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Abstract—This paper studies linear model predic-
tive control of real matrix-valued single delay systems.
The delay system is written as an abstract infinite-
dimensional control system which is then mapped
into an infinite-dimensional discrete-time control sys-
tem using Cayley-Tustin discretization. A constrained
model predictive control (MPC) problem is formu-
lated for the discrete-time system where a terminal
penalty function is utilized to cast the infinite-horizon
optimization problem into a finite-horizon one. The
proposed MPC design is demonstrated on an example
of constrained stabilization of a 2 × 2 system. We will
demonstrate that the proposed discrete-time MPC
law not only stabilizes the discrete-time system but
can be utilized in stabilizing the original continuous-
time system as well, which is due to several favorable
properties of the Cayley-Tustin discretization.

I. Introduction
Time delay systems belong to the class of infinite-

dimensional functional differential equations and can be
used to model aftereffect phenomena in processes with
examples in biology, chemistry, economics etc. (see the
survey [12] and the references therein for the full list of
examples and further motivation). A delay system can be
equivalently written as a finite-dimensional distributed
parameter system as described in [2, Sect. 2.4 and various
examples], which allows us to analyze time delay systems
by the means of infinite-dimensional systems theory, as
well as utilize existing control strategies developed for
distributed parameter systems.
Model predictive control (MPC) has been studied for

nonlinear delay systems without terminal constraints in
[11] and for discrete-time delay systems with robustness
with respect to linear parameter uncertainties in [8], in
both of which the considered delay systems are of the
similar single delay type as what will be considered in
this paper. Additionally, there are delay MPC papers
that address solely systems under input delays, which are
outside the scope of this paper (see (1) for the type of
systems considered).
The model predictive control approach that will be

utilized in designing a control law for the single delay
systems is based on earlier work by the authors [13], [5],
where the proposed design has been applied to transport-
reaction processes and Schrödinger equation, respectively.
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In addition to the preceding works, the manuscript [4] by
the authors addresses the theoretical basis for applying
the proposed design to distributed parameter systems in
general, especially to the class of regular linear systems.
As opposed to [8], [11], the our design accounts for output
constraints but is on the other hand limited to linear delay
systems and presently without parameter uncertainties.

The proposed model predictive control design is based
on Cayley-Tustin discretization that maps a continuous-
time system into a discrete-time one. The discretiza-
tion preserves several important properties between the
continuous- and discrete-time systems such as asymptotic
stability, controllability and observability [1]. Further-
more, the discretization is convergent with respect to the
inputs and outputs of the continuous- and discrete-time
systems [3], which essentially allows us to design a control
law for the continuous-time system based on the Cayley-
Tustin discretized system. Eventually, the discrete-time
MPC design reduces to the classical MPC design for which
optimality and convergence have been proved [9], [10].
As the proposed MPC design is essentially a direct

application of authors’ previous work, the contribution of
the paper comprises several novel remarks on the design:
1) In the previous work, the applicability of the

discrete-time control law to the continuous-time
model has been justified by the properties of Cayley-
Tustin discretization without a proper demonstra-
tion. In this paper, we will show that the discrete-
time controls can be directly utilized to stabilize
the original continuous-time system as well.

2) In their previous work, the authors have applied the
control strategy only for single-input-single-output
systems. In this paper, the example delay system
has two-dimensional input and output spaces.

3) The proposed MPC design is applied to time delay
systems and accounts for simultaneous satisfaction
of input and output constraints, which to our
knowledge is a novelty with respect to existing MPC
designs for delay systems.

The paper is organized as follows. In Section II, we
present the considered class of single delay systems and
reformulate them to the abstract differential equation
framework. In Section III, Cayley-Tustin time discretiza-
tion is invoked and utilized in computing the discretized
operators and their adjoints for the class of single delay
systems. In Section IV, the model predictive control
problem is formulated and solved, which provides the
optimal controls for the discrete-time system. In Section



V, the control design is demonstrated on an example,
where we demonstrate that the proposed control design
stabilizes not only the Cayley-Tustin discretized system
but also the original continuous-time system. Finally, the
paper is concluded in Section VI.

