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Approximate robust output regulation of boundary
control systems

Jukka-Pekka Humaloja, Mikael Kurula and Lassi Paunonen

Abstract—We extend the internal model principle for systems
with boundary control and boundary observation, and construct
a robust controller for this class of systems. However, as a
consequence of the internal model principle, any robust controller
for a plant with infinite-dimensional output space necessarily
has infinite-dimensional state space. We proceed to formulate
the approximate robust output regulation problem and present
a finite-dimensional controller structure to solve it. Our main
motivating example is a wave equation on a bounded multidimen-
sional spatial domain with force control and velocity observation
at the boundary. In order to illustrate the theoretical results, we
construct an approximate robust controller for the wave equation
on an annular domain and demonstrate its performance with
numerical simulations.

Index Terms—Robust control, Distributed parameter systems,
Linear systems, Controlled wave equation

I. INTRODUCTION

Intuitively speaking, the problem of output regulation of a
given plant amounts to designing an output feedback controller
which stabilizes the plant, and in addition the output of the
plant tracks a given reference signal in spite of a given
disturbance signal. If a single controller solves the output
regulation problem for the plant and also for small pertur-
bations of the plant, and for more or less arbitrary reference
and disturbance signals, then the controller is said to solve the
robust output regulation problem. See the beginning of §IV
for exact definitions of these concepts.

Output tracking and disturbance rejection have been studied
actively in the literature for distributed parameter systems
with bounded control and observation operators [1], [2], [3],
[4], [5] and robust controllers have been constructed for
classes of systems with unbounded control and observation
operators, such as well-posed [6] and regular [7] systems, in
[8], [9], [10], [11]. The key in designing robust controllers
is the internal model principle which in its classical form
states that a controller can solve the robust output regulation
problem only if it contains p copies of the dynamics of the
exosystem, where p is the dimension of the output space of
the plant. The internal model principle was first presented
for finite-dimensional linear plants by Francis and Wonham
[12] and Davison [13]. The principle was later generalized to
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infinite-dimensional linear systems in [11], [14], [15] under
the assumption that the plant is regular.

In this paper, we focus on output regulation for boundary
controlled systems with boundary observation. Our motivating
example is a wave equation on a multidimensional spatial
domain, with force control and velocity observation on a
part of the boundary. This n-D wave system is challenging
from the robust control point of view since it is neither
regular nor well-posed. Moreover, the output space of the
wave system is infinite-dimensional and then the internal
model principle implies that any robust controller must also
be infinite-dimensional. However, as the main contribution
of this paper, we demonstrate that it is possible to achieve
approximate tracking of the reference signal in the sense that
the difference between the output and the reference signal
becomes small as t → ∞. More precisely, we introduce a
new finite-dimensional controller that solves the robust output
regulation problem in this approximate sense, hence extending
the recent results of [16] to continuous time. At the same time,
we extend the class of reference signals that can be tracked.
As a part of the construction of this controller, we present an
upper bound for the regulation error.

The second main result of this paper is a generalization
of the internal model principle presented in [14], [15] to
boundary control systems that are not necessarily regular linear
systems. The sufficiency of the internal model for achieving
robust control has been presented in [17], albeit here our
formulation is more general in terms of boundary controls
and disturbances. The necessity of the internal model is a new
result for boundary control systems.

As our third main contribution we characterize and construct
a minimal finite dimensional controller to solve the output
regulation problem. Due to the reduced size of the controller,
it does not have any guaranteed robustness properties. The
controller concept was presented for regular linear systems in
[11], and here we will generalize such controllers for boundary
control systems.

In §II, we present the wave equation and show how it fits
into the abstract framework of the later sections. In §III, we
present the abstract plant, the exosystem and the controller
(which is to be constructed), and reformulate the intercon-
nection of these three systems as a regular input/state/output
system. In §IV, we present the output regulation, the robust
output regulation and the approximate robust output regulation
problems, and present controller structures to solve them. A
regulating controller without the robustness requirement is
presented in §IV-A, and an approximate robust regulating
controller is presented in §IV-C. In §IV-B, we present the
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internal model principle for boundary control systems, follow-
ing which we present a precise robust regulating controller in
§IV-D. In §V, we construct an approximate robust regulating
controller for the wave equation on an annular domain and
demonstrate its performance with numerical simulation. The
paper is concluded in §VI.

Here L(X,Y ) denotes the set of bounded linear operators
from the normed space X to the normed space Y . The domain,
range, kernel, spectrum and resolvent of a linear operator A are
denoted by D(A),R(A),N (A), σ(A) and ρ(A), respectively.
The right pseudoinverse of a surjective operator P is denoted
by P [−1].

II. THE WAVE EQUATION

In this section, we describe the example which motivates the
robust output regulation theory in this paper, a wave equation
(the plant) on a bounded domain Ω ⊂ Rn with force control
and velocity observation at a part of the boundary. We try to
keep the exposition brief; more details can be found in [18],
[19], [20].

Let Ω ⊂ Rn be a bounded domain (an open connected set)
with a Lipschitz-continuous boundary ∂Ω split into two parts
Γ0,Γ1 such that Γ0∪Γ1 = ∂Ω, Γ0∩Γ1 = ∅, and ∂Γ0, ∂Γ1 both
have surface measure zero. We consider the wave equation

ρ(ζ)
∂2w

∂t2
(ζ, t) = div

(
T (ζ)∇w (ζ, t)

)
, ζ ∈ Ω,

u(ζ, t) = ν · T (ζ)∇w(ζ, t), ζ ∈ Γ1,

y(ζ, t) =
∂w

∂t
(ζ, t), ζ ∈ Γ1,

0 =
∂w

∂t
(ζ, t), ζ ∈ Γ0, t > 0

w(·, 0) = w0,
∂w

∂t
(·, 0) = w1,

(II.1)

where w(ζ, t) is the displacement from the equilibrium at the
point ζ ∈ Ω and time t ≥ 0, ρ(·) is the mass density, T ∗(·) =
T (·) ∈ L2(Ω;Rn) is Young’s modulus and ν ∈ L∞(∂Ω;Rn)
is the unit outward normal at ∂Ω. We require ρ(·) and T (·) to
be essentially bounded from both above and below away from
zero. Please note that the input u is the force perpendicular
to Γ1 and the output y is the velocity at Γ1 while waves are
reflected at the part Γ0 of the boundary where the displacement
is constant.

In order to solve the robust output regulation problem for
the wave system, we shall need to stabilize (II.1) exponentially
using a viscous damper on Γ1, which corresponds to the output
feedback

u(ζ, t) = −b2(ζ) y(ζ, t), ζ ∈ Γ1, t ≥ 0.

This requires that we make some additional assumptions solely
for the purpose of obtaining exponential stability (see §II-B
below for more details). Additionally, to prove later on that
the velocity observation on Γ1 is admissible, we assume that

δ := inf
ζ∈Γ1

b(ζ)2 > 0. (II.2)

A. The wave equation as a formal boundary control system

Our first step is to show that the wave equation on a bounded
domain in Rn can be written as a boundary control system
(BCS) in the sense of [21]. To this end, we first write the
wave equation

ρ(ζ)
∂2w

∂t2
(ζ, t) = div

(
T (ζ)∇w(ζ, t)

)
on Ω× R+

in the first-order form (as an equality in L2(Ω)n+1)

d

dt

[
ρ(·) ẇ(·, t)
∇w(·, t)

]
=

[
0 div
∇ 0

] [
1/ρ(·) 0

0 T (·)

] [
ρ(·) ẇ(·, t)
∇w(·, t)

]
,

(II.3)
where div denotes the (distribution) divergence operator and
∇ is the (distribution) gradient. Hence, the state at any time
is the pair of momentum and strain densities on Ω.

Under the standing assumptions on ρ and T , the operator of
multiplication by H :=

[
1/ρ(·) 0

0 T (·)

]
defines an inner product

on L2(Ω)n+1 via

〈x, z〉H := 〈Hx, z〉L2(Ω)n+1

and 〈·, ·〉H is equivalent to 〈·, ·〉L2(Ω)n+1 . The space L2(Ω)n+1

equipped with this equivalent inner product is denoted by XH
and will be used as the state space of the plant.

We next introduce some function spaces for the wave
equation. The notation H1(Ω) stands for the Sobolev space
of all elements of L2(Ω) whose distribution gradient lies in
L2(Ω)n and H1(Ω) is equipped with the graph norm of the
gradient. Similarly Hdiv(Ω) is the space of all elements of
L2(Ω)n whose distribution divergence lies in L2(Ω), equipped
with the graph norm of div. In order for (II.3) to make
sense as an equation in L2(Ω)n+1, we need for every fixed
t ≥ 0 that ẇ(·, t) ∈ H1(Ω), ∇w(·, t) ∈ L2(Ω), and
T (·)∇w(·, t) ∈ Hdiv(Ω), or equivalently[

ρ ẇ(t)
∇w(t)

]
∈ H−1

[
H1(Ω)
Hdiv(Ω)

]
, t ≥ 0.

If Γ0 = ∅, then the output y lives in the fractional-order
space H1/2(∂Ω) on the boundary of Ω (see, e.g., [19, §13.5]
or [20]). This space is important to us also when Γ0 6= ∅,
because the Dirichlet trace γ0 maps H1(Ω) continuously onto
H1/2(∂Ω). Indeed, we set

W :=
{
w ∈ H1/2(∂Ω)

∣∣∣ w∣∣
Γ0

= 0
}

with

‖w‖W :=
∥∥∥γ[−1]

0 w
∥∥∥
H1(Ω)

,

where | denotes the restriction to a given subdomain in the
appropriate sense and

γ
[−1]
0 := γ0

∣∣−1

N (γ0)⊥
∈ L

(
H1/2(∂Ω);H1(Ω)

)
.

