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Robust Regulation of Infinite-Dimensional
Port-Hamiltonian Systems

Jukka-Pekka Humaloja and Lassi Paunonen

Abstract—We will give general sufficient conditions under
which a controller achieves robust regulation for a boundary
control and observation system. Utilizing these conditions we
construct a minimal order robust controller for an arbitrary
order impedance passive linear port-Hamiltonian system. The
theoretical results are illustrated with a numerical example where
we implement a controller for a one-dimensional Euler-Bernoulli
beam with boundary controls and boundary observations.

Index Terms—port-Hamiltonian systems, robust control, dis-
tributed parameter systems, linear systems.

I. INTRODUCTION

The class of infinite-dimensional port-Hamiltonian systems
includes models of flexible systems, traveling waves, heat
exchangers, bioreactors, and in general, lossless and dissipative
hyperbolic systems on one-dimensional spatial domains [1]–
[3]. In this paper, we consider robust output regulation for
port-Hamiltonian systems in general, and as an example we
implement a robust controller for Euler-Bernoulli beam which
can be formulated as a second-order port-Hamiltonian system.
By robust regulation we mean that the controller asymptotically
tracks the reference signal, rejects the disturbance signal and
allows some perturbations in the plant.

The internal model principle is the key to understanding
how control systems can be robust, i.e., tolerate perturbations
in the parameters of the system. The principle indicates that the
regulation problem can be solved by including in the controller
a suitable internal model of the dynamics of the exosystem
that generates the reference and disturbance signals. One of the
first robust controllers that utilize the internal model principle
is the low-gain controller proposed by Davison [4]. Davison’s
controller has many practical advantages as it has simple
structure and it can be tuned with input-output measurements.
The controller was generalized to infinite-dimensional systems
and its tuning process was simplified in [5], [6].

The main contribution of this paper is that we present
sufficient criteria for a controller to achieve robust output
regulation for boundary control and observation systems. A
corresponding result has already been shown for various system
classes [7]–[9] but not for boundary control systems. As our
second main result, we will construct a minimal order robust
regulating controller for an arbitrary order impedance passive
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linear port-Hamiltonian system for which we can show certain
assumptions to hold.

Robust output regulation of port-Hamiltonian systems has
been considered by the authors in [10], [11] where first- and
even-order port-Hamiltonian systems were considered, respec-
tively. Outside robust regulation, stability, stabilization and
dynamic boundary control of port-Hamiltonian systems have
been considered, e.g., in [12]–[15]. This paper generalizes the
results of [10], [11] for port-Hamiltonian systems of arbitrary
order N . Furthermore, as opposed to [10], [11] considering
only impedance energy preserving systems, here we will be
considering impedance passive systems as well. Additionally,
here the observation operator is allowed to be unbounded,
which is essential for true boundary observation. This is also
an extension to the results of [6] where robust regulation
of boundary control systems with bounded observations was
considered.

Robust regulation has been considered for boundary control
systems in [6] and for well-posed systems in general in [16].
In both references, the robust regulation result is formulated
for a single controller structure, whereas our result (Theorem
4) holds for any controller that includes a suitable internal
model of the exosystem and stabilizes the closed-loop system.
Furthermore, both references assume that the controlled system
is initially stable, which is not required here. We also note
that in the proof of Theorem 8 we could utilize the frequency
domain proof of [16, Thm. 1.1] to show that the minimal order
controller stabilizes the closed-loop system, but we present an
alternative time domain proof instead.

The structure of the paper is as follows. In Section II we
present the control system consisting of the plant, exosystem
and controller. In Section III we formulate the robust output
regulation problem and present the robust regulation result for
boundary control and observation systems. In Section IV we
present the specific structure of linear port-Hamiltonian systems
with stability and stabilization results, so that in Section V we
can construct a robust regulating controller - that is also of
minimal order - for these systems. The theoretical results are
illustrated in Section VI where we construct a robust regulating
controller for Euler-Bernoulli beam.

Here L(X,Y ) denotes the set of bounded linear operators
from the normed space X to the normed space Y . The domain,
range, kernel, spectrum and resolvent of a linear operator A are
denoted by D(A),R(A),N (A), σ(A) and ρ(A), respectively.
The resolvent operator is given by R(λ,A) = (λ − A)−1,
and it exists for all λ ∈ ρ(A). The growth bound of the C0-
semigroup TA(t) generated by A is denoted by ω0(TA), and
TA is exponentially stable if ω0(TA) < 0. In that case we also
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say that A is exponentially stable.

