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Abstract— We present a method for obtaining ro-
bust control over a first-order port-Hamiltonian sys-
tem. The presented method is especially designed
for controlling impedance energy-preserving port-
Hamiltonian systems. By combining the stabilization
results of port-Hamiltonian systems and the theory
of robust output regulation for exponentially stable
systems, we design a simple finite-dimensional con-
troller for an unstable system that together with
output feedback achieves robust output regulation.
The method is demonstrated on an example where we
implement a robust regulating controller for the one-
dimensional wave equation with boundary control and
observation.

I. Introduction

The class of port-Hamiltonian systems provides means
for considering Hamiltonian differential equations that
interact with their environment via the boundaries of the
spatial domain. Such a concept is essential for considering
boundary control and boundary observation for these
systems. Hamiltonian differential equations include linear
and non-linear differential equations, and they occur in
many physical models. The class of port-Hamiltonian
systems includes models of flexible structures, traveling
waves, heat exchangers, bioreactors and, in general, loss-
less and dissipative hyperbolic systems in one-dimensional
spatial domain. [6], [14]

Stability and stabilization of port-Hamiltonian systems
has been considered by Villegas et. al. ([13],[14]) and
Ramirez et. al. ([10],[11]), where both static and dynamic
feedback has been studied. The specific structure of
impedance energy-preserving systems has been described
in [3] and [13], in latter of which stabilization of such
systems has been considered as well as the conditions
under which exponential stability is achieved.

The Internal Model Principle (IMS) is the key to
understanding how control systems can be robust, i.e., tol-
erate perturbations in the parameters of the system. The
type of robust controller (low-gain controller) proposed
by Davison [2] for stable systems has many practical
advantages. The structure of the controller is simple
and it can be tuned with input-output experiments from
the open loop system. The controller was generalized to
infinite-dimensional systems and its tuning process was
simplified in [4], [5].
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In this paper, the control objective is to design for
port-Hamiltonian systems a low-gain controller that
stabilizes the closed loop system and achieves robust
regulation in the sense of [5], that is, the controller
exponentially asymptotically tracks the reference signal
yref , exponentially asymptotically rejects the boundary
disturbance signal w and tolerates some perturbations in
the plant.

The main contribution of this paper is that we de-
sign a simple finite-dimensional robust regulating con-
troller for an unstable, impedance energy-preserving
port-Hamiltonian system. By using the stabilization and
stability results of [6] and [13] for port-Hamiltonian
systems, we can utilize the controller introduced by the
authors of [4], [5] for exponentially stable systems, even
though the system to be controlled in this paper is initially
unstable. As far as the authors know, this is the first
time robust regulation is considered for port-Hamiltonian
systems.

The structure of this paper is as follows. In Section III
we give some background to port-Hamiltonian systems
and describe impedance energy-preserving systems. In
Section IV we describe the control system including the
plant, the exosystem and the controller. In Section V we
formulate the robust output regulation problem and define
the internal model principle. In Section VI we construct
the robust controller and prove that it solves the robust
output regulation problem. In Section VII, we implement
a controller for a vibrating string (the one-dimensional
wave equation) as an example to illustrate the theory.
Finally, in section VIII we conclude this paper.

II. Notation

Here L(X,Y ) denotes the set of bounded linear oper-
ators from the normed space X to the normed space Y .
The domain, range, null space and resolvent of a linear
operator A are denoted by D(A),R(A), N (A) and ρ(A),
respectively. A strongly continuous (C0-) semigroup TA(t)
generated by A is exponentially stable if there are positive
constants M and α such that ||TA(t)|| ≤ Me−αt. We
denote k times continuously differentiable functions from
the interval [a, b] to Cn by Ck([a, b];Cn). Furthermore,
the set H1([a, b];Cn) is defined as H1([a, b];Cn) = {f ∈
L2([a, b];Cn) | f is absolutely continuous and ∂ζf ∈
L2([a, b];Cn)}, where L2([a, b];Cn) is the set of square
integrable functions from the interval [a, b] to Cn.
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III. Background on Port-Hamiltonian Systems
Consider a linear first order port-Hamiltonian system

on the spatial interval ζ ∈ [a, b], given by
∂

∂t
x(ζ, t) = Ax(ζ, t), x(0) = x0, (1a)

u(t) = Bx(·, t), (1b)
y(t) = Cx(·, t), (1c)

where the operators B and C will be defined shortly, and
the operator A is defined by

Ax(ζ, t) := P1
∂

∂ζ
(H(ζ)x(ζ, t)) + P0H(ζ)x(ζ, t), (2)

where H, P1 and P0 satisfy the following assumptions [6]
Assumption 1: P1 ∈ Cn×n is invertible and self-adjoint

P0 ∈ Cn×n is skew-adjoint, and H(ζ) ∈ C1([a, b];Cn×n)
such that H(ζ) is self-adjoint for all ζ ∈ [a, b], and there
exists M,m > 0 such that mI ≤ H(ζ) ≤ MI for all
ζ ∈ [a, b].