II. Delay Systems
Consider single time delay systems of the form

ż(t) = A0z(t) +A1z(t− τ) +B0u(t), z(0) = r (1a)
z(θ) = f(θ), −τ ≤ θ < 0 (1b)
y(t) = C0z(t) (1c)

where A0, A1 ∈ Rn×n, B0 ∈ Rn×m, C0 ∈ Rp×n for some
n,m, p ∈ N, τ > 0 is the time delay and f ∈ L2(−τ, 0;Rn)
is the past data for θ ∈ [−τ, 0]. By [2, Sect. 2.4], the
system (1) can be formulated as an abstract differential
equation of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 (2a)
y(t) = Cx(t) (2b)

on the Hilbert spaceM2(−τ, 0;Rn) := Rn⊕L2(−τ, 0;Rn)
equipped with the corresponding inner product which
we denote by 〈·, ·〉. In (2), A is the generator of a C0-
semigroup, given by [2, Thm 2.4.6]

A

[
r
f(·)

]
=
[
A0r +A1f(−τ)

df

dθ
(·)

]
, (3)

with domain

D(A) =
{[

r
f(·)

]
∈M2(−τ, 0;Rn) | f abs. cont.,

df

dθ
∈ L2(−τ, 0;Rn), f(0) = r

} (4)

and B =
[
B0
0

]
, C = [C0 0] are bounded operators. For

simplicity, we will make a standing assumption that the
delay system is exponentially stable.

III. Cayley-Tustin Time Discretization
Consider a system of the form given in (2). Given a

discretization parameter h > 0, a Crank-Nicolson type
time discretization of (2) is given by

x(ih)− x((i− 1)h)
h

≈ Ax(ih) + x((i− 1)h)
2 +Bu(ih)

y(ih) ≈ Cx(ih) + x((i− 1)h)
2

for i ≥ 1. Let u(h)
k /
√
h be an approximation of u(t) on

the interval t ∈ ((k − 1)h, kh), e.g., by the mean value
sampling as in [3]:

u
(h)
k√
h

= 1
h

kh∫
(k−1)h

u(t)dt.

It has been shown in [3] that Cayley-Tustin discretization
is a convergent time discretization scheme for input-
output stable well-posed systems with finite dimensional
input and output spaces, that is, y(h)

k /
√
h → y(t) as

h → 0. Thus, denoting uhk/
√
h and yhk/

√
h by u(k) and

y(k), respectively, the Cayley-Tustin transform of the
system (2) to a discrete-time system (Ad, Bd, Cd, Dd) is
given by

x(k) = Adx(k − 1) +Bdu(k), x(0) = x0 (5a)
y(k) = Cdx(k − 1) +Ddu(k) (5b)

with the operators defined as[
Ad Bd
Cd Dd

]
:=
[
(δ +A)(δ −A)−1

√
2δ(δ −A)−1B√

2δC(δ −A)−1 G(δ)

]
,

where G(δ) := C(δ−A)−1B denotes the transfer function
of the original system (2) and δ = 2/h which needs to
be in the resolvent set of A, i.e., δ ∈ ρ(A). It is easy to
see that the operator Ad can be equivalently expressed
as Ad = −I + 2δ(δ −A)−1.
In addition to the input-output-convergence, Cayley-

Tustin discretization has several other favorable properties
for the purposes of stabilization and control as shown
by the results in [1]. For example, by [1, Lem. 2.2] the
discrete-time system is asymptotically stable if and only
the continuous-time system is. Moreover, the continuous-
and discrete-time systems have equivalent controllability
and observability Gramians and the solutions of the
continuous- and discrete-time Lyapunov and Riccati equa-
tions are equivalent [1, Thm. 2.4]. We will utilize some
of these properties when deriving the model predictive
control law for the delay system (1).

