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Abstract:
We consider robust output regulation of a partial differential equation model describing
temperature evolution in a room. More precisely, we examine a two-dimensional room model
with the velocity field and temperature evolution governed by the incompressible steady state
Navier-Stokes and advection-diffusion equations, respectively, which coupled together form
a simplification of the Boussinesq equations. We assume that the control and observation
operators of our system are distributed, whereas the disturbance acts on a part of the boundary
of the system. We solve the robust output regulation problem using a finite-dimensional low-
order controller, which is constructed using model reduction on a finite element approximation
of the model. Through numerical simulations, we compare performance of the reduced-order
controller to that of the controller without model reduction as well as to performance of a
low-gain robust controller.
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1. INTRODUCTION

We consider a thermal control problem for a two-
dimensional room model. The partial differential equation
(PDE) model considered consists of an advection–diffusion
equation with the advection field governed by the steady
state incompressible Navier–Stokes equations. This is a
simplification, with one-way coupling between the PDEs,
of the Boussinesq equations with two-way coupling be-
tween the advection field and the temperature.

Owing to the fact that these types of models are often em-
ployed to study thermal regulation and energy efficiency of
buildings, modeling as well as theoretical approaches with
both of the aforementioned setups are an active area of
research. Feedback stabilization of both the Boussineq and
the Navier–Stokes equations using boundary control has
been studied by a variety of researchers, see for example
(Badra, 2012; Nguyen and Raymond, 2015; Burns et al.,
2016; Hu et al., 2016; He et al., 2018; Ramaswamy et al.,
2019), and several regulation examples for both PDE
setups are presented in (Aulisa and Gilliam, 2016).

The goal of robust output tracking is to have the output
of the system converge to some desired reference trajec-
tory despite disturbance signals or system perturbations.
Achieving robust output tracking can be guaranteed by
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solving the robust output regulation problem relying on
the internal model principle (Francis and Wonham, 1975,
1976; Davison, 1976). First developed in the 1970s for
finite-dimensional systems, the principle has since been
formulated also for infinite-dimensional systems, see (Re-
barber and Weiss, 2003; Hämäläinen and Pohjolainen,
2010; Paunonen and Pohjolainen, 2010) with recent results
(Paunonen and Pohjolainen, 2014; Humaloja et al., 2019)
considering boundary control systems.

As the main result of this paper, we construct a finite-
dimensional low-order controller, which solves the robust
output regulation problem for the room model and is
based on the work of Paunonen and Phan (2020). Low
order of the controller is achieved with two steps. As
the first step, we approximate the plant using a finite
element approximation and design the controller based
on the received operator approximations. As the second
step, we reduce the order of the controller by apply-
ing balanced truncation, see (Moore, 1981; Pernebo and
Silverman, 1982; Benner and Faßbender, 2013). As an
alternative controller structure, and a point of reference,
we construct a low-gain robust controller previously intro-
duced in (Hämäläinen and Pohjolainen, 2000; Rebarber
and Weiss, 2003; Paunonen, 2016).

The paper is organized as follows. In Section 2, we present
the model describing robust thermal regulation problem of
a two-dimensional room with distributed control and ob-
servation together with boundary disturbance. In Section
3, we first formulate the robust output regulation problem



and then verify certain properties of the PDE system. The
verified system properties are then utilized in Section 4,
where we formulate the different controller designs used
in this paper. Tracking performance of the controllers is
illustrated in Section 5 using numerical simulations before
concluding the paper in Section 6.

We denote by L(X,Y ) the set of bounded linear operators
from a normed space X to a normed space Y . Expressions
〈·, ·〉Ω and 〈·, ·〉Γ denote L2-inner products on the two-
dimensional domain Ω and one-dimensional domain Γ,
respectively.

2. PROBLEM FORMULATION

Ω

Γi

Γo

Fig. 1. Outline of the room

We consider a two-dimensional model of a rectangular
room with an inlet and an outlet, see Fig. 1. Denote the
rectangle by Ω ⊂ R2 and its piece-wise smooth boundary
by Γ. Denote locations of the inlet and the oulet by Γi ⊂ Γ
and Γo ⊂ Γ, respectively, and assume Γi ∩Γo = ∅. Finally
denote by Γw = Γ \ (Γi ∪ Γo) the walls of the room.
We assume the temperature evolution of the room to be
governed by the advection–diffusion equation coupled with
the steady-state incompressible Navier–Stokes equations,
i.e.

