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Abstract— We consider output tracking for a class of viscous
nonlinear fluid flows including the incompressible 2D Navier–
Stokes equations. The fluid is subject to in-domain inputs
and disturbances. We construct an error feedback controller
which guarantees approximate local velocity output tracking
for a class of reference outputs. The control solution covers
point velocity observations and assumes a smooth enough state
space. Efficacy of the control solution is illustrated through a
numerical example.

I. INTRODUCTION

In this work, we consider an output tracking problem
for viscous nonlinear fluid flows in the neighborhood of
a (locally) exponentially stable steady state solution. We
formulate our results for the incompressible Navier–Stokes
equations on a sufficiently regular domain Ω ⊂ R2 with
boundary Γ. More precisely, we consider controlling an
output y of the equations

∂w

∂t
= ν∆w − (w · ∇)w −∇q + fw + fu + fd, (1a)

0 = ∇ · w, w|Γ = 0, (1b)

where w(ξ, t) is the fluid velocity, q(ξ, t) is the fluid pres-
sure, ν is the kinematic viscosity, fw(ξ) is a body force,
fu(ξ, t) is the control action and fd(ξ, t) is the disturbance
action. Our goal is to design a controller such that a chosen
velocity output of (1) converges to a desired reference output
approximately for initial states which are, in a certain sense,
“close enough” to a steady state solution of (1).

Theory of output regulation for nonlinear systems is
still under development, especially for infinite-dimensional
systems. The finite-dimensional results of [11] have been
extended to a class of infinite-dimensional systems in [5]
and for co-located inputs and outputs in [6], based on which
several example cases are presented in [1]. In this work,
we focus on output regulation in an approximate sense
utilizing the results of [13]. In [13], the authors use an error
feedback controller designed for robust output regulation of
exponentially stable regular linear systems and show that the
same controller achieves approximate local output regulation
for a class of nonlinear systems which they call regular
nonlinear systems. Similar approach of using linear control
solutions for nonlinear systems has been utilized for local
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stabilization of nonlinear fluid flows in different setups, see
e.g. [3] for in-domain inputs, [14] for boundary inputs and
[10] for observer design.

As the main contribution of this paper, we show that
the equations (1) can be formulated as a regular nonlinear
system (in the sense of [13]) for a wide range of velocity
observations including the point observation. To achieve this,
we consider the equations (1) on a “lifted” state space, i.e.
we demand more smoothness from the velocity and the
pressure than would typically be required to e.g. solve similar
control problems for linear systems. To formulate (1) as a
regular nonlinear system, we rely on the fluid being viscous
and assume that the domain Ω together with the boundary
conditions are such that the system can be formulated on
the “lifted” state space. These properties, together with the
type (x · ∇)x of the nonlinearity typical for fluid flows,
characterize the fluid flows for which the results can be
applied.

Using the results of [13], we show that in the neighbor-
hood of a steady state solution, velocity observations on
(1) approximately converge to any desired “small enough”
periodic reference signal of the type

yr(t) = a0 +

qs∑
i=1

ai cos(ωit) + bi sin(ωit)

in the sense that for small enough initial data, a finite number
of chosen harmonics of the system output and the reference
output are the same. Here the coefficient vectors ai, bi ∈ Rpy
may be unknown but we expect to know the frequencies ωi.
The controller introduced in [13] also rejects periodic in-
domain disturbance signals of the type

ud(t) = c0 +

qs∑
i=1

ci cos(ωit) + di sin(ωit)

with small enough amplitude, where again ci, di ∈ Rd are
allowed to be unknown. Note that several controllers have
been designed for robust output tracking of similar signal
classes in the case of linear systems, see e.g. [16], [15].

Rest of the paper is organized as follows. In Section II,
we recall the concepts of regular nonlinear systems and
approximate local output regulation. In Section III, we show
that the Navier–Stokes equations with in-domain control
and point observation fit into the framework of regular
nonlinear systems on a suitable state space. In Section IV, we
construct, based on [13], a controller for approximate local
output regulation for the Navier–Stokes equations and then
illustrate the controller’s performance through a simulation



example in Section V. Finally, the paper is concluded in
Section VI.