A. Cayley-Tustin Discretization for the Delay System
In order to compute the Cayley-Tustin discretization

for the delay system, we first need to find the resolvent
operator of the system operator A. By [2, Lem 2.4.5], the
resolvent is given for any δ ∈ ρ(A) by

(δ −A)−1
[
r
f(·)

]
=
[
g(0)
g(·)

]
,

where

g(θ) = eδθg(0)−
θ∫

0

eδ(θ−s)f(s)ds, θ ∈ [−τ, 0]

and

g(0) = ∆(δ)−1

r +
0∫
−τ

e−δ(θ+τ)A1f(θ)dθ

 ,

where
∆(δ) = δ −A0 −A1e

−δτ ,

which directly yields the expression for Ad = −I + 2δ(δ−
A)−1. Based on the preceding, it can be easily seen that

Bd =
√

2δ(δ −A)−1B =
√

2δ
[

∆(δ)−1B0
eδ·∆(δ)−1B0

]
(6)



and

Cd

[
r
f(·)

]
=
√

2δC(δ −A)−1
[
r
f(·)

]
=
√

2δC0g(0) (7)

and finally,

Dd = C(δ −A)−1B = C0∆(δ)−1B0. (8)

B. Adjoint Operators
In order to compute the adjoints for the discretized

operators (Ad, Bd, Cd, Dd), we utilize [2, Lem. 2.4.8]
where it is given that the adjoint of (δ−A)−1 is given by

(δ −A)−∗
[
q
f(·)

]
=


∆T (δ)−1

(
q +

0∫
−τ

eδθf(θ)dθ
)

s∫
−τ

e−δ(s−θ)f(θ)dθ + e−δ(s+τ)AT1 q


where the second component is defined for s ∈ [−τ, 0].
Using the preceding, we directly obtain

A∗d = −I + 2δ(δ −A)−∗

and it is easy to compute

B∗d

[
q
f(·)

]
=
√

2δB∗(δ −A)−∗
[
q
f(·)

]

=
√

2δBT0 ∆T (δ)−1

q +
0∫
−τ

eδθf(θ)dθ


and

C∗d =
√

2δ(δ −A)−∗C∗ =
√

2δ
[

∆T (δ)−1CT0
e−δ(·+τ)AT1 C

T
0 ,

]
,

and finally

D∗d = DT
d = BT0 ∆T (δ)−1CT0 .

IV. The Model Predictive Control Problem
The moving horizon regulator is based on a similar for-

mulation emerging from the finite-dimensional framework
[9], [10] and has been formulated for general input and
output spaces in the distributed parameter system setting
in [4]. For delay systems with real vector valued input and
output spaces, the objective function with constraints at
a given sampling time k is given by

min
u

∞∑
i=k

yTi Qyi + uTi Rui

s.t. xi = Adxi−1 +Bdui

yi = Cdxi−1 +Ddui

umin ≤ ui ≤ umax

ymin ≤ yi ≤ ymax ∀i ≥ k

(9)

where Q and R are positive definite matrices. In the
upper and lower bounds, the inequalities are interpreted
elementwise which allows different components of the
inputs and outputs to have independent upper and lower
bounds.

The aforementioned infinite-horizon open-loop objec-
tive function can be cast into a finite-horizon open-loop
objective function under the assumption that the input
u is zero beyond the control horizon N , i.e., uk+N+i = 0
for all i ∈ N0. Additionally, a penalty term needs to be
included to account for the cost of the outputs beyond the
control horizon. As we have assumed the considered delay
system to be exponentially stable, the extended output
operator C is infinite-time admissible for the strongly
continuous semigroup generated by A in (2), and thus,
the penalty term can be written according to [4, Sect. 3.1]
as a state penalty term < xk+N−1, Q̄xk+N−1 >, where
Q̄ is the solution of the Lyapunov equation

A∗Q̄+ Q̄A = −C∗QC (10)

or equivalently its discrete-time counterpart

A∗dQ̄Ad − Q̄ = −C∗dQCd (11)

which have unique and equivalent solutions by [1, Thm.
2.4]. Thus, the finite horizon objective function is given by

min
u

k+N−1∑
i=k

yTi Qyi + uTi Rui+ < xk+N−1, Q̄xk+N−1 >

(12)
with the same constraints as in (9).

