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Decentralized Observer Design for Virtual
Decomposition Control

Jukka-Pekka Humaloja1, Janne Koivumäki2, Lassi Paunonen1, Jouni Mattila2

Abstract—In this paper, we incorporate velocity observer
design into the virtual decomposition control (VDC) strategy of
an n-DoF open chain robotic manipulator. Descending from the
VDC strategy, the proposed design is based on decomposing the
n-DoF manipulator into subsystems, i.e., rigid links and joints, for
which the decentralized controller-observer implementation can
be done locally. Similar to VDC, the combined controller-observer
design is passivity-based, and we show that it achieves semiglobal
exponential convergence of the tracking error. The convergence
analysis is carried out using Lyapunov functions based on the
observer and controller error dynamics. The proposed design
is demonstrated in a simulation study of a 2-DoF open chain
robotic manipulator in the vertical plane.

Index Terms—decentralized controller-observer design, veloc-
ity observer, nonlinear control, virtual decomposition control

I. INTRODUCTION

The virtual decomposition control (VDC) approach [1], [2]
is a nonlinear model-based control method that is developed
for controlling complex systems, and it has been demonstrated
to be very effective especially in robotic control [3]–[7]. The
fundamental idea of VDC is that the system can be virtually
decomposed into modular subsystems (such as rigid links and
joints), allowing a decentralized control that can be designed
locally at the subsystem level and that guarantees stability
by fully taking into account the dynamic interactions among
adjacent subsystems. The VDC methodology is introduced in
greater detail in Section II-B.

The existing VDC literature requires that the position and
velocity states of the system are measurable for the control
design. While position measurements can be done accurately,
the instruments for measuring rotation speed, e.g., tachome-
ters, are known to be often contaminated with noise. Velocity
data can naturally be obtained by numerical differentiation of
the position sensor data but there is no theoretical justification
for this method [8], [9]. Due to these challenges, control of
n-DoF robotic manipulators without velocity data has been
extensively studied, e.g., in [8], [10]–[15], see also the survey
[9], where the actuator dynamics have been neglected. Similar
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2J. Koivumäki and J. Mattila are with Automation Technology and Me-
chanical Engineering, Faculty of Engineering and Natural Sciences, Tampere
University, Finland. e-mail: firstname.surname@tuni.fi
∗ J.-P. Humaloja and L. Paunonen are supported by the Academy of Finland

Grant number 310489 held by L. Paunonen
∗ L. Paunonen has been funded by the Academy of Finland Grant number

298182.
∗ J. Mattila has been funded by the Academy of Finland Grant number

283171

research for robots with, e.g., hydraulic actuators has been
done in [16], [17]. Our approach to the proposed controller-
observer design is inspired by the passivity-based design in
[8] and the subsystem-based VDC approach [1].

In this paper, we design a control law for an n-DoF open
chain robotic manipulator (see Fig. 1) in such a way that
the position trajectories qi(t) of the n joints follow given
desired trajectories qid(t). Velocity data is not available for
the control design, due to which we design a velocity observer
based on position (measurement) and torque (input) data.
We note that the manipulator in Fig. 1 is in a planar joint
configuration for the sake of graphical simplicity; the system
kinematics and dynamics are provided in the general 6-DoF
matrix/vector form instead of the scalar presentation and the
joint orientations may be arbitrary.

The main contribution of the paper is incorporating an
observer design into the VDC methodology, which yields
a novel decentralized controller-observer design for robotic
manipulators. In comparison to the existing literature [8]–[17]
where the designs are based on the dynamics of the whole
manipulator, in the proposed decentralized design the control
and observer gains are proportional to the individual link/joint
dynamics. Thus, in the proposed design the gain conditions
remain unaltered even if the complexity of the system (number
of DoFs) increases, which is not the case for the existing
designs where the gain conditions depend on the whole system
dynamics. Moreover, the proposed design is highly modular
in the sense that if parts were replaced in or added to the
manipulator, the controller-observer design needs to be reim-
plemented only for the new parts while the other parts remain
intact. Our main result, semiglobal exponential convergence of
the proposed design, is presented in Theorem VI.3 in Section
VI. Thereafter, Remark VI.5 discusses possible extensions of
the design and addresses arbitrary joint configurations for the
n-DoF manipulator. Semiglobality of the achieved convergence
originates from the requirement of the link velocities being
bounded, albeit they may be arbitrarily large. We note that a
similar approach has been taken, e.g., in [8].

The proposed controller-observer design is based on the
VDC design principles in the sense that the controller and
observer are designed for the links and joints, i.e., the virtual
subsystems, individually, and the stability analysis of the error
dynamics can be carried out locally at the subsystem level in
terms of virtual stability (see Section II-B). The idea is to
construct Lyapunov functions for the subsystems based on the
error dynamics, using which the error dynamics can be shown
to be exponentially stable. The approach is an integral part
of VDC in controller stability analysis, and in this paper we



2

q1

τ1

q2τ2

τi

τn

qn

qi

{B0}

q2

τ2

{T1}

{B2}

{B1}

{T1}
τ1 q1

{B1}

{B0}

{Ti-1}

{Bi}

{Tn-1}

{Bn}

τn qn

{Bn}

{Tn-1}

{B2}

qi

{Ti-1}
τi

{Bi}

Virtual

decomposition

VCP  =

Fig. 1. The n-DoF open chain robotic manipulator and its virtual decomposition.

extend the design and analysis to account for the observer error
dynamics as well. It should be noted that due to the nonlinear
dynamics of the system, the separation principle cannot be
utilized in stability analysis but the controller and observer
convergences must be shown simultaneously.