II. THE PLANT, EXOSYSTEM AND CONTROLLER

The plant is a boundary control system of the form

ẋ(t) = Ax(t), x(0) = x0, (1a)
Bx(t) = u(t) + w(t), (1b)
Cx(t) = y(t) (1c)

where the disturbance signal w(t) is generated by the exosystem
that will be presented shortly. In Section IV, we will make an
additional assumption that the plant is an impedance passive
port-Hamiltonian system, but for now it is sufficient to consider
the plant a boundary control and observation system given by
the following definition:

Definition 1. [3, Def. 2.3.13] Let X,U and Y be Hilbert
spaces. The system (A,B, C) of linear operators A : D(A) ⊂
X → X , B : D(B) ⊂ X → U and C : D(C) ⊂ X → Y
is called a boundary control and observation system if the
following hold:

1) D(A) ⊂ D(B) and D(A) ⊂ D(C).
2) The restriction A = A|N (B) of A to the kernel of B

generates a C0-semigroup (TA(t))t≥0 on X .
3) There is a right inverse B ∈ L(U,X) of B such that
R(B) ⊂ D(A), AB ∈ L(U,X) and BB = IU .

4) The operator C is bounded from D(A) to Y , where D(A)
is equipped with the graph norm of A.

Let A = A|N (B) be the generator of a C0-semigroup TA(t)
on X . We define the Λ-extension CΛ of C by

CΛx = lim
λ→∞

λCR(λ,A)x,

and its domain D(CΛ) consists of those x ∈ X for which the
limit exists. Throughout this paper, we also assume that C is
admissible for A [17, Def. 4.3.1], i.e., for some τ > 0 there
exists a constant Kτ such that

τ∫
0

||CTA(t)x0||2Y dt ≤ K2
τ ||x0||2X ∀x0 ∈ D(A).

Furthermore, if there exists a constant K > 0 such that Kτ ≤
K for all τ > 0, then we say that C is infinite-time admissible
for A, for which we will give sufficient conditions in the
port-Hamiltonian context later on.

The exosystem that generates the boundary disturbance signal
w(t) and the reference signal yref (t) is a linear system

v̇(t) = Sv(t), v(0) = v0, (2a)
w(t) = Ev(t), (2b)

yref (t) = −Fv(t) (2c)

on a finite-dimensional space W = Cq with some q ∈ N. Here
S ∈ L(W ) = Cq×q, E ∈ L(W,U) and F ∈ L(W,Y ). Fur-
thermore, we assume that S has purely imaginary eigenvalues
σ(S) = {iωk}qk=1 ⊂ iR with algebraic multiplicity one.

The transfer function of the plant (1) is given by

P (λ) = CΛR(λ,A)(AB − λB) + CΛB ∈ L(U, Y ), (3)

and it is defined for every λ ∈ ρ(A) as R(B) ⊂ D(A) ⊂ D(C).
Note that the boundedness of the transfer function implies that
λû must be bounded for every λ ∈ ρ(A). Hence, by the
Plancherel theorem we must have u ∈ H1, which we will
show to hold at the end of this section. Furthermore, we need
to assume that P (iωk) is surjective for all k ∈ {1, 2, . . . , q},
which is crucial to the solvability of the robust output regulation
problem presented in Section III. Note that the surjectivity
assumption implies that we must have dim(U) ≥ dim(Y ).

Since the plant is a boundary control and observation system,
it follows from Definition 1 that we can define an operator
G := BE ∈ L(W,X) satisfying AG ∈ L(W,X), BG = E
and R(G) ⊂ D(C). It is easily seen by following the proof of
[18, Thm. 3.3.3] that if u ∈ C2(0, τ ;U) and v ∈ C2(0, τ ;W )
for all τ > 0, then the abstract differential equation

ξ̇(t) = Aξ(t) +ABu(t)−Bu̇(t) +AGv(t)−Gv̇(t) (4)

with ξ(0) = ξ0 is well-posed. Furthermore, if ξ0 = x0−Bu0−
Gv0 ∈ D(A), the classical solutions of (1) and (4) are related
by ξ(t) = x(t)−Bu(t)−Gv(t), and they are unique.

The plant (1) - as well as equation (4) - has a well-defined
mild solution for u̇ ∈ Lp(0, τ ;U), v̇ ∈ Lp(0, τ ;W ) for some
p ≥ 1 and x0 ∈ X . In that case, the summary related to [18,
Thm. 3.3.4] implies that the mild solution of (1) is given by

x(t) = TA(t)(x0 −Bu0 −Gv0) +Bu(t) +Gv(t) +
t∫

0

TA(t− s)(ABu(s)−Bu̇(s) +AGv(t)−Gv̇(t))ds.

Similarly for every ξ0 = x0 − Bu0 −Gv0 ∈ X , one obtains
the mild solution of (4) using the above solution and the
relation between x(t) and ξ(t). We will show at the end of
this section that u̇ ∈ L2(0, τ ;U), which together with the
fact that v ∈ C∞(0, τ ;W ) ensures that the mild solutions are
well-defined.

The dynamic error feedback controller is of the form

ż(t) = G1z(t) + G2(y(t)− yref (t)), z(0) = z0, (5a)
u(t) = Kz(t) (5b)

on a Banach space Z. The parameters G1 ∈ L(Z), G2 ∈
L(Y,Z) and K ∈ L(Z,U) are to be chosen in such a way
that robust output regulation is achieved for the plant (1).