Similar to [4], we use the notation Uk := (uk+i)N−1
i=0

and Yk := (yk+i)N−1
i=0 , and write (12) as a quadratic

optimization problem for Uk:

min
Uk

UTk HUk + 2UTk Pxk−1 (13)

where H ∈ RmN×mN is self-adjoint given by

hi,j =


D∗dQDd +B∗dQ̄Bd +R for i = j

D∗dQCdA
i−j−1
d Bd +B∗dQ̄A

i−j
d Bd for i > j

h∗j,i for i < j

and P : M2(−τ, 0;Rn) → RmN is a bounded linear
operator given by

P =


D∗dQCd +B∗dQ̄Ad
D∗dQCdAd +B∗dQ̄A

2
d

...
D∗dQCdA

N−2
d +B∗dQ̄A

N−1
d

 .
The objective function in (13) is subjected to con-

straints

Umin ≤ Uk ≤ Umax (14a)
Ymin ≤ SU + Tx(ζ, k) ≤ Ymax (14b)

where, e.g., Umin contains N copies of umin. The con-
straints can be written in the form

ImN×mN
−ImN×mN

S
−S

Uk =


Umax
−Umin

Ymax − Txk
−Ymin + Txk





where S ∈ RpN×mN is block lower triangular given by

si,j =


Dd for i = j

CdA
i−j−1
d Bd for i > j

0 for i < j

and T : M2(−τ, 0;Rn) → RpN is a bounded linear
operator given by T = (CdAk−1

d )Nk=1.
The model predictive control law is obtained by solving

the optimization problem (13) for each step k = 1, 2, . . . .
When the set of optimal control moves U∗k is obtained for
the kth step, the first m components of U∗k corresponding
to u∗k is given as an input to the system. Then, the
optimization problem is solved again for the next step to
obtain a new set of optimal inputs U∗k+1, of which the
first m components provide the next input for the system.
This procedure is then repeated in the subsequent time
instances.

As Cayley-Tustin discretization preservers asymptotic
stability and observability Gramians between continuous
and discrete time, stability results from classical discrete-
time MPC, e.g., [10, Thm. 3] can be extended to the
infinite-dimensional discrete-time system (5). This obser-
vation was already made in our previous work and we
merely repeat the result in the following:

Theorem 1: [4, Thm. 3.1] Provided that the input and
output constraints are feasible, under the controls u∗k
from (12) with N sufficiently large the output y(k) of the
discrete-time system (5) converges asymptotically to zero
and satisfies the output constraints.
By the input-output convergence of Cayley-Tustin

discretization, the above result yields the following ap-
proximate result for the continuous-time system under
discrete-time controls.

Theorem 1: With y(k) and u∗k from Theorem 1, under
controls u(t) = u∗k/

√
h for t ∈ [h(k − 1), hk] the

output y(t) of the continuous-time system (2) converges
asymptotically to zero and satisfies the output constraints
approximately in the sense that y(t) → y(k)/

√
h as

h→ 0.
Note that due to the assumed exponential stability,

the states of the discrete- and continuous-time systems
naturally go to zero as well. Further note that there
is no uniform convergence rate for y(t) → y(k)/

√
h [3,

Sect. 5], due to which the result of Corollary 1 cannot be
improved with a convergence estimate. Finally note that
the proposed design is note limited to stable systems as
certain instabilities can be dealt with as in [4, Sect. 3.2],
or in [13] as a delay system can only have finitely many
unstable eigenvalues by [2, Thm. 2.4.6], but for simplicity
we restrict here to the stable case.

A. On solving the Lyapunov equation
Solving the Lyapunov equation (10) for the delay

system is different from how it was solved in the previous
works by the authors [4], [5], [13], where in most of the
examples the system operator A was a Riesz spectral

operator which was utilized in solving the Lyapunov
equation. However, the operator A associated with the
delay system (1) is not a Riesz spectral operator, and
hence, other strategies need to be incorporated in order
to solve the Lyapunov equation.
It is known by standard infinite-dimensional systems

theory that the unique positive solution of the Lyapunov
equation (10) is in general given by the extended observ-
ability Gramian [2, Sect. 4.1]