The state-space is defined as X = L2([a, b];Cn) with
the inner product

〈f, g〉X = 1
2

b∫
a

g(ζ)∗H(ζ)f(ζ)dζ, (3)

and hence, X is a Hilbert space. The Hamiltonian associ-
ated with the port-Hamiltonian system (1) satisfying
Assumption 1 is given by E(t) = 〈x(·, t), x(·, t)〉X =
||x(·, t)||2X .

By using the concepts of boundary effort e∂ and a
boundary flow f∂ , defined by[

f∂(t)
e∂(t)

]
= 1√

2

[
P1 −P1
I I

] [
H(b)x(b, t)
H(a)x(a, t)

]
, (4)

the operators B : H−1(H1([a, b],Cn)) → Cn and C :
H−1(H1([a, b],Cn)) → Cn of equations (1b)–(1c) are
given in the the form

Bx(·, t) := WB

[
f∂(t)
e∂(t)

]
, (5a)

Cx(·, t) := WC

[
f∂(t)
e∂(t)

]
, (5b)

where WB ,WC ∈ Cn×2n. Let us define the matrix Σ ∈
R2n×2n by

Σ =
[

0 I
I 0

]
(6)

in order to make the following assumption on the matrices
WB and WC :

Assumption 2: The matrices WB and WC have full
rank, WB satisfies WBΣW ∗B ≥ 0, and the matrix

[
WB

WC

]
is invertible.

Before continuing, we need to define the concept of
boundary control systems [1]

Definition 1: The control system (1a)–(1b) is a bound-
ary control system if the following hold:

1) The operator A : D(A) → X with D(A) =
D(A) ∩ N (B) and Ax = Ax for x ∈ D(A) is the
infinitesimal generator of a C0-semigroup on X.

2) There exists an operator B ∈ L(U,X) such that
for all u ∈ U , Bu ∈ D(A), the operator AB is an
element of L(U,X) and BBu = u for u ∈ U .

Note that even though the above definition does not
mention the output y(t) = Cx(t) in any way, we will
consider it being a part of the boundary control system.

Consider now the system described by equations (1a)–
(1c) satisfying Assumption 1 with B and C defined in
equations (5a)–(5b) with WB and WC satisfying Assump-
tion 2. Due to [3, Thm. 4.2] we have that the system
described by equations (1a)–(1c) is a boundary control
system on X, and the operator A with domain

D(A) =
{
Hx ∈ H1([a, b],Cn)

∣∣∣∣WB

[
f∂
e∂

]
= 0
}

(7)

generates a contraction semigroup on X. Furthermore, a
matrix PWB ,WC

, given by

PWB ,WC
=
[
WBΣW ∗B WBΣW ∗C
WCΣW ∗B WCΣW ∗C

]−1
, (8)

is well defined, and for u ∈ C2([0,∞);Ck), Hx(0) ∈
H1([a, b];Cn) and u(0) = WB

[
f∂(0)
e∂(0)

]
the following

balance equation is satisfied:
1
2
d

dt
||x(t)||2X = 1

2
[
u∗(t) y∗(t)

]
PWB ,WC

[
u(t)
y(t)

]
. (9)

In this paper we assume that the boundary control
system satisfies the relation

1
2
d

dt
||x(t)||2X = u∗(t)y(t), (10)

i.e., it is an impedance energy-preserving system [13]. It
follows from the balance equation (9) that the relation
(10) is satisfied exactly when WB and WC are such that
PWB ,WC

= Σ, which is equivalent to [3, Thm. 4.4]

WB = QB [ I + VB , I − VB ], (11a)
WC = QC [ I + VC , I − VC ], (11b)
2QC(I − VCV ∗B)Q∗B = I, (11c)

where QB and QC are invertible, and VB and VC are
unitary. Clearly WB and WC satisfying equations (11a)–
(11c) also satisfy Assumption 2.