We are finally in the position to give the formulation of
the closed-loop system consisting of the plant (1) written as
the abstract differential equation (4) and the controller (5).
Furthermore, we will show that u̇ ∈ L2(0, τ ;U) for every
τ > 0. Using the above notation and definitions, the closed-loop
system can be written on the extended state space Xe = X×Z
with the extended state ξe(t) = (ξ(t), z(t))T as

ξ̇e(t) = Aeξe(t) +Bev(t), ξe(0) = ξe0, (6a)
e(t) = Ceξe(t) +Dev(t), (6b)

where e(t) := y(t) − yref (t) is the regulation error, ξe0 =
(ξ0, z0)T , Ce = [CΛ CΛBK], De = CΛG+ F and

Ae =

[
A−BKG2CΛ ABK −BK(G1 + G2CΛBK)
G2CΛ G1 + G2CΛBK

]
,

Be =

[
AG−GS −BKG2(CΛG+ F )

G2(CΛG+ F )

]
.
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The operator Ae has domain D(Ae) = D(A) × Z, and it
can be written in the form

Ae =

[
A 0
0 G1

]
+

[
−BKG2

G2

]
[CΛ CΛBK]

+

[
0 ABK −BKG1

0 0

]
:=A1 +A2Ce +A3.

Since all the operators associated with the controller (5) are
bounded and since AB,B ∈ L(U,X) due to the plant (1)
being a boundary control and observation system, it follows
that the operators A2 and A3 are bounded. Furthermore,
since C is admissible for A and CΛB ∈ L(U, Y ), it follows
that Ce is admissible for A1. Thus, since A1 is clearly the
generator of a C0-semigroup, A2 and A3 are bounded, and
Ce is admissible for A1, it follows from [17, Thm. 5.4.2]
and standard perturbation theory that the operator Ae is the
generator of a C0-semigroup, and that Ce is admissible for
Ae as well. Finally, combining (5) and (6b) we obtain that
u̇ = KG1z+KG2(Ceξe+Dev), which by the above reasoning
shows that u̇ ∈ L2(0, τ ;U) for all τ > 0, and thus, the mild
solutions of (1) and (4) are well-defined.

III. THE ROBUST OUTPUT REGULATION PROBLEM AND THE
INTERNAL MODEL PRINCIPLE

In this section, we formulate the robust output regulation
problem and present the concept of the internal model via the
G-conditions. After that, we are in the position to present and
prove the first main result of this paper.

In order to discuss robustness, we consider perturbations
(Ã, B̃, C̃, Ẽ, F̃ ) ∈ O of the operators (A,B, C, E, F ). The class
O of perturbations is defined such that the perturbed operators
(Ã, B̃, C̃, Ẽ, F̃ ) satisfy the following assumptions which the
operators (A,B, C, E, F ) are assumed to satisfy as well.

Assumption 2. The operators (Ã, B̃, C̃, Ẽ, F̃ ) satisfy the
following:

1) The plant (Ã, B̃, C̃) is a boundary control and observation
system.

2) The operator C̃ is admissible for Ã = Ã|N (B̃).
3) The transfer function of the plant (Ã, B̃, C̃) is surjective

and bounded for every eigenvalue of S.
4) Ẽ ∈ L(W,U) and F̃ ∈ L(W,Y ).

It is easy to see that these conditions are satisfied for arbitrary
bounded perturbations to E and F , whereas the boundary
control and observation system requirement imposes stricter
conditions on the perturbations on A,B and C. However, at
least sufficiently small bounded perturbations are acceptable.
Note that the operators B and G associated with the boundary
control and observation system will also change when the
system is perturbed. We denote these operators by B̃ and G̃.
The Robust Output Regulation Problem. Choose a controller
(G1,G2,K) in such a way that the following are satisfied:

1) The closed-loop system generated by Ae is exponentially
stable.

2) For all initial states ξe0 ∈ Xe and v0 ∈W , the regulation
error satisfies eα·e(·) ∈ L2(0,∞;Y ) for some α > 0.

3) If (A,B, C, E, F ) are perturbed to (Ã, B̃, C̃, Ẽ, F̃ ) ∈ O
in such a way that the closed-loop system remains
exponentially stable, then for all initial states ξe0 ∈ Xe

and v0 ∈ W , the regulation error satisfies eα̃·e(·) ∈
L2(0,∞;Y ) for some α̃ > 0.

We note that without the last item in the above list the problem
is called output regulation problem which will be considered
in the proof of our first main result in the next subsection.

The internal model principle states that the robust output
regulation problem can be solved by including a suitable
internal model of the dynamics of the exosystem in the
controller. The internal model can be characterized using the
definition of G-conditions below. What follows is our first
main result where we show that a controller satisfying the
G-conditions is robust.