Q̄x =
∞∫

0

T ∗(t)C∗CT (t)xdt

for x ∈ D(A), where T (t) is the strongly continuous
semigroup generated by A. However, even having the
expression for the semigroup T (·) by [2, Sect. 2.4] does not
make the extended observability Gramian a particularly
reasonable way to solve the Lyapunov equation.
Lyapunov matrices for matrix-valued single delay sys-

tems have been considered, e.g., in [6], [7]. However, in
those references the past data f(·) is not accounted for
and the solution obtained for the delay Lyapunov equation
is a matrix-valued function of time. Thus, the Lyapunov
matrix approach does not seem to be compatible with
the semigroup approach that we are using, so we cannot
utilize the results provided in the preceding references.
Another approach that can be utilized also in the

semigroup setting comes from the controllability and
observability considerations of delay systems in [14] using
the matrix Lambert W function. The preceding article
provides an expression for the observability Gramian of
a matrix-valued single delay system, which can then be
utilized in computing the extended observability Gramian
to solve the Lyapunov equation. The expression for the
observability Gramian is given in [14, Thm. 2] which
involves computing coefficients based on the matrices
A0, A1, the delay τ and the past data f(·) along with
the matrix Lambert W function. As we are not aware
of better ways to solve the Lyapunov equation for the
delay system, the approximate solution using the method
developed in [14] is utilized in the ensuing section.

V. Numerical Example

Based on the expressions derived for the discretized
operators Ad, Bd, Cd, Dd and their adjoints in Section III,
the discretized operators can be easily computed for any
single delay system by substituting the actual parameter
values to the corresponding equations. For brevity, we
consider as a numerical example a simple 2× 2 system of
the form (1) with parameters

A0 =
[
−4 2
1 −3

]
, A1 =

[
0 1
2 0

]
, B0 =

[
1 3
4 2

]
,

C0 = I2×2 and τ = 1. Moreover, let the initial data
be given by f(θ) = [sin(θ) − 1/4, cos(θ) − 1/2]T for
θ ∈ [−1, 0] and z(0) = f(0) = [−1/4, 1/2]T .



For Cayley-Tusting discretization, let us at this point
choose the time discretization parameter as h = 2−6 so
that δ = 128. For numerical integration, we approximate
dθ ≈ 2−9. For the MPC formulation, let us choose the
weights for the objective function as Q = R = I2×2 and
the prediction horizon as N = 10. The intended upper and
lower bounds for the continuous-time inputs and outputs
are given by −0.3 ≤ u(t) ≤ 0.9 and −0.25 ≤ y(t) ≤ 0.6
so that in the discrete-time formulation we will be using
bounds −0.3

√
h ≤ u(k) ≤ 0.9

√
h and −0.25

√
h ≤ y(k) ≤

0.6
√
h. Naturally we could impose the bounds for both

of the input and output components independently but
opted not to do so for the sake of brevity.

A. Simulation with the discrete-time system
The simulation results for the Cayley-Tustin discretized

version of the delay system under the model predictive
control law obtained by solving (13) repeatedly are shown
in Figure 1. The simulation is run for k = 1, 2, . . . 256
steps which is equivalent to t ∈ [0, 4] with the time
discretization parameter h = 2−6. The discrete-time
inputs and outputs are normalized by h−1/2 in order to
eliminate the scaling effect the discretization parameter
has on them (recall that y(k)/

√
h approximates y(t)).

-0.4

0

0.4

0.8

0 50 100 150 200 250

-0.4

0

0.4
MPC

no control

Fig. 1. Normalized controls and outputs for the discrete-time model
for time discretization h = 2−6 and comparison to non-controlled
outputs. The dashed lines denote the input and output constraints.

It can be seen from Figure 1 that in the beginning of
the simulation some control effort is applied to bring the
output faster towards zero. Then a higher-gain control
is applied to keep the second output component within
the allowed limits. At this point, it can be seen that the
corresponding output of the non-controlled system (the
dotted red lines) violates the lower output constraint.
Finally, the MPC controls and outputs decay close to
zero whereas the non-controlled outputs decay towards
zero much slower. Naturally the non-controlled outputs
will eventually decay to zero as well due to the stability
of the considered system.