Moreover, we introduce

H1
Γ0

(Ω) :=
{
g ∈ H1(Ω)

∣∣ g∣∣
Γ0

= 0
}
,

with the norm inherited from H1(Ω). This setup makes
both W and H1

Γ0
(Ω) Hilbert spaces; indeed, H1/2(∂Ω) is

continuously embedded into L2(∂Ω) by [19, (13.5.3)], and so
H1

Γ0
(Ω) is the kernel of PΓ0

γ0 ∈ L
(
H1(Ω), L2(∂Ω)

)
, where
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PΓ0
is the orthogonal projection onto L2(Γ0) in L2(∂Ω). This

proves that H1
Γ0

(Ω) is a Hilbert space, and moreover, γ0 maps
the Hilbert space H1

Γ0
(Ω) 	 N (γ0) unitarily onto W which

is then also complete.
The embedding ι : W → L2(Γ1) is continuous, because

ι = PΓ1
ι̃γ0γ

[−1]
0 , where ι̃ is the continuous embedding of

H1/2(∂Ω) into L2(∂Ω). The embedding is also dense by [19,
Thm 13.6.10], so that we may define W ′ as the dual of W
with pivot space L2(Γ1) (see [19, §2.9]). Then in particular

〈ω,w〉W′,W = 〈ω,w〉L2(Γ1) , ω ∈ L2(Γ1), w ∈ W.

Thm 1.8 in Appendix 1 of [18] states that the restricted
normal trace γ⊥h := (ν · γ0h)

∣∣
Γ1

, h ∈ H1(Ω)n, has a
unique extension to a continuous operator (still denoted by
γ⊥) that maps Hdiv(Ω) onto W ′. Please note that γ⊥ is not
the Neumann trace γN : If Γ0 = ∅, then W = H1/2(∂Ω) and
the relation between the two operators is γNx = γ⊥∇x, for
a sufficiently regular x, where the equality is in H−1/2(∂Ω).
The space H−1/2(∂Ω) equals W ′ in the case where Γ0 = ∅
(which is not the main case of interest to us, see (II.6) below).

Now we include the boundary condition at Γ0 into the do-
main of

[
0 div
∇ 0

]
H, see (II.3), by requiring that ẇ ∈ H1

Γ0
(Ω)

instead of the weaker ẇ ∈ H1(Ω) which we motivated above.
We can then write (II.1) as

ẋ(t) = AHx(t),

u(t) = BHx(t),

y(t) = CHx(t),

t ≥ 0, x(0) =

[
ρw′0
∇w0

]
, (II.4)

where x(t) =
[
ρ ẇ(t)
∇w(t)

]
is the state at time t, A =

[
0 div
∇ 0

]
,

B =
[
0 γ⊥

]
, and C =

[
γ0 0

]
, with domains

D(A) := D(B) := D(C) :=

[
H1

Γ0
(Ω)

Hdiv(Ω)

]
⊂ XH,

which is Hilbert when equipped with the graph norm of A.
Here XH is the state space, U = W ′ the input space, and
Y =W the output space.

In [18, Thm 3.2] it was shown that (II.4) has the structure
of a boundary triplet (or abstract boundary space in the
original terminology of [22, §3.1.4]). This easily implies that
the undamped wave equation is a boundary control system in
the sense of Curtain and Zwart [21, Def. 3.3.2]:

Definition II.1. Let the state space X and input space U be
Hilbert spaces, and let A : X ⊃ D(A) → X and B : X ⊃
D(B)→ U be linear operators with D(A) ⊂ D(B).

The control system ẋ(t) = Ax(t), B x(t) = u(t), t ≥ 0,
x(0) = x0, is called a boundary control system (BCS) if the
following conditions are met:

1) The operator A := A
∣∣
D(A)

with domain

D(A) := D(A) ∩N (B)

generates a C0-semigroup on X and
2) there exists a B ∈ L(U,X) such that BU ⊂ D(A),
AB ∈ L(U,X), and BB = IU .

An output equation may be added to the BCS by setting
y(t) = Cx(t), where C is a linear operator defined on
D(C) ⊃ D(A) and mapping into some Hilbert output space

Y , with the additional property that CB ∈ L(U, Y ). We shall
briefly say that (B,A, C) is a BCS on (U,X, Y ) if all of
the above conditions are met. Finally, we say that a BCS on
(U,X, Y ) is (impedance) passive if the input space U can be
identified with the dual Y ′ of the output space and

Re 〈Ax, x〉X ≤ Re 〈Bx, Cx〉Y ′,Y , x ∈ D(A).

For more information on abstract passive BCS, we refer
to [23], [24]. Unlike the setting of Malinen and Staffans, the
original definition of Curtain and Zwart does not consider the
observation operator C or passivity, and it is not assumed that
D(A) is a Hilbert space. The robust output regulation theory
presented in §IV below is formulated for the general, abstract
systems in Definition II.1.

We now return to the particular case of the wave equation
(II.4). However, later we shall need to use L2(Γ1) as both
input and output space rather than W ′ and W . Fortunately,
this can be achieved by restricting (BH,AH,CH): Choose
the new input space as U := L2(Γ1) and set

D(Ã) =
{
x ∈ H−1D(A)

∣∣ BHx ∈ L2(Γ1)
}

with the norm given by

‖x‖2D(Ã)
:= ‖Hx‖2XH

+ ‖AHx‖2XH
+ ‖BHx‖2U .

Furthermore, we define the restrictions

Ã := AH
∣∣
D(Ã)

, B̃ := BH
∣∣
D(Ã)

, C̃ := ιCH
∣∣
D(Ã)

,

where ι :W → L2(Γ1) is again the (continuous) injection.

Theorem II.2. The triple (B̃, Ã, C̃) is a passive BCS on
(U , XH,U).

Proof. We first note that N (B̃) = H−1N (B) ⊂ D(Ã) and
then we prove that Ã

∣∣
N (B̃)

generates a unitary group on XH.
It follows from [18, Cor. 3.4] that A

∣∣
N (B)

is a skew-adjoint,
unbounded operator on L2(Ω)n+1 and we will show that this
implies that Ã

∣∣
N (B̃)

is skew-adjoint on XH. Indeed, for an
arbitrary fixed z ∈ XH, there exists w ∈ XH such that for all
x ∈ N (B̃) = H−1N (B) we have

〈x,w〉XH
=
〈
Ãx, z

〉
XH

= 〈AHx,Hz〉L2(Ω)n+1 (II.5)

if and only if Hz ∈ D(A
∣∣∗
N (B)

) = N (B), where the adjoint
is computed with respect to the inner product in L2(Ω)n+1.
Hence, Ã

∣∣
N (B̃)

has the same domain as its adjoint with respect
to XH, and for every z in this common domain, (II.5) can be
continued as〈

Ãx, z
〉
XH

= 〈Hx,−AHz〉L2(Ω)n+1 =
〈
x,−Ãz

〉
XH

,

for all x ∈ N (B̃). By Stone’s theorem, Ã generates a unitary
group on XH.

As γ⊥ maps Hdiv(Ω) onto W ′, it is clear that B̃ maps
D(Ã) onto U , and thus, B̃ := B̃[−1] ∈ L

(
U ,D(Ã)

)
has the

properties in Definition II.1.2. Moreover, the A-boundedness
of C and the fact that HD(Ã) is continuously embedded in
D(A) imply that C̃B̃ ∈ L(U ,W). Finally,

Re
〈
Ãx, x

〉
XH

= Re
〈
B̃x, C̃x

〉
U
, x ∈ D

(
Ã
)
,
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follows from the following integration by parts formula which
was established in the appendix of [18], valid for all h ∈
Hdiv(Ω) and g ∈ H1

Γ0
(Ω):

〈div h, g〉L2(Ω) + 〈h,∇g〉L2(Ω)n = 〈γ⊥f, γ0g〉W′,W ;

recall that W ′ is the dual of W with pivot space U and that
B̃x ∈ U for x ∈ D(Ã).

B. Exponential stabilization and admissible observation

The robust controller design in §IV involves exponential
stabilization of the plant with output feedback, and in this
section we will comment on this problem for the wave
equation (II.1). We shall use a special case of a result by
Guo and Yao [25] to obtain exponential stabilization using
the so-called multiplier method. The case where all physical
parameters are identity was covered also in [19], see [26], [27]
for other related results.

In order to apply the multiplier method, we assume that the
boundary ∂Ω is of class C2 and that it is partitioned into the
reflecting part Γ0 and the input/output part Γ1 in the following
way (see [19, Chap. 7] for a longer discussion): Fix ζ0 ∈
Rn \ Ω arbitrarily and define m(ζ) := ζ − ζ0, ζ ∈ Rn. We
assume that

Γ0 = int {ζ ∈ ∂Ω | m(ζ) · ν(ζ) ≤ 0} 6= ∅ and
Γ1 = {ζ ∈ ∂Ω | m(ζ) · ν(ζ) > 0} 6= ∅,

(II.6)

and that the sets Γ0,Γ1 ⊂ ∂Ω form a partition of the boundary
∂Ω in the sense that Γ0 ∪Γ1 = ∂Ω. In our wave equation, we
add a viscous damper u = −b2y on Γ1, where

b(ζ)2 := m(ζ) · ν(ζ), ζ ∈ Γ1. (II.7)

This damper is rigorously interpreted as the following equation
in W ′:

γ⊥T ∇w(t) = −b2 γ0 ẇ(t), t ≥ 0.