The paper is organized as follows. In Section II, we present
preliminaries concerning link dynamics, stability analysis and
the VDC methodology. In Section III, we present the kine-
matics and dynamics of the system model. In Section IV,
we present the decentralized joint and link velocity observer
designs which are incorporated into the VDC design in Section
V. Exponential stability of the controller and observer error
dynamics is shown in Section VI. In Section VII, the proposed
design is demonstrated by a numerical simulation on a 2-DoF
robot in the vertical plane. Finally, the paper is concluded in
Section VIII.

II. MATHEMATICAL PRELIMINARIES

A. Dynamics of a Rigid Body

Consider an orthogonal, three-dimensional coordinate sys-
tem {A} (frame {A}) attached to a rigid body. Let Av ∈ R3

and Aω ∈ R3 be the linear and angular velocity vectors,
respectively, of frame {A}, expressed in frame {A} (see [1,
Sect. 2.5] for expressing velocities and forces in body frames).
To facilitate the transformations of velocities among different
frames, the linear/angular velocity vector of frame {A} can be
written as

AV :=
[Av

Aω

]
∈ R6. (1)

In a similar manner, let Ap∈R3 and Aϕ ∈R3 be the linear and
angular position vectors, respectively, of frame {A} and define
AP :=

[Ap
Aϕ

]
∈ R6, so that

d
dt
(AP) = AV .

Let Af ∈R3 and Am ∈R3 be the force and moment vectors
applied to the origin of frame {A}, expressed in frame {A}.
Similar to (1), the force/moment vector in frame {A} can be
written as

AF :=
[ Af

Am

]
∈ R6. (2)

Consider two given frames, denoted as {A} and {B}, fixed
to a common rigid body. The following relations hold:

BV = AUT
B

AV (3a)
AF = AUB

BF, (3b)

where AUB ∈ R6×6 denotes a force/moment transformation
matrix that transforms the force/moment vector measured and

expressed in frame {B} to the same force/moment vector mea-
sured and expressed in frame {A} (see [1, Sect. 2.5.3] for
details).

Let frame {A} be fixed to a rigid body. The rigid body
dynamics, expressed in frame {A}, can be written as

MA
d
dt
(AV )+CA(

A
ω)AV +GA = AF∗ (4)

where AF∗ ∈ R6 is the net force/moment vector of the rigid
body expressed in frame {A} and MA ∈ R6×6, CA(

Aω) ∈
R6×6 and GA ∈ R6 are the mass matrix, the Corio-
lis/centrifugal matrix and the gravity vector, respectively (see
[1, Sect. 2.6.2] for the detailed expressions). We note that by
the structure of matrix CA(·), it has the following properties

CA(
A

ω1)
T =−CA(

A
ω1) (5a)

CA(α1
A

ω1 +α2
A

ω2) = α1CA(
A

ω1)+α2CA(
A

ω2) (5b)

‖CA(
A

ω1)‖ ≤Mc,A‖A
ω1‖ (5c)

for some Mc,A > 0 and for all α1,α2 > 0 and Aω1,
Aω2 ∈ R3.

B. Virtual Decomposition Control

Virtual decomposition control (VDC) is a control design
method where the original system is decomposed into subsys-
tems by placing conceptual virtual cutting points (VCP) [1,
Def. 2.13]. Every such cutting point forms a virtual cutting sur-
face on the rigid body, where three-dimensional force vectors
and three-dimensional moment vectors can be exerted from
one part to another. Fig. 1 displays a virtual decomposition of
an n-DoF robot and the virtual cutting points.

Adjacent subsystems resulting from a virtual decomposition
have dynamic interactions with each other. These interactions
are uniquely defined by scalar terms called virtual power flows
(VPFs) [1, Def. 2.16]. With respect to frame {A}, the virtual
power flow is given by

pA = (AVr−AV )T (AFr−AF) (6)

where AVr ∈ R6 and AFr ∈ R6 represent the required vectors
of AV ∈ R6 and AF ∈ R6, respectively, that will be presented
in Section V.

The VPFs are closely related to virtual stability [1, Def.
2.17] which is the key concept of VDC. Virtual stability is a
tool for analyzing the stability of the system on a subsystem
level, where the subsystems do not need to be stable but
using VPFs to represent dynamic interactions among adjacent
subsystems. Motivated by [1, Def. 2.17], we define virtual
stability as follows:
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Definition II.1: Consider a subsystem i with dynamics
ẋi = gi(t,xi) where gi is piecewise continuous in t and locally
Lipschitz in xi. The subsystem i is called virtually stable if
there exists a continuously differentiable function νi(t,xi) such
that

αi,1‖xi‖2 ≤ νi(t,xi)≤ αi,2‖xi‖2 (7a)

ν̇i(t,xi)≤−αi,3‖xi‖2 + p(t,xi)Ai+1 − p(t,xi)Ai−1 (7b)

for all t ≥ 0 and some αi,1,αi,2,αi,3 > 0, where pAi+1 and
pAi−1 are VPFs with respect to frames {Ai+1} and {Ai−1},
respectively, adjacent to subsystem i.

Note that without the VPFs, Definition II.1 would coincide
with Lyapunov criteria for exponential stability as in [18, Thm.
4.10]. The virtually stable subsystems will in fact result in
exponential stability of the entire system, as the VPFs in (7b)
will cancel out when we take the sum of the functions νi
over all the subsystems. We will prove the stability of the
entire system in Theorem VI.3. The approach is the same as
in [1, Thm. 2.1], even though the stability arguments here are
different.