Throughout the paper we denote by L(X,Y ) the set of
bounded linear operators from a Hilbert space X to a Hilbert
space Y . For a linear operator A : D(A)→ X , D(A) is the
domain of A, ρ(A) is the resolvent set of A and TA is the
strongly continuous semigroup generated by A on X . For
a fixed s ∈ ρ(A), we denote by X−1 the completion of
X with respect to the norm ‖x‖X−1

= ‖(sI − A)−1x‖X
and define X1 = D(A), equipped with the norm ‖x‖X1

=
‖(sI −A)x‖X . Finally, the L2-inner product over a domain
Ω is denoted by 〈(·), (·)〉L2(Ω).

II. REGULAR NONLINEAR SYSTEMS AND OUTPUT
REGULATION

Output regulation for fluid flow systems covered by this
work is based on the concepts of regular nonlinear sys-
tems and approximate local output regulation, which were
introduced in [13]. These concepts are presented next, with
the definition of regular nonlinear systems formulated in
a slightly restricted setting by excluding parts that are not
relevant to this work.

Definition 1: Let X , U , Y and V be Hilbert spaces,
and let CΛ defined by CΛx = lims→+∞ Cs(sI − A)−1x
with D(CΛ) = {x ∈ X|the above limit exists} be the Λ-
extension of the observation operator C, see [21]. The system

ẋ(t) = Ax(t) +Bu(t) +Bdud(t) +QF(x(t)),

x(0) = x0 ∈ X,
y(t) = CΛx(t),

which we denote by ΣF , is called a regular nonlinear system
if the following hold.

(i) The operator A generates an exponentially stable
strongly continuous semigroup TA on X .

(ii) It holds that B ∈ L(U,X−1), Bd ∈ L(Ud, X−1),
Q ∈ L(V,X−1) and C ∈ L(X1, Y ), and the triples
(A,B,C), (A,Bd, C) and (A,Q,C) are regular linear
systems in the sense of [21].

(iii) The nonlinear map F : X → V satisfies F(0) = 0
and is locally Lipschitz. That is, for every bounded set
O ⊂ X , there exists a constant LO such that for all
x1, x2 ∈ O

‖F(x1)−F(x2)‖V ≤ LO‖x1 − x2‖X .

Furthermore, for each γ > 0 there exists a ζ > 0 such
that if sup

{
‖x‖X

∣∣x ∈ O} < ζ, then LO < γ.
To generate the plant input, we use an error feedback

controller of the form

ż(t) = G1z(t) + G2e(t), z(0) = z0 ∈ Z, (3a)
u(t) = Kz(t), (3b)

where e(t) = y(t) − yr(t) is the regulation error and Z
is a Hilbert space. Coupling the controller with a regular

nonlinear system yields the closed-loop system ΣE defined
by

ẋe(t) = Aexe +Bewext(t) +QeF(x(t)), xe0 ∈ Xe,

e(t) = Cexe(t) +Deyr(t)

on the Hilbert space Xe = X × Z, where xe = [x, z]T ,
wext = [ud, yr]

T ,

Ae =

[
A BK
G2CΛ G1

]
, Be =

[
Bd 0
0 −G2

]
, Qe =

[
Q
0

]
,

Ce =
[
CΛ 0

]
, De =

[
0 −I

]
.

Before introducing the output tracking problem, we recall
the concept of harmonics of a function. Consider a function
f = fp+fe, where fp ∈ L2

loc([0,∞);Cn) is T -periodic and
fe ∈ L2([0,∞);Cn). For a non-negative integer l, the lth

harmonic of f is the function

fl(t) = αl sin

(
2πlt

T

)
+ βl cos

(
2πlt

T

)
, t ≥ 0,

where

αl = lim
k∈N,k→∞

2

kT

∫ kT

0

f(t) sin

(
2πlt

T

)
dt,

βl = lim
k∈N,k→∞

2

kT

∫ kT

0

f(t) cos

(
2πlt

T

)
dt,

thus for frequencies of the harmonics, we have ωi = 2πli/T .
Now the problem of achieving approximate local output
regulation is stated as follows.