In order to guarantee exponential stability, we do not need to
explicitly make the common, but rather restrictive, assumption
that Γ0∩Γ1 = ∅. However, combining the assumption that ∂Ω
is of class C2 with the assumption (II.2) that we need for the
admissibility of velocity observation, we unfortunately seem
to end up in a situation where necessarily Γ0 ∩ Γ1 = ∅.

The total energy associated to a solution x = [ gh ] of the
wave equation in Thm II.2 at time t is

1

2

∥∥∥∥[g(t)
h(t)

]∥∥∥∥2

XH

:=
1

2

∫
Ω

1

ρ(ζ)
g(ζ, t)2 + h(ζ, t)∗T (ζ)h(ζ, t) dζ,

representing the sum of kinetic and potential energy.

Theorem II.3. Assume that ρ and T are constant, that Ω ⊂
Rn is a bounded C2-domain with n ≤ 3, and that Γk satisfy
(II.6). Then there exist c > 1 and ω > 0, such that all [ gh ] ∈
C1(R+;XH) with d

dt

[
g(t)
h(t)

]
= AH

[
g(t)
h(t)

]
and γ⊥T h(t) =

−(m · ν) γ0 g(t) for t ≥ 0, and h(0) ∈ ∇H1
Γ0

(Ω), satisfy∥∥∥∥[g(t)
h(t)

]∥∥∥∥2

XH

≤ c e−ωt
∥∥∥∥[g(0)
h(0)

]∥∥∥∥2

XH

, t ≥ 0. (II.8)

Proof. Let [ gh ] have the properties in the statement and let
η ∈ H1

Γ0
(Ω) be such that ∇η = h(0). Setting

w(t) := η +
1

ρ

∫ t

0

g(s) ds, t ≥ 0, (II.9)

we get that ẇ(t) = g(t)/ρ and ∇w(t) = h(t) for all t ≥ 0.
Moreover, w is a classical solution of the wave equation since

ẅ(t) = div

(
T

ρ
∇w
)

(t), t ≥ 0, (II.10)

with the left-hand side in C
(
R+;L2(Ω)

)
. Note that the

constant matrix T/ρ is positive definite and hence invertible.
In [28, Ex. 3.1], a Riemannian manifold (Rn, g) is asso-

ciated to (II.10), and it is concluded that the vector field
H :=

∑n
k=1(ζk − ζ0

k) ∂/∂ξk on this manifold satisfies the
condition [25, (3.2)] with a = 1 (here ζk is coordinate
number k of ζ). We further observe that w(t) ∈ H1

Γ0
(Ω)

and γ⊥T∇w(t) = −(m · ν) γ0 ẇ(t) for all t ≥ 0, while
w(0) ∈ H1

Γ0
(Ω), and ẇ(0) ∈ L2(Ω). By [25, Thm 1], we

have (II.8).

In general, a solution w of (II.3) is only required to be
constant on Γ0. The condition h(0) ∈ ∇H1

Γ0
(Ω) corresponds

to the initial condition w(0) ∈ H1
Γ0

(Ω) via (II.9), and this
implies the stronger statement that w is constantly equal to
zero on Γ0. This is one way to guarantee that the potential
energy decays to zero.

Returning to the case of the general BCS, we will replace
the multiplication by −m·ν on L2(Γ1) by an admissible output
feedback operator Q ∈ L(Y,U) which stabilizes the given
BCS exponentially: Let (B,A, C) be a BCS on (U,X, Y ).
We call Q ∈ L(Y,U) an admissible (static output) feedback
operator for (B,A, C) if (B + QC,A, C) is a also a BCS.
Moreover, let the Hilbert spaces Y and Y ′ be duals with some
pivot Hilbert space Ũ , and let Q ∈ L(Y, Y ′). We say that Q
is uniformly accretive if there exists some δ > 0 such that

Re 〈Qy, y〉Y ′,Y ≥ δ ‖y‖
2
Ũ
, y ∈ Y.

By an admissible observation operator for a C0-semigroup
T on X with generator A, we mean a linear operator C ∈
L(D(A), Y ) for which there exist some τ > 0 and Kτ ≥ 0
such that∫ τ

0

‖C T(t)x‖2Y dt ≤ K2
τ ‖x‖2X , ∀x ∈ D(A). (II.11)

If (II.11) holds for some τ > 0 and Kτ ≥ 0, then for every
τ > 0 it is possible to choose a Kτ ≥ 0 such that (II.11)
holds. The observation operator is infinite-time admissible if
(II.11) holds for all τ > 0 with Kτ replaced by some bound
K which is independent of τ . In particular, if the semigroup
T is exponentially stable, then every admissible observation
operator is infinite-time admissible [19, Prop. 4.3.3].

Proposition II.4. Let (B,A, C) be a passive BCS on
(Y ′, X, Y ) and let Q ∈ L(Y, Y ′) be a uniformly accretive,
admissible output feedback operator for (B,A, C). The re-
sulting BCS (B + QC,A, C) is also passive and we denote
its associated semigroup by TQ. The observation operator C,
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interpreted as an operator mapping into the pivot space Ỹ
rather than into Y , is infinite-time admissible for TQ.

Proof. By the definitions of admissible feedback operator and
BCS, it follows that (B +QC,A, C) is a BCS on (Y ′, X, Ỹ ),
and by definition the generator of TQ is AQ := A

∣∣
N (B+QC).

For a fixed x0 ∈ D(AQ), the associated state trajectory
x(t) = TQ(t)x0 stays in D(AQ), and by the assumed
passivity, for all t ≥ 0 we have

Re 〈Ax(t), x(t)〉X ≤ Re 〈Bx(t), Cx(t)〉Y ′,Y

= −Re 〈QCx(t), Cx(t)〉Y ′,Y .

Multiplying this by 2 and integrating over [0, τ ], we get

‖x(τ)‖2X − ‖x(0)‖2X =

∫ τ

0

2Re 〈AQx(t), x(t)〉X dt

≤ −2δ

∫ τ

0

‖Cx(t)‖2
Ỹ

dt.

Letting τ → +∞, we obtain that C is infinite-time admissible,
since∫ ∞

0

‖CTQ(t)x0‖2Ỹ dt ≤ 1

2δ
‖x0‖2X , x0 ∈ D(AQ).

We end the section by discussing the wave system as an
example for the above abstract definitions. It is clear that
the multiplication by b2 = m · ν in (II.7) is a bounded
operator on L2(Γ1), and hence it is also in L(W,W ′) and
it is uniformly accretive if (II.2) holds. Furthermore, multipli-
cation by b2 is an admissible feedback operator for the wave
system in (II.4) and for its restriction in Thm II.2. Indeed,
N (BH + b2 CH) = N (B̃ + b2 C̃) ⊂ D(Ã), by [18, Thm
3.5] the operator AH

∣∣
N (BH+b2 CH)

= Ã
∣∣
N (B̃+b2 C̃)

generates
a contraction semigroup on XH, and the operators

BH+ b2CH =
[
b2γ0 γ⊥

]
H and B̃ + b2 C̃

are continuous and surjective; hence they have right-inverses
with the properties required in Definition II.1.

III. THE PLANT, THE CONTROLLER, AND THE EXOSYSTEM

In the next section, we solve the robust output regulation
problem for a general BCS (B,A, C) on the Hilbert spaces
(U,X, Y ); the system is not necessarily related to the wave
equation. In the following we assume that the whole boundary
∂Ω is accessible via B and R1, R2 are arbitrary restrictions to
certain parts of ∂Ω. We first add an external disturbance w to
the BCS, thus obtaining the plant

ẋ(t) = Ax(t), x(0) = x0,

Bx(t) = R1u(t) +R2w(t), t ≥ 0,

Cx(t) = y(t),

(III.1)

where u and w may act on different parts of the boundary
depending on R1 and R2.

In what follows, Q is such that R1Q is an admissible static
output feedback operator for (III.1) such that the semigroup
Ts generated by As := A

∣∣
D(A)∩N (B+R1QC)

is exponentially

stable and C is an admissible observation operator for Ts (here
the subscript ’s’ stands for ”stabilized plant”).

We will connect the plant to the dynamic controller{
ż(t) = G1z(t) + G2(y(t)− yref (t)), z(0) = z0

u(t) = Kz(t)−Q(y(t)− yref (t)), t ≥ 0,
(III.2)

where yref is an external reference signal and the state space Z
of the controller is a Hilbert space, but G1 ∈ L(Z) is bounded.
Moreover, we assume that G2 ∈ L(Y,Z), K ∈ L(Z,U) and
Q ∈ L(Y, U). The disturbance signal w and the reference
signal yref are assumed to be generated by an exosystem

v̇(t) = Sv(t), v(0) = v0,

w(t) = Ev(t), t ≥ 0,

yref (t) = −Fv(t),

(III.3)

which is a linear system on a finite-dimensional space W =
Cq , q ∈ N. We assume that S = diag(iω1, iω2, . . . , iωq) with
ωi 6= ωj for i 6= j, E ∈ L(W,U) and F ∈ L(W,Y ).