θ̇(ξ, t) =
1

RePr
∆θ(ξ, t)− v(ξ) · ∇θ(ξ, t) + b(ξ)u(t), (1a)

θ(ξ, 0) = θ0(ξ), (1b)

0 =
1

Re
∆v(ξ)− v(ξ) · ∇v(ξ)−∇p(ξ), (1c)

0 = ∇ · v(ξ) (1d)

subject to the boundary conditions
∂θ

∂n
|Γi = bdwd,

∂θ

∂n
|Γo = 0, θ|Γw = 0, (1e)

v|Γw = 0, v|Γi = f,
(
T (v, p) · n

)
|Γo = 0, (1f)

where θ(ξ, t) is the fluid temperature, v(ξ) is the fluid
velocity, p(ξ) is the fluid pressure, Re is the Reynolds
number, Pr is the Prandtl number, n is the unit outward
normal vector of Γ, wd(t) is a disturbance signal applied
according to the disturbance shape function bd(ξ), f(ξ) is
a time independent boundary fluid flux and T is the fluid
Cauchy stress tensor. The chosen boundary conditions for
v are often called “no-slip” for the Γw part and “stress-
free” for the Γo part. Finally, u(t) is the input signal
of the system applied by b(ξ). We consider in-domain
observations

y(t) =

∫
Ω

θ(ξ, t)c(ξ)dξ,

where c(ξ) is a weight function. Note that depending on
Re and Pr, the choices for b(ξ) and c(ξ) may be restricted
to guarantee exponential stabilizability and exponential
detectability of the system, c.f. Section 4.

The reference signals yr(t) to be tracked and the distur-
bance signals wd(t) to be rejected are of the forms

yr(t) =

q∑
n=1

(acn cos(ωnt) + asn sin(ωnt)), (2a)

wd(t) =

q∑
n=1

(bcn cos(ωnt) + bsn sin(ωnt)), (2b)

where ωn are known frequencies and acn, a
s
n ∈ Rps , bcn,

bsn ∈ Rd are possibly unknown coefficients. Our goal,
more precisely defined in Section 3.1, is to have y(t)
converge exponentially to a given reference yr(t) despite
the disturbance wd(t).

Remark 1. The controller designs of this paper can be
used for a larger class of signals than presented in (2),
as well as for setups with more inputs than outputs.
To be precise, signals with time-dependent polynomial
coefficients aik(t), bjk(t), k = 1, ..., q can be handled, see
(Hämäläinen and Pohjolainen, 2000; Paunonen, 2016).

3. ABSTRACT FORMULATION OF THE CONTROL
PROBLEM

We first present the robust output regulation problem for
abstract linear systems with bounded control, observation
and disturbance. Then we proceed to show that the
considered room model fits into this framework.

3.1 Abstract Linear Control Systems

Let X be a Hilbert space. We formulate the plant of a
control system as an abstract linear system

ẋ(t) = Ax(t) +Bu(t) +Bdwd(t), x(0) = x0 ∈ X, (3a)

y(t) = Cx(t) +Du(t) +Ddwd(t), (3b)

where x(t) and x0 are the state and the initial state of
the system, A : D(A) ⊂ X −→ X is the generator of a
strongly continuous semigroup, B ∈ L(U,X) is the control
operator, Bd ∈ L(Ud, X) is the disturbance operator,
C ∈ L(X,Y ) is the observation operator and D ∈ L(U, Y )
and Dd ∈ L(Ud, Y ) are the feedthrough operators for
the input and the disturbance signals, respectively. Here
U = Rm, Y = Rps and Ud = Rd. Note that we assume for
the system operators other than A to be bounded.

The dynamic error feedback controller on a Hilbert space
Z is formulated as

ż(t) = G1z(t) + G2e(t), z(0) = z0 ∈ Z, (4a)

u(t) = Kz(t), (4b)

where z(t) and z0 are the state and the initial state of
the controller, G1 : D(G1) ⊂ Z −→ Z is the generator
of a strongly continuous semigroup on Z, G2 ∈ L(Y,Z),
e(t) = y(t)−yr(t) is the regulation error and K ∈ L(Z,U).
For practicality, we aim to have Z be finite-, preferably
low-dimensional for efficient applicability of the controller.