Problem 2: Let T > 0 be a constant. Assume that yr and
ud are T -periodic functions and let V = {l0, l1, ..., lnv} be a
finite set of non-negative integers. Design an error feedback
controller (3) such that:

1) The closed-loop system ΣE is a regular nonlinear
system.

2) There exist positive constants cy , cd and ce such that
if ‖yr‖L2[0,T ] ≤ cy , ‖ud‖L∞ ≤ cd and ‖xe0‖Xe ≤
ce, then xe converges asymptotically to a T -periodic
function and the lth harmonic of y − yr is 0 for each
l ∈ V. The output satisfies y = yp + ye, where
ye ∈ L2([0,∞);Y ) and yp ∈ L2

loc([0,∞);Y ) is a
T -periodic function.

Accuracy of output tracking by solving the above problem
clearly depends on how dominant the harmonics included in
V are. In many cases, ensuring that the first few harmonics
of y match those of yr results in a small tracking error, since
higher harmonics of the output are typically small.

III. THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS
AS AN ABSTRACT CONTROL SYSTEM

The goal of this section is to formulate the Navier–Stokes
equations (1) as a regular nonlinear system. We start by
finding a suitable state space for the formulation and then
verify that the requirements of Definition 1 are fulfilled.



A. Choosing the State Space

Translating the equations (1) to the vicinity of a steady
state solution (ve, pe) using the change of variables v(ξ, t) =
w(ξ, t)− ve(ξ), p(ξ, t) = q(ξ, t)− pe(ξ) yields

∂v

∂t
= ν∆v − (ve · ∇)v − (v · ∇)ve (4a)

− (v · ∇)v −∇p+ fu + fd, (4b)
0 = ∇ · v, v|Γ = 0 (4c)

with the initial state v(ξ, 0) = v0(ξ). We assume that the
control and the disturbance are defined by

fu(ξ, t) =
[
g1(ξ) g2(ξ) · · · gm(ξ)

]
u(t), (5a)

fd(ξ, t) =
[
g′1(ξ) g′2(ξ) · · · g′d(ξ)

]
ud(t), (5b)

where each g1, ..., gm and g′1, ..., g
′
d is an R2-valued function

on Ω, u(t) ∈ U := Cm is the finite-dimensional control input
and ud(t) ∈ Ud := Cd is the finite-dimensional disturbance
input. Additionally, we assume that the output space Y is
also finite-dimensional and Y = Cpy with py ≤ m.

For simpler notation, we define the spaces

X̃ =
{
v ∈ (L2(Ω))2

∣∣∇ · v = 0, (v · n)|Γ = 0
}
,

H̃ =
{
v ∈ (H1(Ω))2

∣∣∇ · v = 0, v|Γ = 0
}

and the bilinear and trilinear forms

a(v, ψ) = 2ν〈ε(v), ε(ψ)〉L2(Ω) ∀v, ψ ∈ H̃,
b(v, φ, ψ) = 〈(v · ∇)φ, ψ〉L2(Ω) ∀v, φ, ψ ∈ H̃,

where ε(v) = 1/2(∇v + (∇v)T ).
Assumption 3: We assume the following.
(i) The boundary Γ is of class C3 and fw ∈ (H1(Ω))2.

(ii) The linearization of (4) is exponentially stable.
The first part of the assumption guarantees sufficient regu-
larity of the solutions to the Navier–Stokes equations (1),
while the second part is required for Definition 1.(i) to hold
and is satisfied for large enough ν, c.f. [3].

As the first step towards choosing the state space X , we
consider semigroup generation for the linearized version of
(4) on X̃ . A weak formulation for the stationary, linearized
version of (4) subject to zero control and disturbance inputs
is given by

0 = −a(v, ψ)− b(v, ve, ψ)− b(ve, v, ψ) ∀ψ ∈ H̃.