Setting u and y equal in (III.1) and (III.2), and using (III.3),
we obtain

d

dt

[
x
z

]
=

[
A 0
G2C G1

] [
x
z

]
+

[
0
G2F

]
v,

(R2E −R1QF )v =
[
B +R1QC −R1K

] [x
z

]
,

e =
[
C 0

] [x
z

]
+ Fv,

(III.4)

where we chose the regulation error e(t) =: y(t) − yref (t)
as the output and the state-space is Xe := X × Z. This
system is no longer a BCS and we now proceed to write it
in the standard input/state/output form. First we observe that
we may interpret the feedthrough Q of the controller as a part
of the plant without changing (III.4). This amounts to pre-
stabilizing the plant via replacing the input equation of (III.1)
by (B + R1QC)x(t) = R1u(t) + (R2E − R1QF )v(t) and
simultaneously removing the term −Q(y(t) − yref (t)) from
the output equation of (III.2).

As R1Q is assumed to be an admissible feedback operator,
the pre-stabilized plant (B + R1QC,A, C) is a BCS and by
Def. II.1.2, we can choose a right inverse Bs ∈ L(U,X) of
B +R1QC such that

BsR1U ⊂ D(A), ABsR1 ∈ L(U,X), CBsR1 ∈ L(U, Y ).
(III.5)

In order to present the transfer function of (B+R1QC,A, C),
consider the auxiliary function

P0(λ) := C(λ−As)−1(ABs − λBs) + CBs, λ ∈ ρ (As) .

Now, define the transfer function by

Ps(λ) := P0(λ)R1, λ ∈ ρ (As) . (III.6)

The auxiliary function P0 becomes useful later on in describ-
ing the mapping from v to y.

Now let [ xz ] be a classical state trajectory of (III.4), i.e.,
[ xz ] ∈ C1(R+;Xe), G2yref ∈ C(R+;Z), (B + R1QC)x ∈
C(R+;U), w ∈ C1(R+;U), and the first two lines of (III.4)
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hold for all t ≥ 0. Next introduce a new state variable for
(III.4) by

xe :=

[
1 −BsR1K
0 1

] [
x
z

]
−
[
BsEsv

0

]
∈ C1(R+;Xe),

where we denote Es := R2E − R1QF for brevity. This
transformation can be inverted as[

x
z

]
:=

[
1 BsR1K
0 1

]
xe +

[
BsEsv

0

]
. (III.7)

Differentiating xe and using the first line of (III.4), we get

ẋe =

[
A−BsR1KG2C ABsR1K −BsR1KG̃1

G2C G̃1

]
xe

+

[
ABsEs −BsEsS −BsR1KG2(CBsEs + F )

G2(CBsEs + F )

]
v,

where we denote G̃1 := G1 + G2CBsR1K for brevity.
With the new state variable, the input equation of (III.4)

becomes

Esv =
[
B +R1QC −K

](
xe +

[
Bs
0

]
(R1Kz + Esv)

)
which simplifies to xe ∈ N

([
B +R1QC 0

])
. Hence recall-

ing that As = A
∣∣
D(A)∩N (B+R1QC)

and defining

Ae :=

[
As −BsR1KG2C ABsR1K −BsR1KG̃1

G2C G̃1

] ∣∣∣∣
D(Ae)

,

D(Ae) := N (B +R1QC)× Z,
(III.8)

we get that every classical solution of (III.4) satisfies xe(t) ∈
D(Ae) for all t ≥ 0 and ẋe = Aexe +Bev, where the control
operator Be ∈ L(W,Xe) is

Be :=

[
ABsEs −BsEsS −BsR1KG2(CBsEs + F )

G2(CBsEs + F )

]
.

Finally, using (III.7) the output for (III.4) becomes

e =
[
C CBsR1K

]
xe + (CBsEs + F )v.

Thus, the closed-loop system is of the form{
ẋe = Aexe +Bev,

e = Cexe +Dev,
(III.9)

where

Ce :=
[
C CBsR1K

]
, D(Ce) :=

[
D(C)
Z

]
, and

De := CBsEs + F ∈ L(W,Y ).

We denote the transfer function of (III.9) from v to e with

Pe(λ) = Ce(λ−Ae)−1Be +De.

The above calculations show that every classical solution
of (III.4) with v ∈ C(R+;W ) is also a classical solution
of (III.9). Conversely, assume that xe ∈ C1(R+;Xe) with
xe(t) ∈ D(Ae), v ∈ C(R+;W ) and (III.9) holds on R+.
Then v, [ xz ] in (III.7) and e satisfy (III.4). We conclude that
(III.4) and (III.9) are equivalent systems in the sense that they
have the same classical solutions.

The following result forms the basis for the output regula-
tion theory in the next section. Note that we do not assume
that the original plant (III.1) is well-posed or regular, but the
closed-loop system (III.9) nevertheless has these properties.

Theorem III.1. The operator Ae in (III.8) generates a C0-
semigroup Te on Xe and Ce is an admissible observation
operator for Te. The closed-loop system (III.9) is well-posed
and regular such that Pe(λ)→ De as Reλ→∞.

Proof. We begin by splitting Ae = A1 +A2 +A3, where

A1 =

[
As 0
0 G1

]
, D(A1) = D(Ae),

A2 =

[
−BsR1KG2C 0

G2C 0

]
, D(A2) = D(Ae),

A3 =

[
0 ABsR1K −BsR1K(G1 + G2CBsR1K)
0 G2CBsR1K

]
,

D(A3) = Xe.

Here A1 generates a C0-semigroup T1 on Xe. The operator
A2 can be factored as

A2 =

[
−BsR1KG2

G2

] [
C 0

]
,

where the first factor is bounded from Y into Xe. Our
assumption that C is admissible for Ts implies that

[
C 0

]
:

Xe ⊃ D(Ae) → Y is an admissible observation operator for
T1, and by [19, Thm 5.4.2], A1+A2 generates a C0-semigroup
T2 on Xe and

[
C 0

]
is admissible for T2. Since A3 is

bounded, Ae generates a C0-semigroup by [19, Thm 5.4.2]
and due to the boundedness of CBsR1K, Ce is admissible for
Te. As in addition Be and De are bounded, the well-posedness
and regularity of the closed-loop system follow immediately
from [19, Thm 4.3.7]

IV. OUTPUT REGULATION

We begin this section by presenting the three output regu-
lation problems considered in this paper. The structure for the
remainder of this section will be presented after the problem
definitions.

The Output Regulation Problem. For a given plant (III.1),
choose the controller (G1,G2,K,Q) in (III.2) in such a way
that the following are satisfied:

1) The closed-loop system generated by Ae is exponen-
tially stable.

2) For all initial states xe0 ∈ Xe and v0 ∈W the regulation
error satisfies eα·e(·) ∈ L2([0,∞);Y ) for some α > 0
independent of xe0 ∈ Xe and v0 ∈W .

Furthermore, if the controller solves the output regulation
problem despite perturbations in the parameters of the plant
or the exosystem, then we say that the controller solves the
robust output regulation problem with respect to this class of
perturbations. To make this precise, we first define the class
of admissible perturbations:

Definition IV.1. A quintuple (A′,B′, C′, E′, F ′) of linear
operators belongs to the class O of admissible perturbations
if it has the following properties:
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1) The triple (B′+R1QC′,A′, C′) is a BCS on (U,X, Y ).
2) The observation operator C′ is admissible for the semi-

group generated by A′s := A′
∣∣
N (B′+R1QC′)

.
3) The eigenvalues of S are in the resolvent set of the

perturbed pre-stabilized plant, i.e., {iωk}qk=1 ⊂ ρ(A′s).
4) E′ ∈ L(W,U) and F ′ ∈ L(W,Y ).

In the above definition it would appear that the class O of
perturbations depends on Q. However, as Q only contributes
to stabilizing the plant, we have much more freedom choosing
Q than choosing the other controller parameters (as seen later
on). For example, in the wave equation considered in Section
II, any uniformly accretive operator can be chosen as Q.
Therefore, in Definition IV.1, one could think of Q being
chosen such that the class O is as large as possible. Moreover,
if (A′,B′, C′, E′, F ′) ∈ O then the transfer function (III.6) of
the triple (B′+R1QC′,A′, C′) is well-defined and bounded at
the frequencies of the exosystem.

We make the natural assumption that the unperturbed system
is in class O as well, that is, (A,B, C, E, F ) ∈ O. Note
that this does not include the assumption that the semigroup
generated by As is exponentially stable. Further note that even
though (B,A, C) is assumed to be a BCS, that is not required
from (B′,A, C′) but only from (B′ +R1QC′,A′, C′).

From Definition IV.1 it follows that the perturbed closed-
loop system is well-posed and regular. Please note that while
no perturbations are allowed in the eigenvalues of the generator
S of the exosystem or in the controller parameter G1, the
parameters (G2,K,Q) would in fact allow certain bounded
perturbations. We will comment on this more thoroughly in
Remark IV.9.

The Robust Output Regulation Problem. For a given plant,
choose the controller (G1,G2,K,Q) in such a way that the
following are satisfied:

1) The controller (G1,G2,K,Q) solves the output regula-
tion problem.

2) If the operators (A,B, C, E, F ) are perturbed to
(A′,B′, C′, E′, F ′) ∈ O in such a way that the closed-
loop system remains exponentially stable, then for all
initial states xe0 ∈ Xe and v0 ∈ W the regulation
error satisfies eα

′·e(·) ∈ L2([0,∞);Y ) for some α′ > 0
independent of xe0 ∈ Xe and v0 ∈W .

