
The Internal Model Principle for Boundary
Control Systems with Polynomially

Bounded Exogenous Signals ?

Jukka-Pekka Humaloja ∗ Lassi Paunonen ∗

∗ Tampere University, Mathematics, Computing Sciences, P.O. Box
692, 33101 Tampere, Finland (e-mail: jukka-pekka.humaloja@tuni.fi,

lassi.paunonen@tuni.fi).

Abstract: We extend the internal model principle for boundary control system to cover
robust tracking of sinusoidal reference signals with polynomial coefficients. The internal model
principle is presented in the form of both the internal model structure and the G-conditions.
A controller structure will be presented and its internal model properties will be analyzed in
order to solve the tracking problem in a robust manner. As an example, a robust controller
is constructed for the one-dimensional heat equation with Dirichlet boundary control at one
endpoint and temperature measurement at the other endpoint of the interval. The performance
of the controller is demonstrated by numerical simulations.
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1. INTRODUCTION

The internal model principle comes into play when con-
structing controllers for robust output regulation. The goal
of robust output regulation is to design a control law such
that the output y(t) of a given plant asymptotically fol-
lows some reference trajectory yref (t) in spite of external
disturbance signals w(t) and/or perturbations and uncer-
tainties in the parameters of the plant. One possibility of
designing such a control law is to construct a dynamical
error feedback controller to produce the required controls.

The internal model principle indicates that a controller can
solve the robust output regulation problem if and only if it
contains a sufficient internal model of the dynamics of the
exosystem that generates the disturbance and reference
signals. The internal model principle was first introduced
in the context of finite-dimensional systems by Francis and
Wonham (1975, 1976). Since then, the principle has been
extended to infinite-dimensional systems, e.g., in Rebar-
ber and Weiss (2003); Immonen (2007); Hämäläinen and
Pohjolainen (2010); Paunonen and Pohjolainen (2010).
Most recently, the principle has been generalized to regular
linear systems in Paunonen and Pohjolainen (2014) and
to boundary control systems in Humaloja and Paunonen
(2018); Humaloja et al. (2018), where the considered sig-
nals where linear combinations of sinusoidal signals with
constant coefficients.

As the main contribution of this paper, we extend the
internal model principle to boundary control systems for
robust tracking of sinusoidal signals with polynomial co-
efficients (see (2) for the exact signal structure). The
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extended internal model principle will be presented in the
form of the G-conditions as in (Paunonen and Pohjolainen,
2010, Def. 5.1), and as a side product also in the form of the
internal model structure as in (Immonen and Pohjolainen,
2006, Def. 3.1). In fact, the result concerning the inter-
nal model structure is the main novel contribution, and
thereafter the result on the G-conditions can be derived
by combining the results of Paunonen and Pohjolainen
(2010, 2014) with some care in the technical details. We
will also consider a controller structure from Hämäläinen
and Pohjolainen (2002) and show that it satisfies the G-
conditions.

The structure of the paper is as follows. In Section 2,
we present the plant, the class of considered reference
signals and the controller. In Section 3, we present the
robust output regulation problem and the internal model
principle in the form of the internal model structure and
the G-conditions in Section 3.1. In Section 3.2, we review
the controller structure from Hämäläinen and Pohjolainen
(2002) to solve the robust output regulation problem. In
Section 4, a numerical example is presented on tracking of
a ramp signal for a one-dimensional heat equation with
non-collocated Dirichlet boundary control and observa-
tion. Finally, the paper is concluded in Section 5.

Here L(X,Y ) denotes the family of bounded operators
from the normed space X to the normed space Y . The
domain, range, kernel, resolvent and spectrum of a linear
operator A are denoted by D(A), R(A), N (A), ρ(A) and
σ(A), respectively.

2. THE PLANT, EXOSYSTEM AND CONTROLLER

We consider plants that are boundary control systems in
the sense of (Curtain and Zwart, 1995, Def. 3.3.2) given
by the following equations.