Impedance energy-preserving port-Hamiltonian sys-
tems are of particular interest due to the property that
they can be exponentially stabilized by using output
feedback. Let the system (1) satisfying Assumption 1 be
impedance energy-preserving, and let us apply feedback
u(t) = r(t)− κy(t), κ ∈ R+, to the system. It has been
shown in [13] that the resulting closed-loop system

ẋ(t) = Ax(t)

(WB + κWC)
[
f∂(t)
e∂(t)

]
= (B + κC)x(t) = r(t)

Cx(t) = y(t)

(12)
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is a boundary control system, and furthermore, the
operator Ax = P1∂ζ(Hx) + P0Hx with domain

D(A) =
{
Hx ∈ H1([a, b],Cn)

∣∣∣∣Wκ

[
f∂
e∂

]
= 0
}
, (13)

where Wκ = WB + κWC , generates a contraction semi-
group on X. In fact, since we have WκΣW ∗κ = 2κI > 0,
due to [6, Lem. 9.1.4] the semigroup generated by A with
domain (13) is exponentially stable.

IV. The Plant, Exosystem and Controller
In this section, we will introduce the control system

consisting of the plant, the exosystem and the controller.
Using the results presented in the previous section, we can
define the plant of the control system to be an impedance
energy-preserving port-Hamiltonian system. The plant is
given by

ẋ(t) = Ax(t), x(0) = x0, (14a)
Bx(t) = u(t) + w(t), (14b)
Cx(t) = y(t), (14c)

where Ax(t) = P1∂ζ(Hx(t))+P0Hx(t) with P0, P1 and H
satisfying Assumption 1, B and C are defined in equations
(5a)–(5b) with WB and WC satisfying equations (11a)–
(11c), and w(t) is bounded and differentiable disturbance
signal.

Since the plant (14) is a boundary control system, there
are operators A : D(A)→ X with D(A) = D(A) ∩N (B)
and Ax = Ax for x ∈ D(A) and B ∈ L(U,X) such
that R(B) ⊂ D(A) and BBu = u. Using the presented
operators the transfer function from u to y is given by [6]

P (s) = C(sI −A)−1(AB − sB) + CB. (15)

Let us now describe the exosystem that generates
the boundary disturbance signal w(t) and the reference
signal yref (t). The exosystem is defined by the following
equations

v̇(t) = Sv(t), v(0) = v0 (16a)
w(t) = Ev(t), (16b)

yref (t) = −Fv(t) (16c)

on a finite-dimensional space W = Cq. Here S =
diag(iω1, iω2, . . . , iωq) with {ωi}qi=1 ∈ R and ωi 6= ωj
for i 6= j, E ∈ L(W,U) and F ∈ L(W,Y ). We make the
following assumption that is crucial for the solvability of
the robust output regulation problem: [9]

Assumption 3: For every k ∈ {1, 2, . . . , q} the transfer
function P (iωk) ∈ L(U, Y ) is surjective.

The dynamic error feedback controller to be designed
is of the form

ż(t) = G1z(t) + G2e(t), z(0) = z0, (17a)
r(t) = Kz(t), (17b)

where e = y− yref is the error signal and the parameters
(G1,G2,K) are to be chosen such that robust output

regulation is achieved for the system (14). The controller
(17) is an abstract linear system on Banach space Z. The
operator G1 : D(G1) ⊂ Z → Z generates a C0-semigroup
on Z, G2 ∈ L(Y,Z) and K ∈ L(Z,U). [7]

In order to discuss the robust regulation problem
(RORP) in the next section, we give the state-space
presentation for the closed-loop control system. In order
to do this, we define a new variable ξ = x−Bu−Gv, where
the operator G ∈ L(W,X) is such that R(G) ⊂ D(A)
and BGv = Ev. Such an operator exists as the plant (14)
is a boundary control system [1]. Now, if x(t) ∈ D(A),
then ξ(t) ∈ D(A and Bξ(t) = 0. Hence, ξ(t) ∈ D(A) and,
assuming that u and v are differentiable, we get the new
state equation [5]

ξ̇ = Ax+ABu−Bu̇+AGv −Gv̇. (18)

When the control loop is closed, i.e., the plant and
the controller are connected, we have u = r = Kz, and
hence, equation (18) is well defined. Let us now define
the extended state-space as Xe = X×Cq, and let ξe(t) =
(ξ(t), z(t)) be the extended state. Following [5], the closed-
loop control system can be written as

ξ̇e = Aeξe +Hv +Gev̇ +Dyref , (19)

where D(Ae) = D(A)× Cq and

Ae =
[
A−BKG2C ABK −BK(G1 + G2CBK)
G2C G1 + G2CBK

]
,

H =
[
AG−BKG2CG

G2CG

]
, Ge =

[
−G
0

]
,

D =
[
BKG2
−G2

]
.