Remark II.2: The VDC design is decentralized and local
in the sense that changing the control (or dynamics) of a
subsystem does not affect the control equations of the rest of
the system as long as the VPFs among adjacent subsystems
cancel out. We also note that the general concept of virtual
stability in [1, Def. 2.17] allows several VPFs between the
subsystems. That is, the concept is not restricted to open chain
systems but the restriction is made here merely for simplicity.
The general formulation of VDC is given in [1, Sect. 4].

III. THE SYSTEM MODEL

Consider the robot with n links as in Fig. 1 with the given
virtual decomposition. For the sake of generality, we will
formulate the kinematics and dynamics of the system in the
matrix/vector form in R6. For more detailed consideration
of the kinematics and dynamics, see [1, Chap. 3] where the
consideration is done for a 2-DoF robot.

A. Kinematics

Let the system base frame {B0} have zero velocity, i.e.,
B0V = 0. Then, using the notation of Section II-A, the kine-
matics of an arbitrary joint i can be written as

BiV = zτ q̇i +
Bi−1 UT

Bi
Bi−1V, i ∈ {1,2, . . . ,n} , (8)

where zτ = [0 0 0 0 0 1]T , q̇i is the angular velocity of joint
i and Bi−1UBi is as in (3). Moreover, as the following relation
holds for transforming the velocity vectors in link i:

TiV = BiUT
Ti

BiV, i ∈ {1,2, . . . ,n} , (9)

the kinematics of joint i can alternatively be written based on
the link velocities as

BiV = zτ q̇i +
Ti−1UT

Bi
Ti−1V, i ∈ {2,3, . . . ,n} . (10)

B. Single Link Dynamics in Cartesian Space

As in (4), the motion dynamics of an arbitrary rigid link i
is expressed in frame {Bi} by

MBi

d
dt
(BiV )+CBi(

Biω)BiV +GBi =
BiF∗, i ∈ {1,2, . . . ,n} .

(11)
Furthermore, the resultant forces/moments of link i can be
expressed as

BiF = BiF∗+BiUTi
TiF, i ∈ {1,2, . . . ,n} , (12)

where TnF = 0 as we assume that no external force/moment
is imposed on the origin of the frame {Tn}. Moreover, the
force/moment vector in frame {B0} can be written as

B0F = B0UB1
B1F. (13)

C. Single Joint Dynamics in Joint Space

The actuation torque of an arbitrary joint i can be obtained
from (12) as

τai = zT
τ

BiF, i ∈ {1,2, . . . ,n} . (14)

Then, similarly to [1, (3.51)], joint i torque τi (torque input)
can be written as

τi = Im,iq̈i + fc,i(q̇i)+ τai, i ∈ {1,2, . . . ,n} (15)

where Im,i is the joint moment of inertia and fc,i is a Coulomb
friction function model. The friction model is assumed to be
increasing, globally Lipschitz continuous and antisymmetric,
e.g., Coulomb-viscous model (see [19, Sect. 2.3]) Note that
by monotonicity, the friction function model satisfies

−(x1− x2)( fc,i(x1)− fc,i(x2))≤ 0. (16)

We note that the monotonicity assumption could be lifted if
the first time derivatives of the functions fc,i are bounded, so
that more advanced friction models (see [19, Sect. 3]) could
be incorporated as well.

IV. OBSERVER DESIGN

In this section, we will consider velocity observers for
arbitrary link i and joint i motivated by the passivity-based
observer design of [8, Sect. II.B]. For the design, we need
to have position and torque data available. The final observer
designs must be done simultaneously with the control designs
(see [8, Sect. II.C]), which we will do in Section V, where
the following auxiliary analysis will be utilized. We make the
following standing assumption:

Assumption IV.1: Joint torque data τi and position data qi
are available for the observer design for all i ∈ {1,2, . . . ,n}.

A. Observer for Link i

Consider an observer system of the form
Bi ˙̂P =Bi Z−M−1

Bi
LBi(

Bi P̂−BiP) (17a)

MBi
Bi Ż =Bi F∗−CBi(

Biω̂)BiV̂ −GBi (17b)

where LBi > 0 is an error feedback gain matrix, [Bi P̂ BiZ]T

is the observer state and BiV̂ = Bi ˙̂P is the observed velocity.
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Note that the second line of the observer simply copies the
link dynamics (11).

Subtracting (11) from (17b), we obtain error dynamics

MBi(
Bi ˙̂V −BiV̇ ) = CBi(

Biω)BiV −CBi(
Biω̂)BiV̂

−LBi(
BiV̂ −BiV ). (18)

If we define a quadratic function νBi,obs as

νBi,obs :=
1
2
(BiV̂ −BiV )T MBi(

BiV̂ −BiV ), (19)

then

ν̇Bi,obs = (BiV̂ −BiV )T [CBi(
Biω)BiV −CBi(

Biω̂)BiV̂ ]

− (BiV̂ −BiV )T LBi(
BiV̂ −BiV ).

(20)

The term associated with the Coriolis/centrifugal forces can
be written as

CBi(
Biω)BiV −CBi(

Biω̂)BiV̂ (21)

= CBi(
Biω)BiV −CBi(

Biω̂)BiV −CBi(
Biω̂)(BiV̂ −BiV ),

so by using (5a)–(5b) we obtain

(BiV̂ −BiV )T [CBi(
Biω)BiV −CBi(

Biω̂)BiV̂ ]

= (BiV̂ −BiV )T [CBi(
Biω)BiV −CBi(

Biω̂)BiV ]

= (BiV̂ −BiV )T CBi(
Biω−Biω̂)BiV.