ẋ(t) = Ax(t), x(0) = x0 (1a)

u(t) + w(t) = Bx(t) (1b)

y(t) = Cx(t) (1c)

where the pair (A,B) is such that the operator A :=
A|N (B) is the generator of a C0-semigroup, and there exists
a right inverse B ∈ L(U,X) of B such that R(B) ⊂ D(A)
and BBu = u for all u ∈ U . 1 Furthermore, the operator
C is such that D(A) ⊂ D(C) and CB ∈ L(U, Y ). The state
space X, the input space U , and the output space Y are
assumed to be Hilbert spaces. Furthermore, we assume
that the operator A is the generator of an exponentially
stable C0-semigroup.

The disturbance signal w(t) and the reference signal
yref (t) to be tracked are assumed to be of the form

yref (t) = a0(t) +

q∑
k=1

(ak(t) cos(ωkt) + bk(t) sin(ωkt))

(2a)

w(t) = c0(t) +

q∑
k=1

(ck(t) cos(ωkt) + dk(t) sin(ωkt))

(2b)

where the coefficients ak(t), bk(t), ck(t), dk(t) are polyno-
mials of known degree but possibly with unknown coeffi-
cients, and the frequencies {ωk}qk=0 ⊂ R are known and
such that 0 = ω0 < ω1 < . . . < ωq. The plant could
be subjected to other disturbances as well, e.g., more
general boundary disturbances, distributed disturbances
or input disturbances, but here we will restrict to the input
disturbance case in order to reduce notational complexity.

Reference and disturbance signals like the ones in (2) can
be generated by an exosystem of the form

v̇(t) = Sv(t), v(0) = v0 (3a)

w(t) = Ev(t) (3b)

yref (t) = −Fv(t) (3c)

on a finite-dimensional space W , where S is such that
σ(S) = {ω0,±iω1, . . . ,±iωq}, and E ∈ L(W,U) and
F ∈ L(W,Y ) corresponding to the polynomial coefficients
ck(t), dk(t) and ak(t), bk(t) in w(t) and yref (t), respec-
tively. The algebraic multiplicity associated with an eigen-
value iωk is denoted by nk so that at least one of the cor-
responding polynomial coefficients ak(t), bk(t), ck(t), dk(t)
is of degree nk − 1. Thus, the exosystem state space is of
dimension dimW = n0 + 2

∑q
k=1 nk. In the following, we

will denote −iωk by iω−k.

It should be noted that the exosystem is merely a theoret-
ical tool for deriving the internal model results in the next
section. In order to construct a robust controller, one does
not need any information on the parameters E and F (due
to robustness) but only on the eigenvalues of S and their
algebraic multiplicities, which can be determined directly
from the reference and disturbance signals.

The controller to be constructed to solve the robust output
regulation problem is a dynamic error feedback controller

1 Note that the right inverse B is different from the actual control
operator that would appear if the the plant (1) was written in the
state-space form. However, the formulation of (Curtain and Zwart,
1995, Def. 3.3.2) only requires knowledge of the right inverse which
we here denote by B.

of the form

ż(t) = G1z(t) + G2(y(t)− yref (t)), z(0) = z0 (4a)

u(t) = Kz(t) (4b)

on a Banach space Z, where y(t) − yref (t) := e(t) is the
regulation error. The controller parameters (G1,G2,K) are
chosen such that robust output regulation is achieved, and
they satisfy G1 ∈ L(Z), G2 ∈ L(Y,Z) and K ∈ L(Z,U).

When the plant, the (virtual) exosystem and the controller
are connected, i.e., u(t), y(t) and yref (t) are set equal in
(1)–(4), the resulting closed-loop system can be written in
the state space form on an extended state space Xe := X×
Z. The closed-loop system is given by

ẋe(t) = Aexe(t) +Bev(t), xe(0) = xe0 (5a)

e(t) = Cexe(t) +Dev(t) (5b)

where the regulation error e(t) = y(t) − yref (t) is chosen
as the output, and the operators are given by

Ae :=

[
A−BKG2C ABK −BK(G1 + G2CBK)
G2C G1 + G2CBK

]
,

Be :=

[
ABE −BES −BKG2(CBE + F )

G2(CBE + F )

]
,

Ce := [C CBK] ,

and De := CBE + F (see (Humaloja et al., 2018, Sec.
III) for the derivation and details). Even though we
restrict to the input disturbance case in our theoretical
considerations, as an example in Section 4, we consider a
case where the disturbance acts on a different part of the
boundary than the control input, which corresponds to the
more general formulation of Humaloja et al. (2018).