Definition 3. [7, Def. 10] A controller (G1,G2,K) is said to
satisfy the G-conditions if

R(iωk − G1) ∩R(G2) = {0}, (7a)
N (G2) = {0} (7b)

for all k ∈ {1, 2, . . . , q}, where σ(S) = {iωk}qk=1.

A. Sufficient Robustness Criterion for a Controller

We will now show that a controller (G1,G2,K) that satisfies
the G-conditions solves the robust output regulation problem
for a boundary control and observation system, provided that
the controller exponentially stabilizes the closed-loop system.

Theorem 4. Assume that a controller (G1,G2,K) exponentially
stabilizes the closed-loop system. If the controller satisfies the G-
conditions, then it solves the robust output regulation problem.
The controller is guaranteed to be robust with respect to all
perturbations under which the closed-loop system remains
exponentially stable and Assumption 2 is satisfied.

Proof. Let (Ã, B̃, C̃, Ẽ, F̃ ) be such arbitrary perturbations of
class O that the perturbed closed-loop system generated by
Ãe is exponentially stable. As the perturbations of the class O
satisfy Assumption 2, it follows that B̃e and D̃e are bounded
and C̃e is admissible for Ãe. Thus, the closed-loop system is
a regular linear system, and by [9, Thm. 4.1] we have that
the controller (G1,G2,K) solves the output regulation problem
if and only if the regulator equations ΣS = ÃeΣ + B̃e and
0 = C̃eΣ + D̃e have a solution Σ := (Π,Γ)T ∈ L(W,Xe).
Note that the result of [9, Thm. 4.1] only requires that the
closed-loop system is regular, and therefore it can be used
here. Further note that as Ãe is assumed to be exponentially
stable and σ(S) ⊂ iR, by [19] the Sylvester equation ΣS =
ÃeΣ + B̃e has a unique solution Σ ∈ L(W,Xe) satisfying
R(Σ) ⊂ D(Ãe). Thus, in order to show that the controller
solves the output regulation problem, it remains to show that
the bounded solution Σ of the Sylvester equation satisfies the
second regulator equation as well. We will do this for the
arbitrary perturbations (Ã, B̃, C̃, Ẽ, F̃ ) ∈ O, which implies
that the controller is robust under these perturbations, i.e., it
solves the robust output regulation problem.

Let k ∈ {1, 2, . . . , q} be arbitrary and consider the eigen-
vector φk of S associated with the corresponding eigenvalue
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iωk satisfying Sφk = iωkφk. Then ΣSφk = ÃeΣφk + B̃eφk
implies (iωk − Ãe)Σφk = B̃eφk, which yields[

(iωk − Ã+ B̃KG2C̃Λ)Πφk − (ÃB̃K − B̃K(G1 + G2C̃ΛB̃K))Γφk
−G2C̃ΛΠφk + (iωk − G1)Γφk − G2C̃ΛB̃KΓφk

]
=

[
(ÃG̃− G̃S − B̃KG2(C̃ΛG̃+ F̃ ))φk

G2(C̃ΛG̃+ F̃ )φk

]
.

The second line implies (iωk − G1)Γφk = G2(C̃ΛΠφk +
C̃ΛB̃KΓφk + (C̃ΛG̃ + F̃ )φk), and now by the G-conditions
we have that 0 = C̃ΛΠφk + C̃ΛB̃KΓφk + (C̃ΛG̃ + F̃ )φk =
C̃eΣφk + D̃eφk. As the eigenvectors φk form an orthogonal
basis on W and the choice of k was arbitrary, it follows that
Σ satisfies the second regulator equation C̃eΣ + D̃e = 0 as
well. Thus, [9, Thm. 4.1] implies that the controller solves the
robust output regulation problem.

IV. BACKGROUND TO PORT-HAMILTONIAN SYSTEMS

In this section, we give some background to port-Hamiltonian
systems. We note that while [1] is a classical reference paper
regarding these systems, we use [3] as our main reference as it
gives a slightly more general formulation for port-Hamiltonian
systems than [1]. Therefore we will cite [3] for the base results
as well, even though essentially the same results can be found
in [1].

Define a linear port-Hamiltonian operator A of order N on
the spatial interval ζ ∈ [a, b] as follows:

Definition 5. [3, Def. 3.2.1] Let N ∈ N and Pk ∈ Cn×n
satisfying P ∗k = (−1)k+1Pk for k ∈ {1, 2 . . . , N} with PN
invertible. Furthermore, let P0 ∈ L∞(a, b;Cn×n) satisfying
Re(P0(ζ)) := 1

2 (P0(ζ) + P ∗0 (ζ)) ≤ 0 for a.e. ζ ∈ [a, b]. Let
the state space X = L2(a, b;Cn) be equipped with the inner
product 〈·, ·〉X = 〈·,H·〉L2 where H : [a, b]→ Cn×n satisfies
m|ξ|2 ≤ 〈ξ,H(ζ)ξ〉Cn ≤ M |ξ|2, ξ ∈ Cn a.e. ζ ∈ [a, b]
for some constants 0 < m ≤ M < ∞. Then the operator
A : D(A) ⊂ X → X defined as

Ax(ζ, t) :=

N∑
k=1

Pk
∂k

∂ζk
(H(ζ)x(ζ, t)) + P0(ζ)H(ζ)x(ζ, t),

with domain D(A) = {x ∈ X : Hx ∈ HN (a, b;Cn)} is called
a linear port-Hamiltonian operator of order N .