(22)

Let us now assume that the velocity vector BiV is bounded,
i.e., supt>0 ‖BiV‖= Mv,i < ∞. Continuing from (22) and using
the relative boundedness (5c) of CBi(·), we obtain

‖(BiV̂ −BiV )T CBi(
Biω−Biω̂)BiV‖

≤ ‖BiV̂ −BiV‖Mc,iMv,i‖BiV̂ −BiV‖. (23)

Utilizing the preceding identities and estimates in (20), we
finally obtain

ν̇Bi,obs ≤−(BiV̂ −BiV )T (LBi−Mc,iMv,iI6×6)(
BiV̂ −BiV ) (24)

which can be made negative by choosing LBi > Mc,iMv,iI6×6.
We will fix the choice for LBi later when designing the
combined controller-observer in Section V.

B. Observer for Joint i

Similarly as in the case of link i, we design a velocity
observer for an arbitrary joint i, namely

˙̂qi = zi−Li(q̂i−qi) (25a)

Imżi = τi− τai− fc,i( ˙̂qi)− `i(q̂i−qi) (25b)

where [q̂i zi]
T is the observer state, Li, `i > 0 are gain

parameters and ˙̂qi is the observed (angular) velocity. Unlike
the observer for link i, the proposed observer also contains a
position error feedback term which is added to achieve position
convergence in addition to velocity convergence.

Before computing the error dynamics, we set Li = `i + I−1
m,i .

Now, subtracting (15) from (25b), we obtain error dynamics

Im,i( ¨̂qi− q̈i) =−[ fc,i( ˙̂qi)− fc,i(q̇i)]

− (Im,i`i +1)( ˙̂qi− q̇i)− `i(q̂i−qi), (26)

which by defining a new variable si := ( ˙̂qi− q̇i)+ `i(q̂i− qi)
can be equivalently written as Im,iṡi =−[ fc,i( ˙̂qi)− fc,i(q̇i)]−si.
Let us now define a quadratic function νi,obs as

νi,obs :=
Im,i

2
( ˙̂qi− q̇i)

2 +
`i

2
(q̂i−qi)

2 +
Im,i

2
s2

i . (27)

Then, denoting the Lipschitz constant of fc,i by mc,i, we obtain

ν̇i,obs =−( ˙̂qi− q̇i)( fc,i( ˙̂qi)− fc,i(q̇i))− Im,iLi( ˙̂qi− q̇i)
2

− `i( ˙̂qi− q̇i)(q̂i−qi)+ `i( ˙̂qi− q̇i)(q̂i−qi)

− s2
i − si( fc,i( ˙̂qi)− fc,i(q̇i))

≤−Im,iLi( ˙̂qi− q̇i)
2− s2

i − si( fc,i( ˙̂qi)− fc,i(q̇i))

≤−Im,iLi( ˙̂qi− q̇i)
2− s2

i +
s2

i
2
+

1
2
( fc,i( ˙̂qi)− fc,i(q̇i))

2

≤−Im,iLi( ˙̂qi− q̇i)
2− s2

i +
s2

i
2
+

m2
c,i

2
( ˙̂qi− q̇i)

2

=−

(
Im,iLi−

m2
c,i

2

)
( ˙̂qi− q̇i)

2− 1
2

s2
i , (28)

the right-hand-side of which is negative for all Li >
1
2 m2

c,iI
−1
m,i .

We will fix the choice of Li (or rather `i) as part of the joint
controller-observer design in the next section.

Remark IV.2: Note that `i(q̂i− qi) = si− ( ˙̂qi− q̇i) so that
0≤ `i(q̂i−qi)

2 ≤ 2`−1
i s2

i +2`−1
i ( ˙̂qi− q̇i)

2.

V. CONTROL WITH OBSERVERS

In order to achieve position control for the system, let us
introduce the concept of required joint i velocity as q̇ir = q̇id +
λi(qid−qi), where qid is the traditionally used desired position
trajectory (see [20] for qid) for joint i and λi > 0 is a control
parameter [1, Sect. 3.3.6]. However, because we later need to
be able to realize q̈ir for the control, we redefine the required
velocity according to [8, Sect. III.A] as

q̇ir := q̇id +λi(qid− q̂i), (29)

where we use the observed position q̂i in place of qi.

A. Control of Link i

In line with (8), the required linear/angular velocity vector
at link i base frame {Bi} can be obtained as

BiVr = zτ q̇ir +
Bi−1UT

Bi
Bi−1Vr i ∈ {1,2, . . . ,n} , (30)

and, in line with (9), the following relation holds for trans-
forming the required linear/angular velocity vectors in link i:

TiVr =
BiUT

Ti
BiVr, i ∈ {1,2, . . . ,n} (31)

with B0Vr = 0 in (30) and (31). Then, in view of (11) and using
(30), the required net force/moment vector for link i can be
written as

BiF∗r = MBi

d
dt
(BiVr)+CBi(

Biω̂)BiVr +GBi

+KBi(
BiVr−BiV̂ ), i ∈ {1,2, . . . ,n}

(32)

where KBi > 0 is a velocity gain matrix. Note that we need
to use the observed velocities in the matrix CBi and in the
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feedback term. Finally, the required force/moment vector can
be written by reusing (12) as

BiFr =
BiF∗r +BiUTi

TiFr, i ∈ {1,2, . . . ,n}. (33)

Let us define a quadratic function νBi,ctrl for link i as

νBi,ctrl :=
1
2
(BiVr−BiV )T MBi(

BiVr−BiV ). (34)

Motivated by the discussion in [8, Sect. II.C], we define a
quadratic function νBi for link i as

νBi := νBi,ctrl +νBi,obs, (35)

where νB1,obs is given in (19). The following lemma provides
an auxiliary result that will be utilized in Section VI when
proving exponential convergences of the observation and con-
trol for the whole n-DoF system.