As shown in (Humaloja et al., 2018, Thm. III.1), if the
observation operator C is admissible (Tucsnak and Weiss,
2009, Def. 4.3.1) for the C0-semigroup generated by A,
then Ae is the generator of a the C0-semigroup (Te(t))t≥0
and Ce is admissible for (Te(t))t≥0. In particular, the
closed-loop system is a regular linear system in the sense
of Weiss (1994).

3. ROBUST OUTPUT REGULATION

The goal of output regulation is to design a control
law such that the output of a given system follows a
given reference trajectory. In order to discuss robustness,
consider the class O of admissible perturbed systems
defined as follows.

Definition 1. The operators (Ã, B̃, C̃, Ẽ, F̃ ) belong to the
class O of admissible perturbed systems if

(i) The triple (Ã, B̃, C̃) is a boundary control system.

(ii) The observation operator C̃ is admissible for the

semigroup generated by Ã := Ã|N (B̃).

(iii) The values ±iωk are in the resolvent set of Ã, i.e.,

{iωk}qk=−q = σ(S) ⊂ ρ(Ã).

(iv) Ẽ ∈ L(W,U) and F̃ ∈ L(W,Y ).

We denote a right inverse of B̃ by B̃. Note that for
systems in class O, the resulting closed-loop system
(Ãe, B̃e, C̃e, D̃e) is still regular. Further note that the last
item in the preceding list translates to the structure of
the signals yref (t) and w(t) as: ak(t), bk(t), ck(t), dk(t) are



arbitrary polynomials of degree ≤ nk − 1 for all k ∈
{0, 1, . . . , q}.
Now that we have presented the class O of perturbed
systems, the robust output regulation problem can be
presented as follows.

Problem 1. (The Robust Output Regulation Problem) For
a given plant, choose the controller parameters (G1,G2,K)
in such a way that

1) the closed-loop system generated by Ae is exponen-
tially stable,

2) for all initial states xe0 ∈ Xe the regulation error
satisfies eα·e(·) ∈ L2(0,∞;Y ) for some α > 0 inde-
pendent of xe0 ∈ Xe,

3) if the operators (A,B, C, E, F ) are perturbed to

(Ã, B̃, C̃, Ẽ, F̃ ) ∈ O in such a way that the closed-
loop system remains exponentially stable, then for all
initial states xe0 ∈ Xe the regulation error satisfies
eα̃·e(·) ∈ L2(0,∞;Y ) for some α̃ > 0 independent of
xe0 ∈ Xe.

The following auxiliary results yields the equivalence be-
tween a controller solving the (robust) output regulation
problem and the regulator equations

ΣS = AeΣ +Be (6a)

0 = CeΣ +De (6b)

having a solution Σ ∈ L(W,Xe) satisfying R(Σ) ⊂ D(Ae).
The result follows from (Paunonen and Pohjolainen, 2014,
Thm. 4.1) and has been presented in (Humaloja et al.,
2018, Thm. IV.3).

Theorem 1. Assume that the closed-loop system is regular
and exponentially stablized by the controller (G1,G2,K).
Then the controller solves the output regulation problem
if and only if the regulator equations (6) have a solution
Σ. The solution is unique when it exists.

Note that the preceding result can be applied to robust
output regulation as well by requiring that the regulator
equations (6) have a solution for all perturbed systems

(Ã, B̃, C̃, Ẽ, F̃ ) ∈ O for which the closed-loop system is
exponentially stable.

3.1 The Internal Model Principle

In the following, we will give the first characterization of
the internal model principle in terms of the internal model
structure (Immonen and Pohjolainen, 2006, Def. 3.1).

Definition 2. A controller (G1,G2,K) has the internal
model structure if

∀Γ,∆ : ΓS = G1Γ + G2∆ ⇒ ∆ = 0, (7)

where Γ ∈ L(W,Z) and ∆ ∈ L(W,Y ).

The following result shows that a controller having the
internal model structure is equivalent to the controller
solving the robust output regulation problem. Throughout
the proof we will utilize the corollary of Theorem 1 that
robust output regulation is achieved if and only if, for
perturbed systems in class O that yield an exponentially
stable closed-loop system, the (unique) solution Σ of (6a)
also satisfies (6b).