Finally, we define the closed-loop system, see (Paunonen
and Pohjolainen, 2010), consisting of the plant and the
controller with the state xe = (x(t), z(t))T and the initial
state xe0 = (x0, z0)T ∈ X × Z =: Xe as

ẋe(t) = Aexe(t) +Bewe(t), xe(0) = xe0,

e(t) = Cexe(t) +Dewe(t),



where we(t) = [wd(t), yr(t)]
T

,

Ae =

[
A BK
G2C G1 + G2DK

]
, Be =

[
Bd 0
G2Dd −G2

]
,

Ce = [C, DK] , De = [Dd, −I]

and Ae generates a strongly continuous semigroup Te(t)
on Xe.

The robust output regulation problem for systems of the
form (3) can be formulated as follows.

The Robust Output Regulation Problem. Design a
controller of the form (4) such that

(1) The semigroup Te(t) is exponentially stable.
(2) For every xe0 and yr(t), wd(t) of the form (2),

||e(t)|| ≤Mee
−ωet(||xe0||+ ||Λ||) (5)

for some Me, ωe > 0, where vector Λ contains the
constants {acn}n, {asn}n, {bcn}n, {bsn}n.

(3) If the operators A,B,Bd, C,D,Dd are perturbed in
a way such that the perturbed closed-loop system
remains exponentially stable, then (5) is still satisfied
for all xe0 and yr(t), wd(t) of the form (2) for some
Mep, ωep > 0.

By the internal model principle, see (Paunonen and Po-
hjolainen, 2010), a controller with G1 including an internal
model based on the frequencies {ωn}qn=1 and G2,K chosen
such that the closed-loop system is exponentially stable
solves the robust output regulation problem.

3.2 The Room Model as a Control System

To represent the room model (1) as an abstract control
system, we assume b, c ∈ L2(Ω) and bd ∈ L2(Γi), define

X = L2(Ω), Hθ =
{
θ ∈ H1(Ω)

∣∣ θ|Γw
= 0
}
,

B = b(ξ) ∈ L(U,X), C = 〈·, c〉Ω ∈ L(X,Y )

and note that a steady state solution (ve, pe) ∈
{
v ∈

(H1(Ω))2
∣∣ ∇ · v = 0, v|Γw

= 0
}
× L2(Ω) for the Navier-

Stokes equations in (1) is guaranteed to exist by (Maz’ya
and Rossmann, 2009). Define the bilinear form

a(θ, φ) = α〈∇θ,∇φ〉Ω + 〈ve · ∇θ, φ〉Ω ∀θ, φ ∈ Hθ,

where α := 1/(RePr), and define the operator A by

〈Aθ, φ〉Ω = −a(θ, φ),

D(A) =
{
θ ∈ Hθ

∣∣∀φ ∈ Hθ, φ→ a(θ, φ) is L2-continuous
}
.

Theorem 2. The bilinear form a(·, ·) is Hθ-bounded and
Hθ-coercive, and the operator A generates an analytic
semigroup on X.

Proof. Let each k(·) denote a constant. For θ, φ ∈ Hθ,
using integration by parts on the advection term and
recalling ∇ · ve = 0, we get

|a(θ, φ)| ≤ α|〈∇θ,∇φ〉Ω|+ |〈ve · ∇θ, φ〉Ω|
≤ α|〈∇θ,∇φ〉Ω|+ |〈ve · n, θφ〉Γ|+ |〈veθ,∇φ〉Ω|.

By Sobolev embedding theorems, for φ, ψ ∈ H1(Ω)

||φψ||L2(Ω) ≤ k1||φ||H1(Ω)||ψ||H1(Ω), (6)

which together with properties of the trace operator and
L2-duality of H

1
2 and H−

1
2 implies

|〈ve · n, θφ〉Γ| ≤ k2||ve||H1(Ω)||θ||H1(Ω)||φ||H1(Ω).

Applying (6) for the third term and using Poincare’s
inequality, we finally get

|a(θ, φ)| ≤ k3||ve||H1(Ω)||θ||H1(Ω)||φ||H1(Ω),

thus a(·, ·) is Hθ-bounded.