Lemma 4: The operator Ã defined by

Ã = Ã2 + Ã1,

〈Ã2x, ψ〉L2(Ω) = −a(x, ψ),

〈Ã1x, ψ〉L2(Ω) = −b(x, ve, ψ)− b(ve, x, ψ),

D(Ã) = D(Ã2)

=
{
x ∈ H̃

∣∣∀ψ ∈ H̃, ψ → a(x, ψ) is X̃-continuous
}

generates an exponentially stable analytic semigroup on X̃ .
Proof: We start by showing that a(·, ·) is H̃-bounded

and H̃-coercive, i.e. H̃ can be continuously and densely

embedded in X̃ and there exist c1, c2, λ > 0 such that for
every φ, ψ ∈ H̃

|a(φ, ψ)| ≤ c1‖φ‖H̃‖ψ‖H̃ , (6a)

a(φ, φ) ≥ c2‖φ‖2H̃ − λ‖φ‖
2
X̃
. (6b)

Since the norm ‖ε(·)‖X̃ is equivalent to the ‖ · ‖H̃ norm
through Korn’s and Poincare’s inequalities, we immediately
have for a constant c1 > 0 and for any v ∈ H̃

a(v, v) = 2ν‖ε(v)‖2
X̃
≥ c1‖v‖2H̃ .

Similarly, for a constant c2 > 0 and any v, φ ∈ H̃ ,

|a(v, φ)| ≤ 2ν‖ε(v)‖X̃‖ε(φ)‖X̃ ≤ c2‖v‖H̃‖φ‖H̃ .

As such, a(·, ·) is H̃-bounded and H̃-coercive, which implies
that Ã2 generates an analytic semigroup TÃ2

on X̃ [2, Sec.
2].

Regarding the trilinear form b(·, ·, ·), Assumption 3.(i)
guarantees that ve ∈ H̃ , c.f. [12, Ch. 5]. We have for
constants c3, c4 > 0 using integration by parts and Sobolev
embeddings

|b(v1, v2, ψ)| ≤ |〈v1, (v2 · ∇)ψ〉Ω|+ |〈v1 · n, v2 · ψ〉Γ|
≤ c3‖v1‖L4(Ω)‖v2‖L4(Ω)‖ψ‖H̃
≤ c4‖v1‖H̃‖v2‖H̃‖ψ‖H̃ ∀v1, v2, ψ ∈ H̃.

Now Ã1 ∈ L(H̃, X̃), thus perturbation theory of semi-
groups, see e.g. [7, Ch. III], implies that Ã generates an
analytic semigroup TÃ on X̃ . By Assumption 3.(ii), TÃ is
exponentially stable.

The fact that we may choose λ = 0 in (6b) implies that
the semigroup TÃ2

is exponentially stable for any ν > 0.
Furthermore, Ã2 is self-adjoint and the fractional powers
(−Ã2)δ are well defined. Domains of the fractional powers
are defined by, c.f. [18, Ch. 2], [14],

D((−Ã2)δ) =
{
v ∈ (H2δ(Ω))2

∣∣∇ · v = 0, (v · n)|Γ = 0
}
,

0 ≤ δ < 1

4
,

D((−Ã2)δ) =
{
v ∈ (H2δ(Ω))2

∣∣∇ · v = 0, v|Γ = 0
}
,

1

4
< δ ≤ 1.

The norms corresponding to domains of the fractional pow-
ers for the full range δ ∈ R are given by

‖x‖D((−Ã2)δ) = ‖(−Ã2)δx‖X̃ .

We next utilize domains of the fractional powers to find a
“lifted” state space X such that in particular Definition 1.(iii)
is satisfied by (4).

For the translated Navier–Stokes equations (4), nonlinear-
ity in the abstract framework ΣF is described by

F(v) = −P
(
(v · ∇)v

)
, Q = I, (7)

where P is the Leray projector, see e.g. [8], [14]. The
domains of definition for F and Q are dictated by the
following Lemma.



Lemma 5: For a (small) δ > 0, choose X =
D((−Ã2)1/2+δ) and V = D((−Ã2)δ). Then Definition
1.(iii) holds for F .

Proof: The proof is based on the “properties of multi-
pliers”, see [17, Ch. 4.6.1, Thm. 1], [4, Lemma 5.4], which
state that if

s2 > s1, s2 >
dΩ

2
, (8)

where dΩ is the spatial dimension, then

Hs1 ·Hs2 → Hs1

is continuous, where

Hs1 ·Hs2 :=
{
fg
∣∣ f ∈ Hs1 , g ∈ Hs2

}
.