Theorem 2. Assume that a controller (G1,G2,K) exponen-
tially stabilizes the closed-loop system. Then, the con-

troller solves the robust output regulation problem if and
only if has the internal model structure.

Proof. Assume first that the controller (G1,G2,K) solves
the robust output regulation problem. Let Γ ∈ L(W,Z)
and ∆ ∈ L(W,Y ) be such that ΓS = G1Γ + ∆. Leave the
operators (A,B, C) unperturbed and choose such pertur-

bations of E and F that Ẽ = −KΓ and F̃ = ∆. Now the
operator Σ = [0 Γ]T ∈ L(W,Xe) satisfiesR(Σ) ⊂ D(Ae),
and by using ΓS = G1Γ + ∆, we obtain that

ΣS =

[
0

ΓS

]
=

[
BK (ΓS − G1Γ− G2∆)

G1Γ + G2∆

]
= AeΣ + B̃e,

i.e., ΣS = AeΣ + B̃e. Moreover, as a consequence of
Theorem 1 we obtain that

0 = CeΣ + D̃e = CBKΓ− CBKΓ + ∆ = ∆

which implies that the controller has the internal model
structure.

Now assume that the controller has the internal model
structure and consider an arbitrary perturbed system
(Ã, B̃, C̃, Ẽ, F̃ ) ∈ O. Due to the assumed exponential
stability of the closed-loop system, the first regulator
equation ΣS = ÃeΣ + B̃e has a unique solution Σ =
[Π Γ]T by Phóng (1991). The second line of the equation
yields

ΓS = G2C̃Π + (G1 + G2C̃B̃K)Γ + G2(C̃B̃Ẽ + F̃ )

= G1Γ + G2(C̃Π + C̃B̃KΓ + C̃B̃Ẽ + F̃ )

= G1Γ + G2(C̃eΣ + D̃e),

where C̃eΣ + D̃e ∈ L(W,Y ) as R(Σ) ⊂ D(Ãe) ⊂ D(C̃e).
Thus, by the internal model structure, C̃eΣ + D̃e = 0, i.e.,
the controller solves the robust output regulation problem.

While the previous result yields the internal model princi-
ple in a rather compact form, it is not the most practical
one in terms of constructing a robust regulating controller
— mainly due to the fact that it is not straightforward
to see how the controller parameters should be chosen in
such a way that the controller would have the internal
model structure. Instead, the internal model principle can
be equivalently expressed in terms of the G-conditions
(Paunonen and Pohjolainen, 2010, Def. 5.1) as follows.

Definition 3. A controller (G1,G2,K) satisfies the G-
conditions if

N (G2) = {0} (8a)

and

R(iωk − G1) ∩R(G2) = {0} (8b)

N (iωk − G1)nk−1 ⊂ R(iωk − G1) (8c)

for all k ∈ {−q, . . . , q}.

The following result proves the equivalence between the
internal model structure and the G-conditions, and more
importantly, that a controller solves the robust output reg-
ulation problem if and only if it satisfies the G-conditions.

Theorem 3. Assume that the controller (G1,G2,K) expo-
nentially stabilizes the closed-loop system. Then, the con-
troller solves the robust output regulation problem if and
only if it satisfies the G-conditions.

Proof. Assume first that the controller satisfies the G-
conditions. It has been shown in (Paunonen and Pohjo-



lainen, 2010, Lem. 5.6) that if the controller satisfies the G-
conditions, then it has the internal model structure. Thus,
by Theorem 2, the controller solves the robust output
regulation problem. Note that even though the operator Ce
is bounded in Paunonen and Pohjolainen (2010), neither
the internal model structure nor the G-conditions require
any specific information about the closed-loop system, and
thus, the result of (Paunonen and Pohjolainen, 2010, Lem.
5.6) can be used here as such.