(20)
V. The Robust Output Regulation Problem and

the Internal Model Principle
In this section we formulate the robust output regu-

lation problem and define the internal model principle.
We consider perturbations (Ã, B̃, C̃, Ẽ, F̃ ) ∈ O of the
operators (A,B, C, E, F ) where the operators in the class
O of admissible perturbations are such that (i) the
perturbed plant (Ã, B̃, C̃) is a boundary control system
and (ii) iωk ∈ ρ(Ã) for k ∈ {1, 2, . . . , q}. It is easy to
see that there conditions are satisfied for all bounded
and sufficiently small perturbations to (A,B, C) and for
arbitrary bounded perturbations to the operators E and
F . [9]

The following formulation of the robust output regula-
tion problem is given in [9]:
The Robust Output Regulation Problem. Choose
the controller (G1,G2,K) in such a way that the following
are satisfied:

1) The closed-loop system generated by Ae is expo-
nentially stable.

2) For all initial states ξe0 ∈ Xe and v0 ∈ W the
regulation error satisfies eα·e(·) ∈ L2([0,∞);Y ) for
some α > 0.
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3) If the operators (A,B, C, E, F ) are perturbed to
(Ã, B̃, C̃, Ẽ, F̃ ) ∈ O in such a way that the closed-
loop system remains exponentially stable, then for
all initial states ξe0 ∈ Xe and v0 ∈W the regulation
error satisfies eα̃·e(·) ∈ L2([0,∞);Y ) for some α̃ >
0.

In the following two definitions for an internal model
are given. [7], [8]

Definition 2: Assume dim(Y ) < ∞. A controller
(G1,G2,K) is said to incorporate a p-copy of the internal
model of the exosystem S if for all k ∈ {1, 2, . . . , q} we
have

dim(N (iωk − G1)) ≥ dim(Y )

and G1 has at least dim(Y ) independent Jordan chains
of length greater than or equal to nk associated to the
eigenvalue iωk.

Definition 3: A controller (G1,G2,K) is said to satisfy
the G-conditions if

R(iωk − G1) ∩R(G2) = {0}, (21a)
N (G2) = {0}, (21b)

N (iωk − G1)nk−1 ⊂ R(iωk − G1) (21c)

for all k ∈ {1, 2, . . . , q}.
The following theorem from [9] presents the internal

model principle for regular linear systems with finite-
dimensional exosystems and exponential closed-loop sta-
bility. The theorem is applicable for boundary control
systems as well.

Theorem 1: Assume that the controller stabilizes the
closed-loop system exponentially. Then the controller
solves the robust output regulation problem if and only
if it satisfies the G-conditions. Moreover, if dim(Y ) <∞,
then the controller solves the robust output regulation
problem if and only if it incorporates a p-copy of the
internal model of the exosystem.

�

VI. Construction of the Robust Controller
In this section, we will show that robust control over

the plant (14) is achieved with control input of the form
u(t) = r(t) − κCx(t), where κ ∈ R+ and r(t) is the
output of the controller of the form (17). That is, we will
use negative output feedback −κCx(t) to exponentially
stabilize the plant (14), and the controller (G1,G2,K) with
output r(t) solves the robust output regulation problem
for the stabilized plant.

Let us first consider the stabilization of the plant (14).
Following Section III we can write the plant (14) with
input u(t) = r(t)− κCx(t) as

ẋ(t) = Ax(t),
r(t) + w(t) = (B + κC)x(t),

y(t) = Cx(t),
(22)

where A,B and C are the same as in the system (14).
Furthermore, as shown in Section III, the system (22)

is a boundary control system, and thus, there is an
exponentially stable operator A : D(A) → X such that
D(A) = D(A) ∩N (B + κC) and Ax = Ax for x ∈ D(A).