B. Discrete-time MPC for the continuous-time system
In this section, we utilize the discrete-time model

predictive control law to control the continuous-time

system and see how the continuous-time output behaves.
In order to do this, we define a continuous-time control law
as u(t) = u(k)/

√
h for t ∈ [(k−1)h, kh], under which the

continuous-time output y(t) will behave approximately
as y(k)/

√
h by the input-output convergence of Cayley-

Tustin discretization. In order to simulate the continuous
time system, we solve the considered delay system using
the dde23-solver in Matlab.
In Figure 2, the output y(t) of the continuous-time

system is displayed for t ∈ [0, 4] under the controls
derived from the discrete-time controls displayed in Figure
1. The continuous-time output under no controls is
displayed there as well for reference. It can be seen by
comparing Figures 1 and 2 that while the discrete-time
output y(k)/

√
h seems to approximate the continuous

output y(t) rather accurately, the second component of
y(t) does however violate the lower output constraint
while close to its minimum. This behavior is expected as
the values of y(t) do deviate from the ones of y(k)/

√
h,

so we cannot guarantee that the continuous-time output
would satisfy the output constraints even if the discrete-
time output does. Regardless, the discrete-MPC-based
control law still stabilizes the continuous-time system
much faster than having no controls. The approximation
error y(t)− y(k)/

√
h is shown in Figure 3.

0 1 2 3 4

-0.4

0

0.4 MPC

no control

Fig. 2. Outputs of the continuous-time model under the MPC
control law obtained with time discretization h = 2−6 along with
output constraints drawn with dashed lines.

0 1 2 3 4

-0.04

-0.02

0

0.02

Fig. 3. Approximation error y(t)− y(k)/
√

h for h = 2−6.

Even though there is no way to guarantee that the con-
tinuous output y(t) would satisfy the output constraints
in the proposed setting, we can improve the convergence of
the discrete-time outputs y(k)/

√
h to the continuous-time

outputs y(t) by using a smaller discretization parameter
h. In order to demonstrate this, we repeat the MPC
computations of the previous section with a denser time
discretization h = 2−8. The resulting control law and the
discrete-time outputs can be seen in Figure 4, where the
outputs of the non-controlled discrete-time system are
displayed as well (the same dotted red lines as in Figure



1). Due to the more accurate time discretization, the
obtained control law is somewhat different from the one
shown in Figure 1, but there are no notable differences
between the discrete-time outputs.
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Fig. 4. Normalized controls and outputs for the discrete-time model
for time discretization h = 2−8 and comparison to non-controlled
outputs. The dashed lines denote the input and output constraints.

Finally, the output of the continuous-time system under
the discrete-MPC-based control law is displayed in Figure
5. As expected, the continuous-time output behaves more
closely as the discrete-time output in Figure 4 (or rather
vice versa but regardless, they are closer to one another).
The continuous-time output does still violates the lower
output constraint around its minimum value, but the
violation is much smaller than with the coarser time
discretization h = 2−6. The approximation error y(t)−
y(k)/

√
h for h = 2−8 is shown in Figure 6 which shows

that the errors have diminished roughly by a factor of
four.

0 1 2 3 4
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0

0.4 MPC

no control

Fig. 5. Outputs of the continuous-time model under the MPC
control law obtained with time discretization h = 2−8 along with
output constraints drawn with dashed lines.
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-0.01

0

0.01

Fig. 6. Approximation error y(t)− y(k)/
√

h for h = 2−8.

VI. Conclusions
Cayley-Tustin time discretization was applied to single

delay systems in order to design a discrete-time model
predictive control law for the class of systems based on
the earlier work on the subject by the authors. Once
the delay system was written as an abstract differential
equation by the means described in [2, Sect. 2.4], the
control design was a direct application of the design
originally proposed in [13]. The performance of the control
design was demonstrated by a numerical example.
The numerical tests also demonstrated the result of

Corollary 1, i.e., that the discrete-MPC-based control
law stabilizes the continuous-time system, but there is
no guarantee that the continuous output would strictly
satisfy the output constraints. The constraint violation
could possibly be avoided by adding a certainty factor
to the discrete-time constraints, so that the discrete-time
output should actually satisfy stricter constraints than
the continuous output, where the level of certainty should
depend on the discretization parameter h. Investigation
of this idea will be a topic of future research.
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