Let Φ : HN (a, b;Cn)→ C2nN defined by

Φ(x) := (x(b), . . . , x(N−1)(b), x(a), . . . , x(N−1)(a))T

be the boundary trace operator and define the boundary port
variables f∂ , e∂ by[

f∂
e∂

]
:=

1√
2

[
Q −Q
I I

]
Φ(Hx) := RextΦ(Hx) (8)

where Q ∈ CnN×nN is a block matrix given by

Qij :=

{
(−1)j−1Pi+j−1, i+ j ≤ N + 1

0, else
.

Note that since PN is assumed to be invertible, it follows that
Q is invertible, and hence, Rext is invertible as well.

Using the boundary port variables we can now define the
boundary control and boundary observation operators B and
C, respectively. Their definitions are included in the following
definition of port-Hamiltonian systems.

Definition 6. [3, Def. 3.2.10] Let A be a port-Hamiltonian
operator of order N with associated boundary port variables
f∂ and e∂ . Further let WB ,WC ∈ CnN×2nN be full rank
matrices such that N (WB) ∩N (WC) = {0}. Then the input
map B : D(B) = D(A) ⊂ X → U := CnN and the output
map C : D(C) = D(A) ⊂ X → Y := CnN are defined as

Bx(t) := WB

[
f∂(t)
e∂(t)

]
, Cx(t) := WC

[
f∂(t)
e∂(t)

]
(9)

and the system (A,B, C) is called a port-Hamiltonian system.

We note that the above definition implies that we have full
control and measurements, which is not very common in
practice. However, the exponential stability criterion given
in part a) of Lemma 7 essentially requires that we have full
control. If we were considering a less general class of port-
Hamiltonian systems, e.g., first- or even order systems, we
could utilize [15, Thm. III.2] or [12, Prop. 2.16], respectively,
to obtain exponential stability with fewer controls. However,
to our knowledge there are no weaker exponential stability
criteria than the one given in part a) of Lemma 7 for arbitrary
order port-Hamiltonian systems, and thus, we assume having
full control and measurements.

We have by [3, Thm. 3.2.21] that a port-Hamiltonian system
(A,B, C) is a boundary control and observation system if and
only if the operator A = A|N (B) generates a C0-semigroup on
X . Furthermore, by [3, Thm. 3.3.6] the operator A generates a
contractive C0-semigroup if and only if WBΣW ∗B ≥ 0 where

Σ :=

[
0 I
I 0

]
. (10)

Following [3, Def. 3.2.12], we define a system (A,B, C)
impedance passive if it satisfies

Re〈Ax(t), x(t)〉X ≤ Re〈Bx(t), Cx(t)〉CnN , x ∈ D(A)

and impedance energy preserving if the above holds as an
equality. These systems can be easily identified based on
WB ,WC and P0. Define a matrix PWB ,WC

such that

P−1
WB ,WC

=

[
WBΣW ∗B WBΣW ∗C
WCΣW ∗B WCΣW ∗C

]
.

By [3, Prop. 3.2.16], a port-Hamiltonian system is impedance
energy preserving if and only if P0(ζ) = −P0(ζ)∗ for a.e.
ζ ∈ [a, b] and PWB ,WC

= Σ, and it is impedance passive if
and only if ReP0(ζ) ≤ 0 for a.e. ζ ∈ [a, b] and PWB ,WC

≤ Σ.
We consider impedance energy preserving and impedance

passive port-Hamiltonian systems as they can be exponen-
tially stabilized using output feedback. Stabilization of port-
Hamiltonian systems with negative output feedback was first
presented for first-order impedance energy preserving port-
Hamiltonian systems in [20, Sec. IV], and we will next
generalize the result for systems of arbitrary order N .

Lemma 7. a) A port-Hamiltonian system that satisfies
WBΣW ∗B > 0 is exponentially stable.
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b) An impedance passive port-Hamiltonian system can be
exponentially stabilized using negative output feedback
u(t) = −κy(t) for any κ > 0.