Now assume that the controller solves the robust out-
put regulation problem. It can be shown similarly as in
the proof of (Humaloja et al., 2018, Thm. IV.8) that a
controller solving the robust output regulation problem
implies that the first two G-conditions are satisfied. For the
third G-condition, we first note that as we have assumed
that the controller exponentially stabilizes the closed-loop
system, the condition Z = R(iωk−G1)+R(G2) is automat-
ically satisfied for all k ∈ {−q, . . . , q} by (Paunonen and
Pohjolainen, 2010, Lem. 5.7). As further CeΣ ∈ L(W,Y )
even though here the operator Ce is unbounded, we can
utilize (Paunonen and Pohjolainen, 2010, Lem. 5.5), which
implies that if a controller has the internal model struc-
ture, then the third G-condition is satisfied. Thus, by
Theorem 2, we conclude that the controller satisfies the
G-conditions.

3.2 Construction of a robust controller

In this section, we will recall a controller structure from
Hämäläinen and Pohjolainen (2002), which in the pre-
ceding reference was shown to solve the robust output
regulation problem for exponentially stable boundary con-
trol systems. We analyze the internal model property of
the controller presented in Hämäläinen and Pohjolainen
(2002) as we know that it must satisfy the G-conditions
by Theorem 3. Furthermore, a general condition for the
parameter K is given to ensure exponential stability of
the closed-loop system, which we have merely assumed
thus far.

In order to construct a robust controller for an arbi-
trary exponentially stable boundary control system, we
can utilize the controller introduced in Hämäläinen and
Pohjolainen (2002):

G1 = diag(G1,k)qk=−q
G2 = (G2,k)qk=−q
K = [K−q,K−q+1, . . . ,Kq],

where

G1,k =


iωkIY IY . . . 0

0 iωkIY IY
...

...
. . .

. . . IY
0 . . . 0 iωkIY

 ∈ L(Y nk)

G2,k =


0
0
...
−IY

 ∈ L(Y, Y nk)

Kk =
[
εnkKk,0, ε

nk−1Kk,1, . . . , εKk,nk−1
]
∈ L(Y nk , U)

and ε > 0 is the tuning parameter.

It is straightforward to see that N (G2) = {0}, and for an
arbitrary k ∈ {−q, . . . , q}, we have

iωk − G1,k =


0 IY . . . 0

0 0 IY
...

...
. . .

. . . IY
0 . . . 0 0

 and

(iωk − G1,k)nk−1 =


0 . . . 0 IY

0
. . .

. . . 0
...

. . .
. . .

...
0 . . . 0 0

 .
by which we obtain that R(iωk − G1) ∩ R(G2) = {0} and
N (iωk−G1)nk−1 ⊂ R(iωk−G1). Since the choice of k was
arbitrary, the controller satisfies the G-conditions.

In order to guarantee exponential stability of the closed-
loop system, the parameters Kk must be chosen in such a
way that the roots of the polynomial

det

(
snk + P (iωk)

nk−1∑
l=0

Kk,ls
l

)
lie in the open left half-plane C− for all k ∈ {−q, . . . , q},
where P (·) denotes the transfer function of the plant.
If nk = 1, then the corresponding condition reduces to
σ(P (iωk)Kk) ⊂ C+.

With the particular choices of the controller parameters,
it follows from (Hämäläinen and Pohjolainen, 2002, Sec.
III.B) that the controller stabilizes the closed-loop system
exponentially. Although the operator C is assumed to be
bounded in the preceding reference, the same proof is
in fact valid for any admissible C ∈ L(D(A), Y ) as the
operator C only appears in the proof as C(s−A)−1, which
is bounded for all s ∈ C+ even for C ∈ L(D(A), Y ).
Thus, by Theorem 3 and (Hämäläinen and Pohjolainen,
2002, Sec. III.B), a controller with the preceding parameter
choices solves the robust output regulation problem.

It should be noted that if the plant and the reference
and disturbance signals are real-valued, then the controller
of Hämäläinen and Pohjolainen (2002) also has a real-
valued realization, which is obtained from the previously
presented one, e.g., by a similarity transformation. We will
demonstrate the construction of a real-valued controller
in the next section, where tracking of a ramp signal is
considered for a one-dimensional heat equation.