In Section IV-C, we will construct a controller that solves
the robust output regulation problem approximately. That is,
the regulation error does not decay asymptotically to zero
but can be made small. For this purpose, we introduce the
following new control problem:

The Approximate Robust Output Regulation Problem. Let
δ > 0 be given. Choose the controller (G1,G2,K,Q) in such
a way that the following are satisfied:

1) The closed-loop system generated by Ae is exponen-
tially stable.

2) For all initial states xe0 ∈ Xe and v0 ∈W the regulation
error satisfies∫ t+1

t

‖e(s)‖2 ds ≤Me−αt(‖xe0‖2 + ‖v0‖2) + δ‖v0‖2

for some M,α > 0 independent of xe0 ∈ Xe, v0 ∈W.
3) If the operators (A,B, C, E, F ) are perturbed to

(A′,B′, C′, E′, F ′) ∈ O in such a way that the closed-
loop system remains exponentially stable, then there
exists a δ′ > 0 such that for all initial states xe0 ∈ Xe

and v0 ∈W the regulation error satisfies∫ t+1

t

‖e(s)‖2 ds ≤M ′e−α
′t(‖xe0‖2+‖v0‖2)+δ′‖v0‖2

for some M ′, α′ > 0 independent of xe0, v0.

Remark IV.2. The approximate robust output regulation prob-
lem formulation implies that, in the absence of perturbations,
the asymptotic regulation error must be smaller than δ‖v0‖2
for any given (or in practice chosen) δ > 0. However, when
perturbations are present, the asymptotic regulation error is
merely bounded by δ′‖v0‖2. For details, see Theorem IV.11,
(IV.14)–(IV.15) and the discussion therein.

Now that we have presented the different output regulation
problems to be considered, the structure of the remaining
section is as follows. Before proceeding to constructing the
controllers, we will present two auxiliary results to be used
throughout the remainder of this section. In §IV-A we present
a regulating controller without the robustness requirement, in
§IV-B we present the internal model principle for boundary
control systems, in §IV-C we present an approximate robust
controller, and finally in §IV-D we present a precise robust
controller.

The following auxiliary result is a consequence of [15, Thm
4.1] under the assumption that the closed-loop system (III.9)
is a regular linear system. The result states that the solvability
of the regulator equations

ΣS = AeΣ +Be (IV.1a)
0 = CeΣ +De (IV.1b)

is equivalent to the solvability of the output regulation prob-
lem. The result of [15, Thm 4.1] essentially follows from [15,
Lem. 4.3] by which the regulation error can be written as

e(t) = CeTe(t)(xe0 − Σv0) + (CeΣ +De)v(t),

where the first part decays to zero at an exponential rate
provided that Te is exponentially stable, Ce is an admissible
observation operator for Te and Σ is the solution of (IV.1a).

Theorem IV.3. Assume that the closed-loop system is regular
and exponentially stabilized by a controller (G1,G2,K,Q).
Then the controller solves the output regulation problem if
and only if the regulator equations (IV.1) have a solution Σ ∈
L(W,Xe). The solution Σ is unique when it exists.

Proof. We first note that the feedthrough term −Qe(t) in
the controller is not part of the controller in [15, Thm 4.1].
However, as in (III.4) we can interpret the feedthrough Q
as a part of the plant (III.1) and simultaneously remove it
from the controller (III.2), so that the input equation becomes
(B + R1QC)x(t) = R1u(t) + R1Qyref (t) + R2w(t). The
closed-loop system is unaffected by this algebraic trick, and
hence, we may continue with a pre-stabilized plant and the
same controller structure as in [15, Thm 4.1].
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Now the result follows from [15, Thm 4.1] as an expo-
nentially stable semigroup is also strongly stable, and for Ae
being the generator of an exponentially stable semigroup and
σ(S) ⊂ iR the Sylvester equation ΣS = AeΣ+Be always has
a unique solution Σ ∈ L(W,Xe) by [29, Cor. 8]. Furthermore,
the exponential decay of the regulation error follows from the
assumed exponential stability of the closed-loop system.

Theorem IV.3 assumes that the controller exponentially
stabilizes the closed-loop system. We will therefore need to
show that the controllers we present in Proposition IV.6,
Theorem IV.11 and Corollary IV.14 have this property. For
this, we present the following tool which uses the notation of
§III. Here we need to assume that there exists an operator Q
as described in the following:

Lemma IV.4. Let Z = Y qN , where YN is equal to C or
a closed subspace of Y . Choose the controller parameter
Q ∈ L(Y, U) such that the semigroup Ts generated by As
is exponentially stable and C is an admissible observation
operator for Ts. Choose the remaining parameters as

G1 = diag (iω1I, iω2I, . . . , iωqI) ∈ L(Z),

K = εK0 = ε[K1
0 ,K

2
0 , . . . ,K

q
0 ] ∈ L(Z,U),

G2 = (Gk2PN )qk=1 ∈ L(Y,Z),

where I is the identity in YN , and PN is a projection onto YN
in Y if YN ⊂ Y or the identity on Y otherwise. Additionally,
assume that Gk2 and Kk

0 satisfy σ(Gk2PNPs(iωk)Kk
0 ) ⊂ C−

for all k ∈ {1, 2, . . . , q}.
Then there exits an ε∗ > 0 such that the closed-loop system

(III.9) is exponentially stable for all 0 < ε < ε∗.

Proof. Define the operator H = (H1, H2, . . . ,Hq) ∈ L(Z,X)
by choosing

Hk := (iωk −As)−1(ABs − iωkBs)R1K
k
0

for all k ∈ {1, 2, . . . , q}. By the choice of Hk we have
(iωk − As)Hk = ABsR1K

k
0 − iωkBsR1K

k
0 , i.e., Hkiωk =

AsHk+ABsR1K
k
0 −BsR1K

k
0 iωk, and thus, HG1 = AsH+

ABsR1K0 −BsR1K0G1 due to the diagonal structure of G1.
Define

R =

[
−1 εH

0 1

]
= R−1 ∈ L(Xe)

and denote Âe = RAeR
−1. Note that as R(H) ⊂ N (B +

R1QC), it follows that D(Âe) = D(Ae). Using the above
identity we can write Âe as

Âe =

[
As − εH̃G2C 0

−G2C G1 + εG2CH̃

]
+ ε2

[
0 H̃G2CH̃
0 0

]
.

where we denote H̃ := H +BsR1K0 for brevity.
In the remaining part of the proof we apply the Gearhart-

Prüss-Greiner Theorem in [30, Thm V.1.11]. More precisely,
we will show that the resolvent of Âe is uniformly bounded
on the closed right-half plane. We first note that since C is
admissible for Ts which is exponentially stable, we have by
[19, Thm 4.3.7] that C(λ − As)−1 is uniformly bounded for
all λ ∈ C+. Thus, as H̃G2 is bounded, there exists an M0 > 0
such that ‖H̃G2C(λ−As)−1‖ ≤M0, and for 0 < ε < M−1

0 a

Neumann series expansion implies that 1+εH̃G2C(λ−As)−1

is invertible. Thus, we obtain that

(λ−As+εH̃G2C)−1 = (λ−As)−1(1+εH̃G2C(λ−As)−1)−1

is uniformly bounded in the right half plane. Hence, the
semigroup generated by As − εH̃G2C is exponentially stable
by [30, Thm V.1.11].

Note that by the choice of Hk we have

C(Hk +BsR1K
k
0 )

= C(iωk −As)−1(ABs − iωkBs)R1K
k
0 + CBsR1K

k
0

= Ps(iωk)Kk
0 ,

and thus σ(Gk2PNC(Hk+BsR1K
k
0 )) ⊂ C− by the assumption

made on Gk2 and Kk
0 . Furthermore, since σ(G1) = {iωk}qk=1,

the operator G1 + εG2CH̃ satisfies the stability conditions of
the operator Ac − εP̃K in [31, Appendix B]. Hence, by [31,
Appendix B] there exist constants M1, β > 0 such that for
all ε > 0 sufficiently small we have ‖T2(t)‖ ≤ M1e

−εβt for
t ≥ 0, where T2 is the semigroup generated by G1 + εG2CH̃ .
This further implies that

‖(λ− G1 + εG2CH̃)−1‖ ≤ M1

εβ
, λ ∈ C+.

Consider the operator Âe in the form A1 + ε2A2. Since we
have shown that the diagonal operators of A1 generate expo-
nentially stable semigroups and since C is admissible for As,
it follows that A1 is the generator of an exponentially stable
semigroup. Furthermore, there exists an M2 > 0 such that for
all ε > 0 sufficiently small, the estimate ‖(λ−A1)−1‖ ≤M2/ε
holds for all λ ∈ C+. Since A2 is bounded, this implies that

‖ε2A2(λ−A1)−1‖ ≤ ε‖A2‖M2, λ ∈ C+,

so that for ε < (‖A2‖M2)−1 we have ‖ε2A2(λ−A1)−1‖ < 1
on the closed right half plane. Using another Neumann series
expansion, we obtain that

(λ− Âe)−1 = (λ−A1)−1(1− ε2A2(λ−A1)−1)−1

is uniformly bounded on C+.
Thus, by the preceding argument there exists an ε∗ > 0

such that the resolvent of Âe is uniformly bounded on C+

for all 0 < ε < ε∗. By the Gearhart-Prüss-Greiner theorem,
the semigroup T̂e generated by Âe is exponentially stable,
and therefore, the semigroup RT̂eR−1 generated by Ae is
exponentially stable as well, for all 0 < ε < ε∗.