Lemma V.1: If the controller gain KBi in (32) is chosen such
that KBi > I6×6 and the observer gain LBi in (17) is chosen
such that LBi >Mc,iMv,i

(
1+ 1

2 Mc,iMv,i
)

I6×6+
1
2 KBi , then there

exist some Mi,1,Mi,2 > 0 such that νBi in (35) satisfies

ν̇Bi ≤−(
BiVr−BiV )T Mi,1(

BiVr−BiV )

− (BiV̂ −BiV )T Mi,2(
BiV̂ −BiV )+ pBi − pTi

(36)

for all i ∈ {1,2, . . . ,n}.
Proof: See Appendix A.

B. Control of Joint i

We already saw in the previous section that, in line with
(8), the required joint and link velocities are related by (30).
Alternatively, in line with (10) we can write

BiVr = zτ q̇ir +
Ti−1UT

Bi
Ti−1Vr, i ∈ {2,3, . . . ,n} . (37)

Then, in view of (14)–(15), the control law for joint i can be
written as

τair = zT
τ

BiFr (38a)

τi = Im,iq̈ir + fc,i(q̇ir)+ τair + ki(q̇ir− ˙̂qi) (38b)
B0Fr =

B0UB1
B1Fr (38c)

where ki > 0 is a velocity feedback gain. Similar to Lemma
V.1, we have the following auxiliary result:

Lemma V.2: For all ki > 0 in (38), if the observer gains `i
and Li in (25) are chosen such that 2Im,iLi > max{2,m2

c,i +ki}
and `i = Li− I−1

m,i > 0, then there exists some mi > 0 such that
the quadratic function

νai :=
Im,i

2
(q̇ir− q̇i)

2 +
Im,i

2
( ˙̂qi− q̇i)

2 +
`i

2
(q̂i−qi)

2 +
Im,i

2
s2

i ,

(39)
where si = ( ˙̂qi + q̇i)+ `i(q̂i−qi), satisfies

ν̇ai ≤−
1
2

ki(q̇ir− q̇i)
2−mi( ˙̂qi− q̇i)

2− 1
2

s2
i + pAi−1− pBi (40)

for all i∈ {1,2, . . . ,n}, where we denote pA0 = pB0 and pAi =
pTi for i ∈ {1,2, . . . ,n−1}.

Proof: See Appendix B.

VI. STABILITY OF THE ENTIRE SYSTEM

In order to prove that the proposed controller-observer
design achieves tracking of the desired trajectories, recall that
the base frame {B0} has zero velocity and that no external
forces1 are imposed on the origin of frame {Tn}. Thus,
B0V = B0Vr = 0 and TnF = TnFr = 0 so that pB0 = pTn = 0.
Now we can construct a Lyapunov function for the whole
system by summing over the functions νBi and νai, as the
virtual power flows appearing in the time derivatives of the
functions will cancel out in the summation.

In Section IV-A we assumed that the link velocities are
bounded, but—as shown in the proof of Theorem VI.3
below—this can be guaranteed by assuming the desired joint
velocities q̇id to be bounded and by restricting to a suitable set
of initial conditions. Thus, we make the following assumption:

Assumption VI.1: There exist some Md,i,M′d,i > 0 such that
|qid | ≤Md,i and |q̇id | ≤M′d,i for all t ≥ 0 and i ∈ {1,2, . . . ,n}.
Moreover, for simplicity we assume that the gain matrices
LBi ,KBi are constant and diagonal, that is:

Assumption VI.2: LBi = LBi I6×6 and KBi = KBi I6×6 for all
i ∈ {1,2, . . . ,n}, where LBi ,KBi > 0.
We will now show that the combined observer-control law
converges exponentially for all initial conditions satisfying

‖x(0)‖< min
i∈{1,2,...,n}


√

αm

αM

√
1+2LBi−KBi−1

Mc,i
−

i

∑
k=1

Mk
U M′d,k

1+
i

∑
k=1

Mk
U

16λk
4λk−α

−1
M


(41)

with q̂i(0) = qid(0) and 4λi > α
−1
M for all i ∈ {1,2, . . . ,n},

where

xT =
[
(BiVr−BiV )T ,(BiV̂ −BiV )T , q̇ir− q̇i, ˙̂qi− q̇i,si

]n
i=1

αm = min{min(σ(MBi)), Im,i}n
i=1

αM = max
{

max(σ(MBi)), Im,i + `−1
i
}n

i=1 ,

MU = max
{

1,‖B0UB1‖,‖
B1UB2‖, . . . ,‖

Bn−1UBn‖
}
,

where σ(·) denotes the set of eigenvalues. Note that the
gains LBi ,KBi and λi can be assigned independently for all
i ∈ {1,2, . . . ,n}, and that the region characterized by (41)
can be made arbitrarily large by increasing the gains LBi

(while keeping the other parameters fixed). Thus, the region
of attraction is semiglobal.

Theorem VI.3: Under the standing assumptions and for
all initial conditions satisfying (41), the combined observer-
control law described in (17), (25), (29)–(33) and (37)–(38)
with the gains chosen according to Lemmas V.1 and V.2, the
tracking errors qid − qi decay exponentially to zero for all
i ∈ {1,2, . . . ,n}.

Proof: By Lemmas V.1 and V.2 and using pB0 = pTn = 0,
the quadratic function

ν :=
n

∑
i=1

(νBi +νai), (42)

1Constrained motion control (i.e., contacts with the environment) can be
addressed in VDC with a VPF appearing between the manipulator and the
environment (see [1], [6], [21]), but this topic is outside the scope of the
present study.