Proof. a) The claim can be proved similarly to [11, Lem. 2]
by using the techniques utilized in the proof of [2, Lem. 9.1.4]
and the estimate Re〈Ax, x〉X ≤ Re〈f∂ , e∂〉CnN which holds
as ReP0(ζ) ≤ 0 a.e. ζ ∈ [a, b]. Eventually, we obtain

Re〈Ax, x〉X ≤ −γ
N−1∑
k=0

∑
ζ=a,b

|(Hx)(k)(ζ)|2

for some γ > 0, which by [3, Thm. 4.3.24] is sufficient for
the port-Hamiltonian system being exponentially stable.

b) Let WB and WC be such that the port-Hamiltonian system
is impedance passive. It has been shown in [20, Sec. IV]
that the closed-loop system with negative output feedback
u(t) = −κy(t) can be written as

ẋ(t) = Ax(t),

(WB + κWC)

[
f∂(t)
e∂(t)

]
= (B + κC)x(t) ≡ 0,

Cx(t) = y(t).

By [3, Prop. 3.2.16, Lem. 3.2.18], it holds for impedance pas-
sive port-Hamiltonian systems that WBΣW ∗B ≥ 0, WCΣW ∗C ≥
0 and WBΣW ∗C = I = WCΣW ∗B . Denote Wκ := WB+κWC

which satisfies

WκΣW ∗κ = WBΣW ∗B + 2κI + κ2WCΣW ∗C ≥ 2κI > 0,

and now part a) completes the proof.

V. ROBUST REGULATING CONTROLLER FOR IMPEDANCE
PASSIVE PORT-HAMILTONIAN SYSTEMS

In this section, we will construct a finite dimensional,
minimal order controller for an impedance passive port-
Hamiltonian system and a finite dimensional exosystem as given
in (2). The choices of the controller parameters (G1,G2,K) are
adopted from [21, Sec. 4]. However, as an impedance passive
port-Hamiltonian system is not necessarily exponentially stable
to begin with, we will need to add an extra term to the controller
in order to ensure the exponential stability of the closed-loop
system. The controller that we will construct is of the form

ż(t) = G1z(t) + G2e(t), z(0) = z0,

u(t) = Kz(t)− κe(t),
where as opposed to the controller given in (5) we have the
extra feedthrough term −κe(t). Here the control signal consists
of two parts u(t) = u1(t) + u2(t) where the second term
contributes to exponentially stabilizing the plant and the first
one provides the robust regulating control. Note that instead
of −κy(t) we use −κe(t) which we will show to stabilize
the plant as well. Furthermore, using −κe(t) simplifies the
controller as y(t) and yref (t) are not needed separately.

We define Z = Y q. The controller parameters are chosen
as κ > 0 and

G1 = diag (iω1IY , iω2IY , . . . , iωqIY ) ∈ L(Z),

K = εK0 = ε
[
K1

0 ,K
2
0 , . . . ,K

q
0

]
∈ L(Z,U),

G2 = (Gk2 )qk=1 = (−(Pκ(iωk)Kk
0 )∗)qk=1 ∈ L(Y, Z)

where ε > 0 is the tuning parameter and Pκ(iωk) = P (iωk)(I+
κP (iωk))−1 is the transfer function of the triplet (A,B +
κC, C). Note that since P (iωk) is assumed to be surjective
for every k ∈ {1, 2, . . . , q}, Pκ(iωk) is surjective as well.
Further note that if we choose Kk

0 = Pκ(iωk)† (the Moore-
Penrose pseudoinverse of Pκ(iωk)), then Gk2 = −IY for all
k ∈ {1, 2, . . . q}.

Theorem 8. Assume that (A,B, C) is an impedance passive
port-Hamiltonian system of an arbitrary order N and (S,E, F )
is a finite-dimensional exosystem such that Assumption 2 is
satisfied. Then there exists an ε∗κ > 0 such that for any 0 <
ε < ε∗κ the controller with the above parameter choices solves
the robust output regulation problem.

Proof. Consider an input of the form u(t) = Kz(t)−κe(t) =
u1(t)−κy(t) +κyref (t). The plant with such an input can be
written as

ẋ(t) = Ax(t),

(B + κC)x(t) = u1(t) + κyref (t) + w(t),

Cx(t) = y(t),

where we also included the boundary disturbance signal w(t).
Note that as w(t) = Ev(t) and yref (t) = −Fv(t), the term
κyref (t) can be considered an additional disturbance to the
original system.

We know by Lemma 7 that the negative output feedback ex-
ponentially stabilizes the impedance passive port-Hamiltonian
system, and thus, the operator Aκ := A|N (B+κC) generates an
exponentially stable C0-semigroup on X . Furthermore, as the
stabilized plant is a boundary control and observation system,
there exists an operator Bκ satisfying (B + κC)Bκ = IU , and
we can define an operator Gκ := Bκ(E − κF ) that satisfies
(B+κC)Gκ = E−κF and takes the reference signal κyref (t)
into account.

The closed-loop system consisting of the plant and the
controller is still given as in (6) with A,B and G replaced
by Aκ, Bκ and Gκ, respectively, and the Λ-extension of C is
given by CΛx = limλ→∞ λCR(λ,Aκ)x. Note that since the
plant is an impedance passive port-Hamiltonian system, we
have by Lemma 7 that (WB + κWC)Σ(WB + κWC)∗ > 0,
and thus, by Lemma 9 presented in the Appendix the operator
C is admissible for Aκ.