A. A regulating controller

The following theorem gives necessary and sufficient con-
ditions for a controller to achieve output regulation for the
plant (III.1), i.e., a criterion equivalent to the solvability of
the regulator equations. The result extends [15, Thm 5.1] to
boundary control systems.

Theorem IV.5. Assume that the closed-loop system is regular
and exponentially stabilized by the controller (G1,G2,K,Q).
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Then the controller solves the output regulation problem if and
only if the equations

Ps(iωk)Kzk = −P0(iωk)Esφk − Fφk (IV.2a)
(iωk − G1)zk = 0 (IV.2b)

have solutions zk ∈ Z for all k ∈ {1, 2, . . . , q}, where
{φk}qk=1 is the Euclidean basis of Cq . Furthermore, the
solutions zk are unique when they exist.

Proof. Let us first assume that the controller solves the out-
put regulation problem, i.e., by Theorem IV.3 the regulator
equations have a solution Σ = (Π,Γ)T ∈ L(W,Xe). Let
k ∈ {1, 2, . . . , q} be arbitrary. As φk is an eigenvector of
S, applying the Sylvester equation ΣS = AeΣ + Be to φk
yields (iωk −Ae)Σφk = Beφk, i.e.,[

(iωk −As +BsR1KG2C)Πφk − (ABsR1K −BsR1KG̃1)Γφk
−G2CΠφk + (iωk − G̃1)Γφk

]
=

[
(ABsEs −BsEsS −BsR1KG2(CBsEs + F ))φk

G2(CBsEs + F )φk

]
.

where we again denote G̃1 := G1 + G2CBsR1K. The second
line implies

(iωk − G1)Γφk = G2(CΠ + CBsR1KΓ + (CBsEs + F ))φk.
(IV.3)

Now, as applying the second regulator equation to φk yields

0 = CeΣφ+Deφk = CΠφk+CBsR1KΓφk+(CBsEs+F )φk,
(IV.4)

it follows from (IV.4) and (IV.3) that (iωk − G1)Γφk = 0.
If we choose zk = Γφk, then (IV.2b) follows immediately.
Furthermore, from (IV.4) we obtain

CΠφk = −CBsR1KΓφk − (CBsEs + F )φk. (IV.5)

Substituting CΠφk for (IV.5) in the first line of the Sylvester
equation yields

(iωk −As)Πφk −ABsR1KΓφk +BsR1KG1Γφk

= (ABsEs −BsEsS)φk,
(IV.6)

and utilizing Sφk = iωkφk and G1Γφk = iωΓφk, we obtain
from (IV.6) that

Πφk = (iωk −As)−1(ABs − iωkBs)(R1KΓφk + Esφk).
(IV.7)

Finally, substituting Πφk for (IV.7) in (IV.4) yields

0 = Ps(iωk)KΓφk + P0(iωk)Esφk + Fφk,

from which (IV.2a) follows as we chose zk = Γφk.
Now assume that equations (IV.2a)–(IV.2b) have solutions

zk ∈ Z. Define Π ∈ L(W,X),Γ ∈ L(W,Z) and Σ = (Π,Γ)T

by

Γ :=

q∑
k=1

〈·, φk〉zk,

Π :=

q∑
k=1

〈·, φk〉(iωk −As)−1(ABs − iωkBs)(R1Kzk + Esφk).

(IV.8)
The definitions imply that R(Σ) ⊂ D(Ae) ⊂ D(Ce), and we
will show that Σ is the solution of the regulator equations.

Let k ∈ {1, 2, . . . , q} be arbitrary. Considering the first line
of (iωk − Ae)Σφk − Beφk, we obtain using (IV.2b), Sφk =
iωk, the definition of Π, and (IV.2a) that

(iωk −As)Πφk +BsR1KG2CΠφk
− (ABsR1K −BsR1K(G1 + G2CBsR1K))Γφk

− (ABsEs −BsEsS −BsR1KG2(CBsEs + F ))φk

= BsR1KG2(CΠφk + CBsR1KΓφk + CBsEsφk + Fφk)

= BsR1KG2(Ps(iωk)KΓφk + P0(iωk)Esφk + Fφk) = 0.

Note that by (IV.2a) we also have

CeΣφk +Deφk = CΠφk + CBsR1KΓφk + CBsEsφk + Fφk

= Ps(iωk)KΓφk + P0(iωk)Esφk + Fφk = 0,

i.e., Σ solves the second regulator equation. Finally, the second
line of (iωk −Ae)Σφk −Beφk yields

− G2CΠφk + (iωk − G1)Γφk − G2CBsR1KΓφk

− G2(CBsEs + F )φk

=− G2(CΠφk + CBsR1KΓφk + CBsEsφk + Fφk) = 0.

Thus, as {φk}qk=1 is a basis of Cq and the choice of k was
arbitrary, Σ is the solution of the regulator equations ΣS =
AeΣ + Be and CeΣ + De = 0. Now, by Theorem IV.3, the
controller solves the output regulation problem.

It yet remains to prove the uniqueness of the solutions
zk of (IV.2a)–(IV.2b). Let zk and z′k be two solutions of
(IV.2a)–(IV.2b), and use (IV.8) to define Σ = (Π,Γ)T and
Σ′ = (Π′,Γ′)T corresponding to zk and z′k, respectively. It
now follows from the above proof that both Σ and Σ′ satisfy
the Sylvester equation, and by the uniqueness of the solution
of the Sylvester equation we must have Σ = Σ′. In particular,
zk = Γφk = Γ′φk = z′k, i.e., the solutions zk of (IV.2a)–
(IV.2b) are unique.

Based on Theorem IV.5, we can now construct a regulating
controller for the plant (III.1). Choose Z = W and choose the
controller parameter Q ∈ L(Y, U) such that the semigroup Ts
generated by As is exponentially stable and C is an admissible
observation operator for As. Choose the remaining parameters
as

G1 = S = diag(iω1, iω2, . . . , iωq), (IV.9a)
K = εK0 = ε [u1, u2, . . . , uq] , (IV.9b)

G2 = (Gk2 )qk=1 = (−(Ps(iωk)uk)∗)qk=1, (IV.9c)

where ε > 0 is called the tuning parameter and uk ∈ U are
chosen such that [32, Sec. 4.2]{

Ps(iωk)uk = yk, yk 6= 0,

uk /∈ N (Ps(iωk)) arbitrary, yk = 0,
(IV.10)

where we denote yk = −P0(iωk)Esφk − Fφk. For this to
be possible, we need to assume that Ps(iωk) 6= 0 and yk ∈
R(Ps(iωk)) for all k ∈ {1, 2, . . . , q}, so that there exist some
uk ∈ U satisfying (IV.10). However, this assumption is also
necessary for the solvability of the output regulation problem
by Theorem IV.5.
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Proposition IV.6. There exists an ε∗ > 0 such that the
controller with the parameter choices (IV.9a)–(IV.9c) solves
the output regulation problem for all 0 < ε < ε∗.

Proof. First of all we note that the choices of G1 and K
imply that the equations (IV.2a)–(IV.2b) have the solutions
zk = ε−1φk if P0(iωk)Esφk + Fφk 6= 0 or zk = 0
otherwise. Now, as Q exponentially stabilizes the plant and
C is admissible for As, σ(G1) = {iωk}qk=1, and

σ(Gk2Ps(iωk)Kk
0 ) = σ(−(Ps(iωk)uk)∗Ps(iωk)uk) ⊂ C−

as Ps(iωk)uk 6= 0 for k ∈ {1, 2, . . . , q}, we have by Lemma
IV.4 that there exists an ε∗ > 0 such that the closed-loop
system is exponentially stable for all 0 < ε < ε∗. Thus,
by Theorem IV.5 the controller solves the output regulation
problem.

B. The Internal Model Principle

Before presenting an approximate robust controller in §IV-C
and a robust controller in §IV-D, we will present a general
result that characterizes robust controllers. That is, we will
show that in order for a controller to achieve robust output
regulation, it has to contain an internal model of the dynamics
of the exosystem. We will express this using the following
G-conditions [33, Def. 10].

Definition IV.7. A quadruple of bounded operators
(G1,G2,K,Q) is said to satisfy the G-conditions if

R(iωk − G1) ∩R(G2) = {0}, ∀k ∈ {1, 2, . . . , q} (IV.11a)
N (G2) = {0}. (IV.11b)

Note that while the parameters K and Q are not present in
the G-conditions, they contribute to exponentially stabilizing
the closed-loop system. The sufficiency part of the following
result has been presented in the case R1 = R2 = I in [17,
Thm 4] and the necessity part extends the results of [14, Thm
5.2] and [11, Thm 7] to boundary control systems.

Theorem IV.8. Assume that the closed-loop system is regular
and exponentially stabilized by the controller (G1,G2,K,Q).
Then the controller solves the robust output regulation problem
if and only if it satisfies the G-conditions.

Proof. Let us assume that the controller solves the robust
output regulation problem and show that (IV.11) hold start-
ing with (IV.11a). Let k ∈ {1, 2, . . . , q} be arbitrary and
w ∈ R(iωk − G1) ∩ R(G2). Then there exist z ∈ Z and
y ∈ Y such that w = (iωk − G1)z = G2y. Let us leave the
operators (A,B, C) unperturbed and choose such perturbations
fromO that E′s = 0 and F ′ = 〈·, φk〉(y−Ps(iωk)Kz). Choose
Σ = (Γ,Π)T ∈ L(W,Xe) such that

Γ = 〈·, φk〉z, Π = 〈·, φk〉(iωk −As)(ABs − iωkBs)R1Kz,

which can be shown to be the solution of the Sylvester
equation by a direct computation. As CeΣφk +D′eφk = 0 by

the controller solving the robust output regulation problem, we
obtain

w = (iωk − G1)z = G2y = G2(Ps(iωk)Kz + F ′φk)

= G2(CΠφk + CBsR1KΓφk + F ′φk)

= G2(CeΣφk +D′eφk) = 0,

and thus w = 0, which concludes the first part of the necessity
proof.