By Ladyzhenskaya’s and Young’s inequalities,

|〈ve · n, θ2〉Γ| ≤ k4||ve||H1(Ω)||θ||L2(Ω)||∇θ||L2(Ω)

≤ k2
4

4α
||ve||2H1(Ω)||θ||

2
L2(Ω) + α||∇θ||2L2(Ω),

therefore

a(θ, θ) = α||∇θ||2L2(Ω) +
1

2
〈ve · n, θ2〉Γ

≥ α||∇θ||2L2(Ω) −
k2

4

8α
||ve||2H1(Ω)||θ||

2
L2(Ω) −

α

2
||∇θ||2L2(Ω)

and hence, for λ ≥ k24
8 ||ve||

2
H1(Ω)

a(θ, θ) + λ||θ||2L2(Ω) ≥
α

2
||θ||2H1(Ω),

which indicates that a(·, ·) is Hθ-coercive. This in turn
implies that A generates an analytic semigroup on X, see
(Banks and Ito, 1997). 2

Due to the disturbance signal wd being applied on the
boundary via bd, the corresponding disturbance operator
B̃d is not bounded from Ud to X. However, since the
disturbance signals (2b) are smooth, we can use a change
of variable x = x̃−Bdiwd to homogenize the disturbance
boundary condition (1e), c.f. (Curtain and Zwart, 1995,
Ch. 3.3). Here we have denoted the original state variable
by x̃, the final state variable by x and Bdi is a right inverse

of ∂(·)
∂n |Γi

. The change of variable leads to a bounded
disturbance operator Bd while also introducing a bounded
disturbance feedthrough operator Dd. As such, after the
change of variable the room model can be presented in the
form (3) with the operators other than A being bounded.
As we will see in Section 4, the operators Bd and Dd are
not used for the controller construction. Thus it is enough
to know that the room model can be expressed as (3)
with bounded operators Bd and Dd, but we do not need
an exact expression for these operators.

4. CONTROLLER DESIGN

We present two different controller designs to solve the
robust output regulation problem for systems of the form
(3), which we now know includes the room model (1). The
first one is the “main” controller design of the paper, while
the second one is constructed mainly for performance
comparison purposes.

The “main” controller structure, called “dual observer-
based finite-dimensional controller”, makes use of a
Galerkin approximation to design an observer-based yet
finite-dimensional controller. To further decrease the size
of the controller, balanced truncation is included as a part
of the controller design process. From now on, (·)N refers
to the Galerkin approximation of an operator and (·)r
refers to an operator obtained through model reduction
by balanced truncation.

For the details on the controller design, as well as a
short introduction to the Galerkin approximation and
balanced truncation, see (Paunonen and Phan, 2020). For



a more complete theory, see for example (Strang and Fix,
2008; Benner and Faßbender, 2013). When designing the
controllers, we make the following assumptions.

• The pair (A,B) is exponentially stabilizable and
(A,C) is exponentially detectable.
• For a finite-dimensional approximating subspace HN

θ
of Hθ,

∀φ ∈ Hθ ∃(φN )N , φ
N ∈ HN

θ :

||φN − φ||V
N−→→∞0. (7)

• Orders N and r ≤ N are chosen large enough.
• For simplicity and recalling Remark 1, the system has

equal number of inputs and outputs.

Note that since the operator A has only point spectrum
and a finite number of positive eigenvalues each with finite
multiplicity, the stabilizability and detectability consider-
ations can be reduced to controllability and observatibility
checks of the finite-dimensional unstable parts, see (Badra
and Takahashi, 2014; Burns et al., 2016).

The Dual Observer-Based Finite-Dimensional Con-
troller. Define a controller of the form (4) with z(t) =

[z1(t), z2(t)]
T

by

ż1(t) = G1z1(t) +GN2 C
r
Kz2(t) +GN2 e(t), (8a)

ż2(t) = (ArK + LrCrK)z2(t) + Lre(t), (8b)

u(t) = K1z1(t)−Kr
2z2(t), (8c)

where the operators are chosen as follows, see (Paunonen
and Phan, 2020). Choose positive matrices R1 ∈ L(U),
R2 ∈ L(Y ), constants α1, α2 > 0 and operators Q1 ∈
L(X,Y0), Q2 ∈ L(U0, X) with Hilbert spaces U0, Y0,
such that (A + α1I,B,Q1) and (A + α2, Q2, C) are both
exponentially stabilizable and detectable. Define

G1 = diag(JY1 , J
Y
2 , ..., J

Y
q ) with JYk =

[
0p ωkIp
−ωkIp 0p

]
,

K1 = (Kk
1 )qk=1, Kk

1 = [Ip, 0p],

GN2 =

[
GN2
LN

]
= −ΠNC

N
s R

−1
2 , KN

2 = −R−1
1

(
BN
)∗

ΣN ,

ANs =

[
G1 0

BNK1 A
N

]
.