Now that the feedthrough term of the controller is associated
with the plant, the remaining controller is of the standard form
given in (5). Thus, we have by the proof of [21, Thm 4.1]
that the controller satisfies the G-conditions, and hence, by
Theorem 4 the controller solves the robust output regulation
problem, provided that the closed-loop system is exponentially
stable.

To conclude the proof, we will show that the closed-loop
operator Ae is similar to an exponentially stable operator and
hence, exponentially stable. Choose a similarity transformation

Q =

[
−I εH

0 I

]
= Q−1 ∈ L(Xe)

where the operator H := (H1, H2, . . . ,Hq) ∈ L(Z,D(Aκ)) is
chosen as

Hk := R(iωk, Aκ)(ABκ − iωkBκ)Kk
0
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for all k ∈ {1, 2, . . . , q}. Let us define Âe := QAeQ
−1. We

will next show that Âe is exponentially stable, which implies
that Ae is exponentially stable as well.

By the choices of Hk, we have (iωk−Aκ)Hk = ABκKk
0 −

iωkBκK
k
0 , i.e., Hkiωk = AκHk +ABκKk

0 −BκKk
0 iωk, and

thus, HG1 = AκH +ABκK0 −BκK0G1 due to the diagonal
structure of G1. Furthermore,

CΛ(Hk +BκK
k
0 ) =CΛR(iωk, Aκ)(ABκ − iωkBκ)Kk

0

+ CΛBκKk
0 = Pκ(iωk)Kk

0 ,

and thus, CΛ(H +BκK0) = −G∗2 . Using the above identities
Âe can be written as

Âe =

[
Aκ − ε(H +BκK0)G2CΛ 0

−G2CΛ G1 − εG2G∗2

]
+ ε2

[
0 −(H +BκK0)G2G∗2
0 0

]
.

Since C is admissible for Aκ and (H+BκK0)G2 is bounded,
there exists an εκ > 0 such that for all 0 < ε < εκ the operator
Aκ − ε(H + BκK0)G2CΛ generates an exponentially stable
semigroup. Furthermore, we have by [22, App. B] that the
semigroup generated by G1 − εG2G∗2 is exponentially stable
for every ε > 0 and that there exists a constant M > 0 such
that ||R(λ,G1 − εG2G∗2 )|| ≤ M/ε for λ ∈ C+. Consider the
operator Âe in the form A1 + ε2A2. Using the above upper
bound for ||R(λ,G1 − εG2G∗2 )|| it can be shown that there
exists an ε∗ such that for all 0 < ε < ε∗ and λ ∈ C+ we have∣∣∣∣ε2A2R(λ,A1)

∣∣∣∣ < 1. Thus, it follows that there exists an ε∗κ
such that for all 0 < ε < ε∗κ the resolvent of Âe is bounded in
the right half plane, i.e., Âe is exponentially stable.

Since the controller satisfies the G-conditions and the closed-
loop system is exponentially stable for every 0 < ε < ε∗κ, we
have by Theorem 4 that the controller solves the robust output
regulation problem for any 0 < ε < ε∗κ.

VI. ROBUST CONTROL OF A 1D EULER-BERNOULLI BEAM

In this section, we construct a robust controller for Euler-
Bernoulli beam which is an example of a port-Hamiltonian
system of order two. The formulation of Euler-Bernoulli beam
as a port-Hamiltonian system is adopted from [3, Ex. 3.1.6].

The Euler-Bernoulli beam equation is given on the spatial
interval ζ ∈ [0, 1] by

ρ(ζ)
∂2

∂t2
ν(ζ, t) = − ∂2

∂ζ2

(
EI(ζ)

∂2

∂ζ2
ν(ζ, t)

)
where ν(ζ, t) denotes the displacement at position ζ at time t,
ρ(ζ) is the mass density times the cross sectional area, E(ζ)
is the modulus of elasticity and I(ζ) is the area moment of the
cross section. Due to their physical interpretations, the functions
ρ,E and I are uniformly bounded and strictly positive for all
ζ ∈ [0, 1].

In order to write the Euler-Bernoulli beam equation as a
port-Hamiltonian system, let us define the state x(ζ, t) by

x(ζ, t) =

[
x1(ζ, t)
x2(ζ, t)

]
:=

[
ρνt(ζ, t)
νζζ(ζ, t)

]
.

Now we can write the equation as ∂tx(ζ, t) = Ax(ζ, t) where

Ax(ζ, t) :=

[
0 −1
1 0

]
∂2

∂ζ2

([
ρ(ζ)−1 0

0 EI(ζ)

]
x(ζ, t)

)
,

which is a second-order port-Hamiltonian operator with P0 =
P1 = 0,

P2 =

[
0 −1
1 0

]
and H(ζ) =

[
ρ(ζ)−1 0

0 EI(ζ)

]
.