We will now make the choices on the controller param-
eters (G1,G2,K). Since we have Y = U = Ck, according
to Theorem 1 the system operator G1 has to contain the
internal model of the exosystem (16). Following [9] we
define Z = Y q and
G1 = diag (iω1IY , iω2IY , . . . , iωqIY ) ∈ L(Z), (23a)
K = εK0 = ε

[
K1

0 ,K
2
0 , . . . ,K

q
0
]
∈ L(Z,U), (23b)

where ε > 0 and K0 ∈ L(Z,U). We choose the com-
ponents Kk

0 of K0 such that the operators P (iωk)Kk
0

are invertible, which is possible due to Assumption 3.
Note that even though we assumed P (iωk) of the original
system (14) to be surjective, we know from [12] that the
transfer functions P1(s) and P2(s) of the systems (14)
and (22), respectively, are related by P2(s) = P1(s)(I +
κP1(s))−1, from which it follows that P2(s) is surjective
exactly when P1(s) is surjective. Thus, Assumption 3
holds, and the components Kk

0 can be chosen such that
the operators P (iωk)Kk

0 are invertible, e.g., by choosing
Kk

0 = P (iωk)† (the Moore-Penrose pseudoinverse of
P (iωk)) for all k ∈ {1, 2, . . . , q}. Finally, we choose

G2 = (Gk2 )qk=1 = (−(P (iωk)Kk
0 )∗)qk=1

=

 −(P (iω1)K1
0 )∗

...
−(P (iωq)Kq

0)∗

 ∈ L(Y,Z).
(23c)

As noted in [9], If we choose Kk
0 = P (iωk)†, then Gk2 =

−IY for all k ∈ {1, 2, . . . , q}. It is also proved in [9] that
the proposed controller satisfies the G-conditions (21).

Now that we have chosen the parameters of the
controller, let us show that the resulting closed-loop
control system is exponentially stable. Since the plant
(22) is a boundary control system, there are operators
B ∈ L(U,X) and G ∈ L(W,X) such that (B+κC)Bu = u
and (B + κC)Gv = Ev, and we can define a new variable
ξ = x−Br−Gv. Since in this case r and v are continuously
differentiable, we get the state equation

ξ̇ = Aξ +ABr −Bṙ +AGv −Gv̇. (24)
Define the extended state-space Xe = X×Cq and ξe(t) =
(ξ(t), z(t)) as the extended state. When the control system
is closed, we have r = Kz, and hence, similar to [5], we
get the closed-loop system

ξ̇e = Aeξe +Hv +Gev̇ +Dyref , (25)
where D(Ae) = D(A)× Cq and

Ae =
[
A− εBK0G2C εABK0 − εBK0(G1 + εG2CBK0)

G2C G1 + εG2CBK0

]
,

H =
[
AG− εBK0G2CG

G2CG

]
, Ge =

[
−G
0

]
,

D =
[
εBK0G2
−G2

]
.

(26)
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As noted in [5], the operator Ae generates a C0-
semigroup, and hence, it follows from the smoothness of
yref and v that equation (25) has a unique, continuously
differentiable solution. It has also been shown in [5] that
there exists an ε∗ > 0 such that the operator Ae is
exponentially stable for every 0 < ε ≤ ε∗, and hence, the
closed-loop system is exponentially stable. Thus, we have
shown that the input u(t) = r(t)− κCx(t) with κ ∈ R+

and r(t) being the output of the controller (G1,G2,K)
achieves robust control over the system (14).

VII. An Example
As an example we consider a vibrating string on the

spatial interval [0, 1]. The vibrating string satisfies the
one-dimensional wave equation

∂2

∂t2
p(ζ, t) = c2 ∂

2

∂ζ2 p(ζ, t), ζ ∈ [0, 1], (27a)

where c2 = T/ρ with the Young’s modulus T and the mass
density ρ being positive constants. We decide to apply
force to one end of the string and control the velocity
of the other end. Thus, the boundary controls with the
boundary disturbances are given by

u1(t) + w1(t) = T
∂

∂ζ
p(1, t) and

u2(t) + w2(t) = ∂

∂t
p(0, t).

(27b)

Furthermore, we choose to observe the velocity at the end
where the force is applied and the negative force at the
end where the velocity is controlled. Thus, our outputs
are given by

y1(t) = ∂

∂t
p(1, t) and y2(t) = −T ∂

∂ζ
p(0, t). (27c)

Let us start writing the system described by the
equations (27a)–(27c) as a port-Hamiltonian system. In
order to do this, we define the new state variables
x1 = ρ∂tp (momentum) and x2 = ∂ζp (strain) [6]. Now,
equation (27a) can equivalently be written as

∂

∂t

[
x1(ζ, t)
x2(ζ, t)

]
= P1

∂

∂ζ

(
H
[
x1(ζ, t)
x2(ζ, t)

])
, (28)

where

P1 =
[

0 1
1 0

]
and H =

[
1/ρ 0
0 T

]
, (29)

which is a port-Hamiltonian system satisfying Assumption
1 with P0 = 0.