6

with νBi and νai given in (35) and (39), respectively, satisfies

ν̇ =
n

∑
i=1

(ν̇Bi + ν̇ai)

≤
n

∑
i=1

[
−(BiVr−BiV )T Mi,1(

BiVr−BiV )+ pBi

− (BiV̂ −BiV )T Mi,2(
BiV̂ −BiV )− pTi

− ki(q̇ir− q̇i)
2−mi( ˙̂qi− q̇i)

2− 1
2

s2
i

+pTi − pBi ]

=
n

∑
i=1

[
−(BiVr−BiV )T Mi,1(

BiVr−BiV )

− (BiV̂ −BiV )T Mi,2(
BiV̂ −BiV )

−ki(q̇ir− q̇i)
2−mi( ˙̂qi− q̇i)

2− 1
2

s2
i

]
.

(43)

Using Remark IV.2 and [18, Thm. 4.10], we have that
αm
2 ‖x‖

2 ≤ ν ≤ αM
2 ‖x‖

2. Moreover, by (43) and Lem-
mas V.1 and V.2 we have that ν̇ ≤ −αp‖x‖2 for αp =
min

{
min(σ(Mi,1)),min(σ(Mi,2)),ki,mi,

1
2

}n
i=1 > 0. However,

positivity of αp requires that especially the gain condition in
Lemma V.1 holds, which under Assumption VI.2 reduces to

LBi > Mc,i‖BiV‖(1+ 1
2

Mc,i‖BiV‖)+ 1
2

KBi (44)

for all i ∈ {1,2, . . . ,n} and t ≥ 0. We will show that this is
achieved for all initial conditions satisfying (41).

Let i∈ {1,2, . . . ,n} be arbitrary. In order to estimate ‖BiV‖,
we begin by subtracting ˙̂qi from both sides of (29). Rearrang-
ing terms yields linear dynamics q̇id − ˙̂qi = −λi(qid − q̂i) +
q̇ir − ˙̂qi, where by the above Lyapunov analysis |q̇ir − ˙̂qi| ≤
|q̇ir− q̇i|+ | ˙̂qi− q̇i| ≤ 2

√
αM
αm
‖x(0)‖exp(− αp

2αM
t) for all t ≥ 0.

Thus, by the variation of parameters formula we obtain

qid− q̂i = (qid(0)− q̂i(0))e−λit +

t∫
0

e−λi(t−s)(q̇ir− ˙̂qi)ds (45)

and since by assumption qid(0) = q̂i(0), we can estimate

sup
t≥0
|qid− q̂i| ≤

4
λi−

αp
2αM

√
αM

αm
‖x(0)‖

where λi >
αp

2αM
by assumption. Thus, by (29) we obtain

sup
t≥0
|q̇ir| ≤ sup

t≥0
|q̇id |+

4λi

λi−
αp

2αM

√
αM

αm
‖x(0)‖

and consequently by (30) and Assumption VI.1 we obtain

sup
t≥0
‖BiVr‖ ≤

i

∑
k=1

Mk
U sup

t≥0
|q̇kr|

≤
i

∑
k=1

Mk
U M′d,k +

√
αM

αm
‖x(0)‖

i

∑
k=1

Mk
U

16λk

4λk−α
−1
M

,

where we also used αp ≤ 1
2 . Finally, we have that

sup
t≥0
‖BiV‖ ≤ sup

t≥0
‖BiVr‖+ sup

t≥0
‖BiVr−BiV‖

≤ sup
t≥0
‖BiVr‖+

√
αM

αm
‖x(0)‖

<

√
1+2LBi −KBi −1

Mc,i

for all x(0) satisfying (41), i.e., (44) holds.
Now that we have shown that the error dynamics is exponen-

tially stable with a given region of attraction, this implies by
linearity that q̂i−qi = `−1

i (si− ( ˙̂qi− q̇i)) decay exponentially
to zero for all i ∈ {1,2, . . . ,n}. Finally, based on (45) we have
that qid−qi = (qid− q̂i)+(q̂i−qi) decay exponentially to zero
for all i ∈ {1,2, . . . ,n}, which concludes the proof.

Remark VI.4: As BiV̂ −BiV → 0 for all i ∈ {1,2, . . . ,n} by
Theorem VI.3, it follows that Bi P̂ in (17) converges up to a
constant from BiP and hence remains bounded by Theorem
VI.3 and Assumption VI.1.

Remark VI.5: Note that as long as position and total torque
data is available, the observers are in fact independent of the
coordinate frames as there are no observer-based virtual power
flows between neighboring frames. That is, as long as we can
make the observers stable at the subsystem level, the proposed
observer design could potentially be incorporated into more
general VDC designs [1, Sect. 4] as well. Note also that the
present design is not limited to planar joint configuration as
the joint orientations can be altered freely by changing the
direction vector zτ .