Using the new state variables, define the control and observation
operators by Bx(·, t) := [x′1(0, t), x1(0, t), x′2(1, t), x2(1, t)]T

and Cx(·, t) := [−x2(0, t), x′2(0, t),−x1(1, t), x′1(1, t)]T , from
which it can be seen that the triple (A,B, C) is an impedance
energy preserving port-Hamiltonian system.

Let the reference signal yref and the disturbance signal d
be given by

yref (t) :=


− sin(πt)
− cos(2πt)

cos(πt)
sin(2πt)

 and d(t) :=


sin(2πt)
cos(πt)
cos(2πt)
sin(πt)

 ,
so that we have S := diag(−2iπ,−iπ, iπ, 2iπ), and E and F
are suitably chosen matrices.

The controller parameters (G1,G2,K, κ) are chosen accord-
ing to the previous section, i.e., we choose

κ = 1, ε = 0.17,

G1 = diag (−2iπIY ,−iπIY , iπIY , 2iπIY ) ,

G2 = (Gk2 )4
k=1, Gk2 = −IY ∀k ∈ {1, 2, 3, 4},

K = ε
[
Pκ(−2iπ)−1, Pκ(−iπ)−1, Pκ(iπ)−1, Pκ(2iπ)−1

]
,

where Pκ is the transfer function of the triplet (A,B + κC, C)
and ε is chosen such that the growth bound of the closed-
loop system is close to its minimum. Note that as we chose
Kk

0 = Pκ(iωk)−1, each block of G2 is equal to −IY .
Figure 1 shows the numerical simulation of the Euler-

Bernoulli beam with initial conditions v0 = 1, ξ0 = 0 and
z0 = 0. It can be seen that the regulation error diminishes
very rapidly. In the simulation the spatial derivatives were
approximated by finite differences with grid size 0.05.

0 5 10 15 20

t

-2

-1

0

1

2

e

e1

e2

e3

e4

Figure 1. Regulation error on t ∈ [0, 20].

VII. CONCLUSIONS

We considered robust regulation of impedance passive port-
Hamiltonian systems of arbitrary order and showed that a
controller satisfying the G-conditions is robust. The robustness
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result not only holds for impedance passive port-Hamiltonian
systems but for any boundary control and observation system
satisfying Assumption 2. We also presented a simple, minimal
order controller structure that satisfies the G-conditions and
showed that it stabilizes the closed-loop system, thus solving
the robust output regulation problem. The theory was illustrated
with an example where we implemented such a controller for a
one-dimensional Euler-Bernoulli beam with boundary controls
and boundary observations.

APPENDIX

Lemma 9. Consider a port-Hamiltonian system (A,B, C) as
in Definition 6 and assume that the operator B is such that
WBΣW ∗B > 0. Then the observation operator C is infinite-time
admissible for the semigroup TA generated by A = A|N (B).

Proof. Consider the classical solution x(t) = TA(t)x0 of
ẋ(t) = Ax(t), x(0) = x0 ∈ D(A) and recall the estimate
that was mentioned in the proof of Lemma 7:

Re〈Ax, x〉X ≤ Re〈f∂ , e∂〉CnN . (11)

Since x ∈ D(A), we have that Bx = 0, i.e., (f∂ , e∂)T ∈
N (WB). As WBΣW ∗B > 0, [1, Lem. A.1] implies that we may
write WB = S[I+VB I−VB ] where S is invertible and VB
is square satisfying V ∗BVB < I . Furthermore, as (f∂ , e∂)T ∈
N (WB), by [1, Lem. A.2] we may write[

f∂
e∂

]
=

[
I − VB
−I − VB

]
` (12)

for some ` ∈ CnN . Let us define the output as y = Cx and
write WC = [C1, C2] with C1,2 square. We have[

0
y

]
=

[
WB

WC

] [
f∂
e∂

]
=

[
0

C1(I − VB)− C2(I + VB)

]
`

for some ` ∈ CnN . Since N (WB)∩N (WC) = {0}, it follows
from the above that the square matrix R := C1(I − VB) −
C2(I+VB) is invertible. Now using the estimate (11) together
with (12) we obtain

d

dt
||x(t)||2X = 2 Re〈Ax, x〉X ≤ 2 Re〈f∂ , e∂〉CnN .

= `∗(−2I + 2V ∗BVB)`

= y∗R−∗(−2I + 2V ∗BVB)R−1y

≤ −m||y||2CnN ,

for some m > 0 as V ∗BVB < I . Integrating both sides over
[0, τ ] and using y(t) = CTA(t)x0 yields

||x(τ)||2X − ||x0||2X ≤ −m
τ∫

0

||CTA(t)x0||2CnNdt.

Letting τ →∞, we have ||x(τ)||2X → 0 as TA is exponentially
stable by part a) of Lemma 7, and we obtain

∞∫
0

||CTA(t)x0||2CnNdt ≤
1

m
||x0||2X ,

which concludes the proof.
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