4. EXAMPLE

Consider the heat equation on the domain ζ ∈ [0, 1] given
by

ẋ(ζ, t) =
∂2

∂ζ2
x(ζ, t), x(ζ, 0) = x0(ζ) (9a)

u(t) = x(1, t) (9b)

w(t) =
∂

∂ζ
x(0, t) (9c)

y(t) = x(0, t) (9d)

on the state space X = L2(0, 1). By defining Ax = x′′

with the maximal domain D(A) := H2(0, 1), Bx :=



[x(1) x′(0)]T , and Cx := x(0), (9) can be equivalently
written as a boundary control system

ẋ(ζ, t) = Ax(ζ, t), x(ζ, 0) = x0(ζ) (10a)

Bx(·, t) =

[
1
0

]
u(t) +

[
0
1

]
w(t) (10b)

Cx(·, t) = y(t). (10c)

It is easy to see that the operator A := A|N (B) is the
generator of an exponentially stable C0-semigroup, and
that the operator B has a right inverse given, e.g., by
B(ζ) = [1 ζ − 1]. The transfer function of the system
is given by P (s) = cosh(

√
s)−1.

Let the reference signal yref (t) and the disturbance signal
w(t) be given by

yref (t) =
1

5
t, w(t) = sin(πt),

so the signal generator S needs to have single eigenvalues
at ±iπ and an eigenvalue at zero with algebraic multiplic-
ity two and geometric multiplicity one. Based on Section
3.2, the controller parameters can be chosen as

G′1 =

0 1 0 0
0 0 0 0
0 0 −iπ 0
0 0 0 iπ

 , G′2 =

 0
−1
−1
−1

 ,
K ′ = ε[εK0,0,K0,1, P (−iπ)−1P (iπ)−1]

where, in order to ensure the stability of the closed-loop
system, we must choose K0,0 and K0,1 in such a way that
the polynomial

s2 + P (0)(K0,1s+K0,0) = s2 +K0,1s+K0,0

has its roots in C−. Thus, we may choose, e.g., K0,0 =
K0,1 = 2. Now, in order to construct a real-valued
controller, let us introduce a matrix V given by

V =

1 0 0 0
0 1 0 0
0 0 1 i
0 0 1 −i


and transform the chosen controller parameters into G1 :=
V −1G′1V , G2 := V −1G′2 and K := K ′V . Thus, the real-
valued controller parameters are given by

G1 =

0 1 0 0
0 0 0 0
0 0 0 π
0 0 −π 0

 , G2 =

 0
−1
−1
0

 ,
K = ε[2ε, 2, 2 Re(P (iπ)−1), 2 Im(P (iπ)−1)].

The tuning parameter ε is chosen as ε = 0.32, which is
determined by roughly maximizing the stability margin
of the closed-loop system based on a finite-difference
approximation of the plant with N = 33 grid points. The
same approximation is used in the simulation as well. For
the simulation, the initial condition for the plant is given
by x0(ζ) = cos

(
π
2 ζ
)

and the initial state of the controller
is chosen as z0 = 0.

The simulation results for the heat equation are displayed
in Figures 1 and 2. In Figure 1, the output y(t) and
the reference signal yref (t) are presented along with the
regulation error e(t). It can be seen that after the transient
errors, the output begins to follow the reference trajectory
accurately. It should be noted that some of the initial error

is due to the initial condition as y(0) = 1 as opposed to
yref (0) = 0.
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Fig. 1. Above: the reference signal yref and the output y.
Below: the regulation error e = y − yref .

In Figure 2, the heat profile is displayed for t ∈ [0, 15],
where the output behavior can be seen along the line
ζ = 0. The periodic behavior along the line ζ = 1 is due
to the fact that the input has to account for the sinusoidal
disturbance signal that acts on the heat flow at ζ = 0.
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Fig. 2. The state profile of the heat equation for t ∈ [0, 15].

5. CONCLUSIONS

We extended the internal model principle for boundary
control systems to cover the case where the reference and
disturbance signals contain sinusoidal parts with poly-
nomial coefficients. The principle was presented in the
form of the internal model structure and the G-conditions,
thus extending the results of Paunonen and Pohjolainen



(2010, 2014) to boundary control systems. Following the
G-conditions, the controller structure that has been pre-
sented in Hämäläinen and Pohjolainen (2002) was ana-
lyzed to solve the robust output regulation problem for
the considered class of boundary control systems. As an
application of the theoretic results, such a controller was
constructed for the one-dimensional heat equation for ro-
bust tracking of a ramp signal.
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