VII. NUMERICAL SIMULATION OF A 2-DOF ROBOT

For an example, consider a robot as in Fig. 1 with two links
of length l1 = l2 = 1. Similar to [22, Sect. 2.1], both links are
modeled as point masses m1 = m2 = 1 at the distal ends so
that the rotational inertia for both links is I1 = I2 = m2l2

2 = 1.
In line with (4), the link dynamics are given by

MBi

d
dt
(BiV )+CBi(

Biω)BiV +GBi =
BiF∗ (46)

where [1, Sect. 3.4]

MBi =

mi 0 0
0 mi mili
0 mili Ii +mil2

i

=

1 0 0
0 1 1
0 1 2

 , (47)

CBi(ω) =

 0 −mi −mili
mi 0 0

mili 0 0

ω =

0 −1 −1
1 0 0
1 0 0

ω,

(48)

and GBi = [0,0,migili cos(qi)]
T = [0,0,9.81× cos(qi)]

T for
i ∈ {1,2}. The net forces BiF∗ are obtained based on (12),
where the transformation matrices are given in [1, Sect 3.3.2].
The link dynamics comprise two linear components and one
angular component. For further details on the 2-DoF exam-
ple, see [1, Sect. 3]. The joint dynamics are given in line
with (15) by Im,iq̈i = τi− τai− fc,i(q̇i), where Im,i = 0.1 and
fc,i(q̇i) = tanh(q̇i) for i ∈ {1,2}. Finally, τi is the input torque
for joint i and τai is given by (14).
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For the simulation, the joint observer gains in (25) are
chosen as `1 = 200 so that Li = 210 for both joints, and the
link observer gains in (17) are chosen as LBi = 200× I3×3
for both links. The link control gains in (33) are chosen as
KBi = 100× I3×3 for both links, and the joint control gains in
(38) are chosen as ki = 10 for both joints. Moreover, for the
required velocities in (29) the control parameter is chosen as
λi = 10 for both required velocities. The simulations are run
on a Simulink model corresponding to the dynamics presented
in the beginning of this section.

The desired joint trajectories are given by q1d(t) = 0.8−
cos
(

π

4 t
)

and q2d(t) = 0.8− cos
(

π

5 t
)
. The desired trajectories

and the joint position trajectories are displayed in Fig. 2,
where an initial error can be seen as the joints are initially
at q1(0) = q2(0) = 0 whereas the desired values are −0.2.
However, the initial error diminishes quickly, and thereafter
the joint trajectories follow the desired trajectories accurately.

0

1

2

0 5 10 15 20

0

1

2

Fig. 2. Joint angle trajectories (in radians) and their desired values.

Fig. 3 displays the tracking errors ei = qi − qid for both
joints 1 and 2. The tracking errors behave according to Fig.
2, that is, for both joints there is an initial error of 0.2 radians
which diminishes rapidly, and thereafter the position errors are
virtually zero. The velocity observer errors ˙̂qi− q̇id are shown
in Fig. 4, where one can see relatively large initial peaks as the
initial position tracking error is adjusted by the control input,
but thereafter the observed velocities are in accordance with
the desired velocities.

VIII. CONCLUSIONS

We incorporated a decentralized velocity observer design
in the framework of virtual decomposition control of an open
chain robotic manipulator. Stability analysis for the proposed
controller-observer was carried out on a subsystem level by
utilizing the concept of virtual stability. The observer error
dynamics for a single subsystem were found to be independent
of the other subsystems, which would suggest that the design
could be extended to more complex systems as noted in Re-
mark VI.5. In addition to proving the semiglobal exponential
convergence of the combined controller-observer design, the
proposed design was demonstrated in a simulation study of
a 2-DoF open chain system in the vertical plane. A topic for
future research will be to incorporate parameter adaptation into
the controller-observer design.

0

0.1

0.2

-5

0

5
10

-3

0 5 10 15 20

0

0.1

0.2

-5

0

5
10

-3

Fig. 3. Tracking errors ei = qi − qid (in radians) for joints 1 and 2. The
asymptotic behavior for t ≥ 1 is depicted in detail by the red lines and axes.

-2

-1

0

-0.01

0

0.01

0 5 10 15 20

-2

-1

0

-0.01

0

0.01

Fig. 4. Observer errors ˙̂qi− q̇id (in radians/second) for joints 1 and 2. The
asymptotic behavior for t ≥ 1 is depicted in detail by the red lines and axes.

APPENDIX A
PROOF FOR LEMMA V.1

First note that by subtracting (11) from (32), we obtain

BiF∗r −BiF∗ = MBi

d
dt
(BiVr−BiV )+CBi(

Biω̂)BiVr

−CBi(
Biω)BiV +KBi(

BiVr−BiV̂ ).
(49)

Utilizing the properties of CBi(·) as in Section IV and using
the fact that 2V T

1 V2 ≤ ‖V1‖2 +‖V2‖2, we obtain

(BiVr−BiV )T [CBi(
Biω̂)BiVr−CBi(

Biω)BiV ]

= (BiVr−BiV )T CBi(
Biω̂−Biω)BiV

≤ 1
2
‖BiVr−BiV‖2 +

1
2
‖CBi(

Biω̂−Biω)BiV‖2

≤ 1
2
‖BiVr−BiV‖2 +

1
2

M2
c,i‖BiV̂ −BiV‖2M2

v,i

(50)

where we also used the boundedness assumption of BiV and
the relative boundedness (5c) of CBi(·). Similarly, we obtain

− (BiVr−BiV )T KBi(
BiVr−BiV̂ )

≤−(BiVr−BiV )T KBi(
BiVr−BiV ) (51)

+
1
2
‖
√

KBi(
BiVr−BiV )‖2 +

1
2
‖
√

KBi(
BiV̂ −BiV )‖2.
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Moreover, using (9), (12), (31) and (33) we obtain

(BiVr−BiV )T (BiF∗r −BiF∗)

= (BiVr−BiV )T [(BiFr−BiF)−BiUTi(
TiFr−TiF)

]
= pBi −

[BiUT
Ti
(BiVr−BiV )

]T
(TiFr−TiF)

= pBi − (TiVr−TiV )T (TiFr−TiF) = pBi − pTi .