Here ΣN ,ΠN are the non-negative solutions of the finite-
dimensional Riccati equations

(AN + α1I)∗ΣN + ΣN (AN + α1I)

− ΣNB
NR−1

1 (BN )∗ΣN = −(QN1 )∗QN1 ,

(ANs + α2I)ΠN + ΠN (ANs + α2)∗

−ΠN (CNs )∗R−1
2 CNs ΠN = −QN2 (QN2 )∗.

Finally, use balanced truncation on the system(
AN +BNKN

2 , L
N ,

[
CN +DKN

2

KN
2

])
to obtain a stable r-dimensional system(

ArK , L
r,

[
CrK
Kr

2

])
.

With the aforementioned choices, (8) solves the robust
output regulation problem for signals of the form (2)
provided that N, r ≤ N are large enough.

The second controller design is considerably more straight-
forward to construct. However, it requires the plant to be

exponentially stable instead of only exponentially stabi-
lizable. Note that this controller design can also be used
for initially unstable systems as long as we manage to first
stabilize them and only afterwards design the controller.

The Low-Gain Robust Controller. Assuming that A
generates an exponentially stable semigroup on X, choose
the operators in (4) as

G1 = G1, G2 = (Gk2 )qk=1, Gk2 = [−Ip 0p]
T
, (9a)

K = εK0 = ε(K1
0 , ...,K

q
0), (9b)

Kk
0 =

[
Re(P (iωk)−1) Im(P (iωk)−1)

]
, (9c)

where P (·) is the transfer function of the plant (3) and
ε > 0 is a parameter used to tune the controller. Note
that besides stability, the only information of the plant
required for this controller is that of the transfer function
values at certain frequencies, hence it is easy to implement.
As is shown in (Paunonen, 2016), this simple controller
structure solves the robust output regulation problem for
signals of the form (2) and small enough ε > 0.

5. NUMERICAL EXAMPLE

In this section we illustrate the two controller structures
in action. We consider a case with the control and distur-
bance profiles given by

b(ξ) = χ[0,0.05]×[0.1,0.4](ξ), bd(ξ) = χΓ|Γi
(ξ).

Existence of Bdi can be verified according to (Tucsnak
and Weiss, 2009, Ch. 10). Observation weights are given
by one of the two options

c(1)(ξ) = 0.2−2χ[0.7,0.9]×[0.1,0.3](ξ), (10a)

c(2)(ξ) = 0.2−2χ[0.1,0.3]×[0.7,0.9](ξ), (10b)

which yield us two different setups (b, c(1)) and (b, c(2)).

Let the room be defined by Ω = [0, 1]× [0, 1], Γi = {ξ1 =
0, 0.1 ≤ ξ2 ≤ 0.4} and Γo = {ξ1 = 1, 0.5 ≤ ξ2 ≤ 0.9}. We
choose Re = 100, Pr = 0.7 and consider the inlet velocity
profile

f(ξ) =

[
exp(− 0.0001

((0.5− ξ2)(0.9− ξ2))2
, 0

]T
.

With these choices, we check numerically that the analytic
semigroup generated by A is exponentially stable, thus no
stabilization step is required for the low-gain controller.

As the first step, we need to calculate the steady state
solution for the incompressible Navier–Stokes advection
field. For this we employ the Taylor-Hood finite element
scheme. That is, we triangulate Ω and use quadratic shape
functions for the velocity approximation and linear shape
functions for the pressure approximation. We calculate the
steady state solution using Newton’s method with the ini-
tial guess given by the steady state incompressible Stokes
equation. Quadratic shape functions, which satisfy (7) by
(Strang and Fix, 2008), are then also used for temperature
approximation. The mesh for quadratic shape functions
contains 81 nodes in each direction with uniform spacing.
The calculated steady state advection field is depicted in
Fig. 2 with the ends of the inlet highlighted with black
dots and the ends of the outlet highlighted with red dots.
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Fig. 2. Steady state velocity field, veξ1 on the left and veξ2
on the right

We choose as the reference and disturbance signals

yr(t) = sin(t) + 2 cos(2t), wd(t) = 1.5 cos(3t),

which leads to an internal model of dimension Z0 = 6 in
our controller designs. Using the full mesh to approximate
the infinite-dimensional plant leads, after accounting for
the boundary conditions, to a model order of 6297.