Let us now show that (IV.11b) holds. Let y ∈ N (G2) and let
φ ∈ W be such that ‖φ‖ = 1. Leave the operators (A,B, C)
unperturbed and choose E′ = 0 and F ′ = 〈·, φ〉y ∈ L(W,Y ).
If we choose Σ = 0 ∈ L(W,Xe), for all v ∈ W we have
ΣSv = 0 and

AeΣv +B′ev =

[
−BsR1KG2F

′v
G2F

′v

]
=

[
−〈v, φ〉BsR1KG2y

〈v, φ〉G2y

]
= 0,

and thus, Σ = 0 is the unique solution of the Sylvester
equation. As the controller solves the robust output regulation
problem, we have by Theorem IV.3 that

0 = CeΣφ+D′eφ = F ′φ = 〈φ, φ〉y = y,

which concludes the necessity proof. The sufficiency part
follows by simple modifications from [17, Thm. 4].

Remark IV.9. Theorem IV.8 states that any controller that
stabilizes a regular closed-loop system exponentially and
satisfies the G-conditions solves the robust output regulation
problem. In particular, this implies that if a robust regulating
controller (G1,G2,K,Q) is constructed, then every controller
(G1,G′2,K ′, Q′), where (G′2,K ′, Q′) are boundedly perturbed
(G2,K,Q), solves the robust output regulation problem, pro-
vided that the closed-loop system remains exponentially stable
and (G1,G′2) satisfy the G-conditions. Note that only rather
specific perturbations would be allowed in G1 as it has to
include an exact internal model of the dynamics of the
exosystem.

Note that the rank-nullity theorem and the second G-
condition imply that dimZ ≥ dimR(G2) = dimY . Thus,
if the output space of the system is infinite-dimensional as,
e.g., in the wave equation of §II, Theorem IV.8 implies that
robust controllers for such systems are necessarily infinite-
dimensional. However, we can construct a finite-dimensional
controller that solves the robust output regulation problem
approximately. We will construct such a controller in the
next section. Finally, in §IV-D we will construct an infinite-
dimensional controller that achieves exact robust output regu-
lation. The following assumption is required for the remaining
sections:

Assumption IV.10. The transfer function Ps(λ) is surjective
at all the eigenvalues {iωk}qk=1 of S.

C. An approximate robust controller

In this section, we consider approximate robust output reg-
ulation on Y . We will solve the control problem by choosing
a subspace YN of Y and constructing a controller that robustly
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tracks the reference signal projected onto YN . If YN is chosen
to be finite-dimensional, we can construct a finite-dimensional
robust regulating controller even if the output space of the
system is infinite-dimensional. Furthermore, we derive an
upper bound for the asymptotic regulation error. Our result
generalizes the controller structure presented in [16, Thm. 3.5]
where discrete-time systems with constant reference signals
were considered.

Let YN be a closed subspace of Y and choose Z := Y qN .
Choose the controller parameter Q ∈ L(Y,U) such that the
semigroup Ts generated by As is exponentially stable and
C is an admissible observation operator for Ts. Choose the
remaining parameters as

G1 = diag(iω1IYN
, iω2IYN

, . . . , iωqIYN
), (IV.12a)

K = εK0 = ε[K1
0 ,K

2
0 , . . . ,K

q
0 ] ∈ L(Z,U), (IV.12b)

G2 = (Gk20PN )qk=1 ∈ L(Y, Z), (IV.12c)

where PN is a projection onto YN , and Gk20 and Kk
0 are such

that
σ(Gk20PNPs(iωk)Kk

0 ) ⊂ C− (IV.13)

for all k ∈ {1, 2, . . . , q}. We can choose, e.g., Gk20 = −IYN
and

Kk
0 = (PNPs(iωk))

[−1] for k ∈ {1, 2, . . . , q}, and conversely,
the spectrum condition implies that Gk20 and PNPs(iωk)Kk

0

are boundedly invertible.
In the following theorem, we show that a controller with the

aforementioned structure solves the approximate robust output
regulation problem. Furthermore, we will show that for some
constants M,α > 0 and all t ≥ 0 the regulation error satisfies∫ t+1

t

‖e(s)‖2 ds ≤Me−αt(‖xe0‖2 + ‖v0‖2) + δ‖v0‖2,
(IV.14)

where xe0 and v0 are the initial states of the closed-loop
system and the exosystem, respectively, and δ is given by

δ =
∥∥(I − PN )

∑q
k=1

(
Ps(iωk)Kzk + P0(iωk)Esvk + Fvk

)∥∥2
,

(IV.15)
where vk are the components of the unit vector vmax ∈ W
satisfying ‖CeΣ +De‖ = ‖CeΣvmax +Devmax‖Y and zk =
Γvk where Γ is given in (IV.16). Note that since W is finite
dimensional, vmax is well-defined. Further note that we cannot
guarantee pointwise convergence for the regulation error, and
therefore the upper bound is presented in the integral form.
Finally, since

∑q
k=1

(
Ps(iωk)Kzk + P0(iωk)Esvk + Fvk

)
∈

Y , the projection PN (or rather the space YN ) can be chosen
such that δ becomes arbitrarily small. We will demonstrate
this procedure in §V for the wave equation.

Theorem IV.11. There exists an ε∗ > 0 such that for all
0 < ε < ε∗ the controller with the parameter choices (IV.12a)–
(IV.12c) solves the approximate robust output regulation prob-
lem and there exist some constants M,α > 0 such that for all
t ≥ 0 the regulation error satisfies (IV.14).

Furthermore, the controller is robust with respect to those
perturbations of class O that give rise to an exponentially
stable perturbed closed-loop system, and the regulation error
behaves as in (IV.14) for the perturbed parameters of the plant
and the exosystem.

Proof. By Lemma IV.4, the closed-loop system is expo-
nentially stable for all sufficiently small ε > 0. Thus, as
σ(S) ⊂ iR, the Sylvester equation has a unique solution
Σ = (Π,Γ)T , and a direct computation using (III.6) verifies
that
Γ = (Γk)qk=1

= −ε−1
(
〈·, φk〉(PNPs(iωk)Kk

0 )−1PN (P0(iωk)Es + F )φk
)q
k=1

,

Π =

q∑
k=1

〈·, φk〉(iωk −As)−1(ABs − iωkBs)(R1KΓ + Es)φk

(IV.16)
solves ΣSφk = AeΣφk +Beφk, i.e., (iωk−Ae)Σφk = Beφk
for all k ∈ {1, 2, . . . , q}. Here one also uses that our Γ satisfies

PNPs(iωk)KΓφk = εPNPs(iωk)Kk
0 Γkφk

= −PNP0(iωk)Esφk − PNFφk.
(IV.17)

Note that (IV.16) is well-defined and bounded since
PNPs(iωk)Kk

0 are boundedly invertible by (IV.13).
Let us now consider the behavior of the regulation error. By

[15, Lem. 4.3], we may write

e(t) = CeTe(t)(xe0 − Σv0) + (CeΣ +De)v(t),

and we obtain that for all t ≥ 0∫ t+1

t

‖e(s)‖2 ds

=

∫ t+1

t

‖CeTe(s)(xe0 − Σv0) + (CeΣ +De)v(s)‖2 ds

≤Me−αt(‖xe0‖2 + ‖v0‖2) + ‖CeΣ +De‖2‖v0‖2

for some M,α > 0 as Σ is bounded, Te is exponentially
stable, Ce is admissible for Te, and due to the structure of the
signal generator ‖v(t)‖ = ‖eStv0‖ = ‖v0‖.

We will show that

CeΣvmax +Devmax

= (I − PN )

q∑
k=1

(
Ps(iωk)Kzk + P0(iωk)Esvk + Fvk

)
.

A direct computation using (IV.16) shows that

CeΣvmax +Devmax

=

q∑
k=1

(
Ps(iωk)KΓvk + P0(iωk)Esvk + Fvk

)
,

(IV.18)

Denoting zk = Γvk, we have by (IV.17) that

PNPs(iωk)Kzk = −PNP0(iωk)Esvk − PNFvk, (IV.19)

and now, combining (IV.19) with (IV.18) yields

CeΣvmax +Devmax

= (I − PN )

q∑
k=1

(
Ps(iωk)Kzk + P0(iωk)Esvk + Fvk

)
,

which implies (IV.15), and thus, (IV.14).
If the parameters (A,B, C, E, F ) are perturbed in such

a way that the closed-loop system remains exponentially
stable, then the regulation error asymptotically satisfies∫ t+1

t
‖e(s)‖2 ds ≤ M ′e−α

′t(‖xe0‖2 + ‖v0‖2) + ‖C ′eΣ′ +
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D′e‖2‖v0‖2 for all t ≥ 0, where M ′, α′ > 0, and
C ′e, D

′
e and Σ′ are related to the the perturbed closed-

loop system. By repeating the above computations with
the perturbed parameters we clearly obtain C ′eΣ

′v′max +
D′ev

′
max = (I − PN )

∑q
k=1 P

′
s(iωk)Kz′k + P ′0(iωk)E′sv

′
k +

F ′v′k), where z′k is the unique solution of PNP ′s(iωk)Kz′k =
−PNP ′0(iωk)E′sv

′
k − PNF

′v′k in N (iωk − G1). Thus, the
controller approximately solves the robust output regulation
problem.

