natural basis vector of C3. Since the only
non zero element in the first column of P (iωk) + ∆(iωk) is
the first one, it is easy to verify that

V−1 = V1 = span{e1}.

Similarly, because of the upper triangular structure we have

V0 = span{e1, e2}.

We choose C−1 = diag(1, 0, 0) = C1 and C0 =
diag(1,−1, 0). The controller (9) satisfies the regulation
property (7) according to Theorem 4.2.

It remains to choose a small enough scaling factor ε > 0.
By the proof of Theorem 4.3 it is sufficient to choose ε so
that (I −P (·)C(·))−1 remains bounded in C+. To this end,
note that

(I − P (s)C(s))−1 = diag (f1(s), f2(s), 1)

where

f1(s) =

(
1 +

ε

s+ 1

(
1

s+ i
+

1

s− i
+

1

s

))−1
and

f2(s) =

(
1 +

ε

s+ 1

1

s

)−1
.

Choose γ = 1
2 and ε∗ = 1

7 . Using similar arguments as in
the proof of Theorem 4.3 it is straightforward to verify that
f1(s) and f2(s) are bounded in C+.

We note that the internal model is minimal in the sense that
the ranks of the matrices Ck for k = −1, 0, 1 are minimal.
The same structure of the controller is required for notably
smaller perturbation classes, e.g. if

∆(s) = δ

0 s−1
s+5 0

0 0 0
0 0 0

 ,
where δ ∈ R. On the other hand, allowing perturbations in
the lower triangular parts of ∆ or, for example, adding a
sine wave to the last element of the reference signal would
force us to increase the size of the internal model because
of Theorem 3.1.

The nominal plant P (·) has a transmission zero at 0 which
is also a pole of the reference signal. It is well-known that
in such a situation it is impossible to achieve robustness
with respect to arbitrary perturbations, since if C0 is of
full rank and P (0) is not, the closed-loop system cannot
be stabilized [5]. In particular, it is not possible to allow
perturbations in the last element of the second column. This
situation illustrates that a controller with a reduced order
internal model may provide us the desired robustness prop-
erties even if robustness with respect to general perturbations
is not achievable.
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