For the dual observer-based controller, we then use a
sparser mesh with 41 nodes in each direction for quadratic
shape functions to construct the operators (·)N yielding a
plant approximation of order 1549, and reduce the order
down to r = 10 using the balred MATLAB function to
construct the operators (·)r. Thus the controllers are of
sizes dimZf = 1555, dimZr = 16 and dimZlg = 6 for
the full, reduced and low-gain controller, respectively. For
each observation setup, we test two parameter sets for the
controller (8);

α1 = α2 = R1 = R2 = 1, (11a)

α′1 = α′2 = 0.5, R′1 = R′2 = 100, (11b)

with Q1 = Q2 = I for both parameter sets.

For the low-gain robust controller, we use the full model
of order 6297 to approximate the transfer function

P (s) = C(sI −A)−1B,

and choose ε1 = 0.08, ε2 = 0.05 for the observation setups
(10a) and (10b), respectively. These choices are based on
roughly maximizing the stability margin of the closed-loop

system. Finally, we choose xe0 = [1X , 0Z ]
T

as the initial
state for each of the simulations.

The tracking performances of the controllers, illustrated
in terms of the system outputs for the setup (10a) and
in terms of the tracking errors for the setup (10b), are
presented in Figs 3 and 4. The figures include either the
observations y(·)(t) (Fig. 3) or the errors e(·)(t) (Fig. 4) for
five different controllers: yred(t), ered(t) and y′red(t), e

′
red(t)

for (8) with model reduction, yf (t), ef (t) and y′f (t), e′f (t)

for (8) without model reduction and ylg(t), elg(t) for the
low-gain controller.

We observe for the performance difference between the
model reduced and the full versions of (8) to be negligible
at least for the chosen closed-loop initial state and r,
since supt∈[0,20] |yf (t) − yred(t)| / 0.01 across all of the
observation and parameter variants. For the observation
setup (10a), there are no major differences in the track-
ing performance between the parameter choices, but for
(10b) the choice (11a) converges faster. For both setups,
error convergence of the low-gain controller is the slowest
despite the attempted optimization of εi.
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Fig. 3. Plant outputs with the observation setup (10a) for
the different controllers
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Fig. 4. Tracking errors with the observation setup (10b)
for the different controllers

The plant states at time t = 20 for both of the setups using
controller (8) with model reduction and the choice (11a)
are presented in Fig. 5. For both of the state plots, the ends
of the outlet are highlighted with red dots, the corners of
the observed area by magenta dots and the corners of the
controlled area, coinciding with the ends of the inlet at
the boundary, with black dots.

Fig. 5. State of the plant at time t = 20 with the
observation setup (10a) on the left and (10b) on the
right

The temperature ranges in the room during the simu-
lations vary greatly depending on the observation setup
and the chosen controller. In the case of design (8),
model reduction does not affect the range significantly, but
depending on the observation setup and the parameter
choice, the temperature range is from −28 ≤ θ ≤ 23
for the setup (10a) with the parameter choice (11b) to
−660 ≤ θ ≤ 570 with the setup (10b) and the parameter
choice (11b). Temperatures near the extrema are only
observed during the first few seconds but the temper-
ature fluctuations remain considerably larger with the
observation setup (10b) compared to (10a) throughout
the simulations. The temperature ranges for the low-gain
design are −20 ≤ θ ≤ 19 for the observation setup (10a)
and −100 ≤ θ ≤ 110 for the observation setup (10b).



6. CONCLUSION

We presented two different controllers for robust output
regulation of a room temperature model. Based on nu-
merical simulations, the dual observer-based controller
outperforms the simpler low-gain robust controller design
in the speed of convergence to the desired reference out-
put. For the chosen initial state, its tracking performance
also remained almost unchanged despite significant order
reduction applied using balanced truncation. The dual
observer-based controller also has the adavantage over
the low-gain one in that it can be designed for unstable
systems as long as the system is exponentially stabilizable
and detectable, whereas the low-gain controller requires
exponential stability from the system. In turn, the dual
observer-based controller may cause comparably high tem-
perature fluctuations within the system.
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