Remark IV.12. As an alternative to the error estimate given
in (IV.14), one can make a coarser choice for δ that does not
require vmax:

δ =
∑q
k=1

∣∣∣∣(I − PN )
(
Ps(iωk)Kzk + P0(iωk)Esφk + Fφk

)∣∣∣∣2 ,
where {φk}qk=1 is the Euclidean basis of W and zk = Γφk.

Corollary IV.13. In Theorem IV.11, the regulation error sat-
isfies eβ·PNe(·) ∈ L2([0,∞);Y ) for some β > 0 independent
of xe0 ∈ Xe and v0 ∈ W . Under perturbations of class O
that give rise to an exponentially stable closed-loop system,
the regulation error satisfies eβ

′·PNe(·) ∈ L2([0,∞);Y ) for
some β′ > 0 independent of xe0 ∈ Xe and v0 ∈W .

Proof. Let us first show that PNCeΣ + PNDe = 0. A direct
computation using (IV.16) together with (IV.17) shows that for
all k ∈ {1, 2, . . . , q}:

PNCeΣφk + PNDeφk

= PNPs(iωk)KΓφk + PNP0(iωk)Esφk + PNFφk = 0,

and as {φk}qk=1 form a basis of Cq , we have that PNCeΣ +
PNDe = 0. By the proof of Theorem IV.11 we now have for
some β > 0 that∫ t+1

t

‖eβsPNe(s)‖2 ds ≤ eβ(t+1)

∫ t+1

t

‖PNe(s)‖2 ds

≤ eβMe(β−α)t(‖xe0‖2 + ‖v0‖2),

so for any 0 < β < α we obtain∫ ∞
0

‖eβsPNe(s)‖2 ds ≤ eβM(‖xe0‖2 + ‖v0‖2)

∞∑
t=0

e(β−α)t

=
eβM(‖xe0‖2 + ‖v0‖2)

1− eβ−α
,

by which eβ·PNe(·) ∈ L2([0,∞)) for any 0 < β < α. By the
robustness part of Theorem IV.11, the same holds for some
0 < β′ < α′ under perturbations of class O that give rise to
an exponentially stable closed-loop system.

D. A robust controller

In this section, we utilize the approximate controller struc-
ture of the previous section to construct an exact robust
controller which, however, necessarily has infinite-dimensional
state space if the output space of the plant is infinite-
dimensional. Thus, we choose Z = Y q and choose the
controller parameter Q ∈ L(U, Y ) such that the semigroup Ts
generated by As is exponentially stable and C is an admissible

observation operator for Ts. Following [11, Sec. IV] or [17,
Thm. 8], we choose the remaining parameters as

G1 = diag (iω1IY , iω2IY , . . . , iωqIY ) ∈ L(Z), (IV.20a)

K = εK0 = ε
[
K1

0 ,K
2
0 , . . . ,K

q
0

]
∈ L(Z,U), (IV.20b)

G2 = (−(Ps(iωk)Kk
0 )∗)qk=1 ∈ L(Y,Z). (IV.20c)

Above the components Kk
0 can be chosen freely provided that

Ps(iωk)Kk
0 are invertible. If we choose Kk

0 = Ps(iωk)[−1],
then Gk2 = −IY for all k ∈ {1, 2, . . . q}, then the controller is
the same as the approximate controller for the choice YN =
Y . The following result follows immediately from Corollary
IV.13.

Corollary IV.14. There exists an ε∗ > 0 such that a controller
with the parameter choices given in (IV.20a)–(IV.20c) solves
the robust output regulation problem for all 0 < ε < ε∗.

Remark IV.15. The above result also follows from Lemma
IV.4 and Theorem IV.8 as the choice Kk

0 = Ps(iωk)[−1]

yields σ(Gk2Ps(iωk)Kk
0 ) = σ(−IY ) ⊂ C−, which together

with the choice of Q completes the assumptions of Lemma
IV.4, by which the closed-loop system is exponentially stable.
Furthermore, it has been shown in the proof of [11, Thm 8]
that G1 and G2 in (IV.20a)–(IV.20c) satisfy the G-conditions,
and thus, the controller solves the robust output regulation
problem by Theorem IV.8.

V. APPROXIMATE ROBUST REGULATION OF THE WAVE
EQUATION

Consider the wave equation as given in (II.1) with the spatial
domain Ω :=

{
ζ ∈ R2 | 1 < ‖ζ‖ < 2

}
. Choose the partition

∂Ω = Γ0 ∪ Γ1 where Γ0 = {ζ ∈ ∂Ω | ‖ζ‖ = 1} and Γ1 =
{ζ ∈ ∂Ω | ‖ζ‖ = 2} which satisfies the assumption in (II.6),
e.g., for ζ0 = 0, and thus the results presented in Section II-B
are applicable.

For the approximate robust output regulation problem, let
δ = 0.01 be given. We choose the output space as Y :=
L2(Γ1) which is equivalent to L2([0, 2π]). Thus, for the finite-
dimensional closed subspace YN we may choose, e.g.,

YN := span {1, cos(k·), sin(k·) | k = 1, . . . , N} ,

and the projection PN from Y onto YN is then given by

PNy :=
1√
2π
〈y, 1〉+

1√
π

N∑
k=1

(〈y, cos(k·)〉+ 〈y, sin(k·)〉) .

(V.1)
By standard Fourier analysis, it holds that for all f ∈
L2([0, 2π]), we have lim

N→∞
‖(1− PN )f‖ = 0, and thus, by

Theorem IV.11, for a given reference yref , we can choose N in
(V.1) sufficiently large such that asymptotically the regulation
error becomes smaller than δ‖v0‖2 (in the L2-sense).

Let the reference and disturbance signals be given by

yref (θ, t) = − 1

2π2
(π − θ)2 sin(πt)− 1

2
sin

(
θ

2

)
cos(2πt)

d(θ, t) = cos(θ) sin(2πt) + sin(θ) sin(πt)

and the disturbance d acts on Γ1. Thus, we choose S =
diag(−2iπ,−iπ, iπ, 2iπ), and the operators E and F are
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chosen such that yref = −Fv and d = Ev for v0 = 1. The
controller parameter Q is chosen as Q(θ) = 3, and according
to §IV-C we choose

G1 = diag(−2iπIYN
,−iπIYN

, iπIYN
, 2iπIYN

), (V.2a)

K = ε
[
K1

0 ,K
2
0 ,K

3
0 ,K

4
0

]
(V.2b)

G2 = (−PN )4
k=1 (V.2c)

where Kk
0 = (PNPs(iωk))

[−1], N = 5 and ε = 0.15.
For simulation, the operators related to the wave equation

are approximated by the orthonormal eigenfunctions of the
Laplacian ∆ with homogeneous boundary conditions. In polar
coordinates, these are of the form

φ1
n0(r) =

1√
2π
ϕn0(r), n ∈ N

φ1
nm(r, θ) =

1√
π
ϕnm(r) cos(mθ), m, n ∈ N

φ2
nm(r, θ) =

1√
π
ϕnm(r) sin(mθ), m, n ∈ N,

where ϕnm(r) are the appropriately normalized Bessel func-
tions corresponding to the radial part of the Laplacian such that
the functions {φ1,2

nm} form an orthonormal basis of L2(Ω). The
eigenvalues are computed numerically and in the simulation
we use n = 8 radial and m + 1 = 12 angular eigenfunctions
corresponding to the eigenvalues. The transfer function Ps is
computed using the approximated operators, and the initial
conditions are given by x0 = 0 and z0 = 0.

In Figure 1, the output profile y of the controlled wave
equation and the reference profile yref are displayed for
t ∈ [0, 10]. It can be seen that the output starts to follow the
reference signal rather soon, even though some undershooting
can be observed throughout the simulation.

Fig. 1. The output profile y of the controlled wave equation and the reference
profile yref for t ∈ [0, 10] and in the same scales.

In Figure 2, the time average of the norm of the regulation
error is displayed for t ∈ [0, 20]. Here it can be seen that,

apart from the oscillations and initial errors, the regulation
error decays at an exponential rate and that asymptotically it
decays beyond the given δ‖v0‖2. In Figure 3, the wave profile
of the controlled system is displayed at time t = 9 and in
Figure 4, the disturbance signal is displayed for t ∈ [0, 6].
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Fig. 2. The regulation error
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‖y(s)− yref (s)‖2ds for t ∈ [0, 20].
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Fig. 3. The wave profile of the controlled system at t = 9.

Fig. 4. The disturbance signal d for t ∈ [0, 6].

VI. CONCLUSIONS

We developed output regulation for abstract boundary con-
trol systems, parametrizing all regulating and robust regulating
controllers, and also suggesting some particular choices of
such controllers. Since the internal model principle implies
that the state space of any robust controller for a system
with infinite-dimensional output space has infinite dimension,
we extended the concept of approximate robust output reg-
ulation to boundary control systems. We demonstrated that
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approximate robust regulation can be achieved with a finite-
dimensional controller by constructing such a controller for
the two-dimensional wave equation and demonstrating its
performance with numerical simulations.

REFERENCES
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