Using the new state variables we can now define the
operators B and C as

u(t) =
[
T∂ζp(1, t)
∂tp(0, t)

]
=
[

Tx2(1, t)
ρ−1x1(0, t)

]
= Bx(t),

y(t) =
[

∂tp(1, t)
T∂ζp(0, t)

]
=
[
ρ−1x1(1, t)
Tx2(0, t)

]
= Cx(t).

(30)

Equivalently, we can express the inputs and outputs with
respect to the boundary effort e∂ and boundary flow f∂
(4), which results in

u(t) = WB

[
f∂(t)
e∂(t)

]
= 1√

2

[
1 0 0 1
0 −1 1 0

] [
f∂(t)
e∂(t)

]
,

y(t) = WC

[
f∂(t)
e∂(t)

]
= 1√

2

[
0 1 1 0
1 0 0 −1

] [
f∂(t)
e∂(t)

]
.

(31)
We see from (31) that the matrices WB and WC are such
that PWB ,WC

= Σ, and hence, the system described by
equations (27a)–(27c) is an impedance energy-preserving
port-Hamiltonian system. Thus, the controller structure
proposed in Section VI with u(t) = r(t)− κCx(t), κ ∈ R+

achieves robust regulation on the system.
Now with all the necessary operators defined and the

input being of the form u(t) = r(t) − κCx(t), we can
write the system described by equations (27a)–(27c) as
the following port-Hamiltonian system:

ẋ(t) = Ax(t), (32a)
r(t)− w(t) = (B + κC)x(t), (32b)

y(t) = Cx(t), (32c)

where Ax = P1∂ζ(Hx) with P1 and H given in (29), and
B and C given in (30).

Now that we have

(B + κC)x(t) =
[
Tx2(1, t) + κρ−1x1(1, t)
ρ−1x1(0, t)− κTx2(0, t)

]
,

the operator B ∈ L(U,X) satisfying (B + κC)Bu = u is
given by

B =
1[0,1]

(Tρ)2 + 1

[
Tρ2 ρ
ρκ−1 −Tρ2κ−1

]
(33)

Following [6] we can compute the transfer function from
u to y which is given by

P (s) = 1
f4(s)

[
f1(s) + f2(s) 1

−1 f1(s) + f3(s)

]
(34)

where
f1(s) = κ cosh(cs),
f2(s) = cρ−1 sinh(cs),
f3(s) = ρc−1 sinh(cs),
f4(s) = (κ−1 + κ)f1(s) + κ(f2(s) + f3(s)).

It should be noted that P (iω) is surjective for all ω ∈(
R \

{
(2m+ 1)π

2c | m ∈ Z
})

, and thus, provided that
the signal generator of the exosystem does not have
eigenvalues of the form i

(2m+ 1)π
2c ,m ∈ Z, the controller

proposed in Section VI achieves robust output regulation
for the system (32).

Let T = ρ = 1 and choose κ = 1. Let the exosystem
be given by S = diag(−iπ, iπ) and E = F = I. Thus, we
have c = 1,

P (−iπ) = 1
2

[
1 −1
1 1

]
= P (iπ), (35)
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and the operator G ∈ L(W,X) satisfying (B + κC)Gv =
Ev is given by G = B. Furthermore, the controller
(G1,G2,K) that solves the robust regulation problem for
the stabilized plant (32) is given by

G1 = diag(−iπ,−iπ, iπ, iπ) ∈ C4×4,

G2 =
[
−IY
−IY

]
,

K = ε
[
P (−iπ)−1, P (iπ)−1] ,

(36)

where we made the choice Kk
0 = P (iωk)−1.

VIII. Conclusions
We presented a method for constructing a simple finite-

dimensional robust regulating controller for a first-order
impedance energy-preserving port-Hamiltonian system.
Even though the system is initially unstable, by expo-
nentially stabilizing the system with negative output
feedback we were able to utilize the results of robust
output regulation for exponentially stable systems when
designing the controller. We showed that the proposed
controller together with negative output feedback solves
the Robust Output Regulation Problem for the considered
system, and as an example we implemented such a
controller for the one-dimensional wave equation with
boundary control and observation.
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