(52)

Using (49)–(52) together with (24), νBi in (35) satisfies

ν̇Bi = ν̇Bi,ctrl + ν̇Bi,obs

=−(BiVr−BiV )T [CBi(
Biω̂)BiVr−CBi(

Biω)BiV ]

− (BiVr−BiV )T KBi(
BiVr−BiV̂ )

+(BiVr−BiV )T (BiF∗r −BiF∗)+ ν̇Bi,obs

≤ 1
2
‖BiVr−BiV‖2 +

1
2

M2
c,i‖BiV̂ −BiV‖2M2

v,i

− (BiVr−BiV )T KBi(
BiVr−BiV )+ pBi − pTi

+
1
2
‖
√

KBi(
BiVr−BiV )‖2 +

1
2
‖
√

KBi(
BiV̂ −BiV )‖2

− (BiV̂ −BiV )T (LBi −Mc,iMv,iI6×6)(
BiV̂ −BiV )

=−(BiVr−BiV )T
(

1
2

KBi −
1
2

I6×6

)
(BiVr−BiV )

− (BiV̂ −BiV )T

×
[

LBi −Mc,iMv,i

(
1+

1
2

Mc,iMv,i

)
I6×6−

1
2

KBi

]
× (BiV̂ −BiV )+ pBi − pTi ,

and the claim follows.

APPENDIX B
PROOF FOR LEMMA V.2

First note that by subtracting (15) from (38b), we obtain

τair− τai =− Im,i(q̈ir− q̈i)− [ fc,i(q̇ir)− fc,i(q̇i)]

− kq,i(q̇ir− ˙̂qi).
(53)

Using (6), (8), (14), (13), (30), and (38) we obtain for i= 1 that

(q̇1r− q̇1)(τa1r− τa1)

= (q̇1r− q̇1)zT
τ (

B1Fr−B1F)

= [B1Vr−B1V −B0UT
B1
(B0Vr−B0V )]T (B1Fr−B1F)

= pB1 − (B0Vr−B0V )T B0UB1(
B1Fr−B1F)

= pB1 − (B0Vr−B0V )T (B0Fr−B0F) = pB1 − pB0 .

(54)

Similarly, using (6), (10), (14), (37) and (38), we obtain for
i ∈ {2,3, . . . ,n} that

(q̇ir− q̇i)(τair− τai)

= (q̇ir− q̇i)zT
τ (

BiFr−BiF)

=
[
(BiVr−BiV )−Ti−1UT

Bi
(Ti−1Vr−Ti−1V )

]T
(BiFr−BiF)

= pBi − (Ti−1Vr−Ti−1V )T Ti−1UBi(
BiFr−BiF) (55)

= pBi − (Ti−1Vr−Ti−1V )T (Ti−1Fr−Ti−1F) = pBi − pTi−1 .

Using (53)–(55) together with (28), νai in (39) satisfies

ν̇ai =−ki(q̇ir− q̇i)
2− [ fc,i(q̇ir)− fc,i(q̇i)](q̇ir− q̇i)

− (q̇ir− q̇i)(τair− τai)+ ki(q̇ir− q̇i)( ˙̂qi− q̇i)+ ν̇i,obs

≤−1
2

ki(q̇ir− q̇i)
2−

(
Im,iLi−

m2
c,i + ki

2

)
( ˙̂qi− q̇i)

2

− 1
2

s2
i + pTi−1 − pBi ,

and the claim follows.
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[7] J. Koivumäki, W.-H. Zhu, and J. Mattila, “Energy-efficient and high-
precision control of hydraulic robots,” Control Engineering Practice,
vol. 85, pp. 176–193, 2019.

[8] H. Berghuis and H. Nijmeijer, “A passivity approach to controller-
observer design for robots,” IEEE Trans. Robot. Autom., vol. 9, no. 6,
pp. 740–754, 1993.

[9] S. Berkane, “A survey on output feedback control of robot manipu-
lators with an application to PHANToM 1.5A haptic device,” 2018,
arXiv:1812.06809.

[10] S. Nicosia and P. Tomei, “Robot control by using only joint position
measurements,” IEEE Trans. Automat. Control, vol. 35, no. 9, pp. 1058–
1061, 1990.

[11] W.-H. Zhu, H.-T. Chen, and Z.-J. Zhang, “A variable structure robot
control algorithm with an observer,” IEEE Trans. Robot. Autom., vol. 8,
no. 4, pp. 486–492, 1992.

[12] T. Burg, D. Dawson, and P. Vedagarbha, “A redesigned DCAL controller
without velocity measurements: theory and demonstration,” Robotica,
vol. 15, pp. 337–346, 1997.

[13] E. Zergeroglu, W. Dixon, D. Haste, and D. Dawson, “A composite
adaptive output feedback tracking controller for robotic manipulators,”
Robotica, vol. 17, pp. 591–600, 1999.

[14] S. Malagari and B. J. Driessen, “Globally exponential controller/observer
for tracking in robots without velocity measurement,” Asian J. Control,
vol. 14, no. 2, pp. 309–319, 2012.

[15] B. J. Driessen, “Observer/controller with global practical stability for
tracking in robots without velocity measurement,” Asian J. Control,
vol. 17, no. 5, pp. 1898–1913, 2015.

[16] Fanping Bu and Bin Yao, “Observer based coordinated adaptive robust
control of robot manipulators driven by single-rod hydraulic actuators,”
in IEEE International Conference on Robotics and Automation, vol. 3,
2000, pp. 3034–3039.

[17] M. R. Sirouspour and S. E. Salcudean, “Nonlinear control of hydraulic
robots,” IEEE Trans. Robot. Autom., vol. 17, no. 2, pp. 173–182, 2001.

[18] H. K. Khalil, Nonlinear systems, 3rd ed. Upper Saddle River, NJ:
Prentice-Hall, 2002.
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