Since dΩ = 2, we choose s1 = 2δ and s2 = 1+2δ, and apply
the above result. Now for a constant c1 > 0 and φ, ψ ∈ X

‖φi∂jψk‖Hs1 (Ω) ≤ c1‖φi‖Hs2 (Ω)‖∂jψk‖Hs1 (Ω) (9a)

for i, j, k ∈ {ξ1, ξ2}, thus for some constants c2, c3 > 0 also

‖(φ · ∇)ψ‖V ≤ c2‖φ‖X‖∇ψ‖V
≤ c3‖φ‖X‖(−Ã2)1/2ψ‖V
= c3‖φ‖X‖ψ‖X . (9b)

Utilizing (9), for v1, v2 ∈ X and some constants c4, c5 > 0
we have

‖F(v1)−F(v2)‖V
= ‖ − P

(
(v1 · ∇)v1 − (v2 · ∇)v2

)
‖V

= ‖P
(
((v1 − v2) · ∇)v1 + (v2 · ∇)(v1 − v2)

)
‖V

≤ c4
(
‖(v1 − v2)‖X‖∇v1‖V + ‖v2‖X‖∇(v1 − v2)‖V

)
≤ c5(‖v1‖X + ‖v2‖X)‖v1 − v2‖X ,

thus F is locally Lipschitz. Clearly F(0) = 0, and if
‖v1‖X , ‖v2‖X < γ

c for a large enough constant c > 0, then
(‖v1‖X + ‖v2‖X) < γ, which completes the proof.

Due to Lemma 5, we choose for a fixed (small) δ > 0

X = D((−Ã2)1/2+δ)

as the state space for our abstract system presentation and
denote

Xs = D((−Ã2)1/2+δ+s) ∀s ∈ R,

with the corresponding norms defined accordingly by

‖x‖Xs = ‖(−Ã2)sx‖X = ‖(−Ã2)1/2+δ+sx‖X̃ .

Now V = X−1/2, F : X → V and Q = IV ∈ L(V ).

B. The Abstract System Formulation

We define the operators

A = A2 +A1 : D(A)→ X, (10a)

A2 = νP∆, A1v = −P
(
(ve · ∇)v + (v · ∇)ve

)
, (10b)

D(A) = D(A2) = D((−Ã2)3/2+δ). (10c)

Now A2v = Ã2v and A1v = Ã1v for v ∈ D(A). To verify
that Definition 1.(i) holds on the state space X , we note that

A generates a strongly continuous semigroup TA on X , c.f.
[7, Ch. 5]. The semigroup TA is exponentially stable, since
for x ∈ X

‖TAx‖X = ‖(−Ã2)1/2+δTAx‖X̃
= ‖TÃ(−Ã2)1/2+δx‖X̃
≤ ‖TÃ‖L(X̃)‖x‖X .

We still need to verify Definition 1.(ii). We do so for
controls and disturbances of the form (5) and observations
up to the “level of unboundedness” of a point observation.
Using integration by parts, we have for the X-adjoint of A1

A∗1φ = P
(
(ve · ∇)φ− (∇ve)Tφ

)
.

Properties of multipliers with the choices s1 = 1 + 2δ, s2 =
2 + 2δ to satisfy (8) imply, similarly to (9), for any φ, ψ ∈
X1/2 and a constant c > 0

‖P
(
(φ · ∇)ψ

)
‖X ≤ c‖φ2‖X1/2

‖ψ2‖X1/2
,

‖P
(
(∇φ)Tψ

)
‖X ≤ c‖φ2‖X1/2

‖ψ2‖X1/2
.

Since Assumption 3.(i) implies ve ∈ X1/2 ⊂ (H2+2δ(Ω))2

[12, Ch. 5], we have A1, A
∗
1 ∈ L(X1/2, X). As such, theory

of admissible control and observation operators, see [20, Ch.
4-5], now states that
• Let Ỹ be a Hilbert space. If C̃ ∈ L(X1/2, Ỹ ), then
C̃ is an admissible observation operator for TA2 and
its adjoint C̃∗ ∈ L(Ỹ , X−1/2) is an admissible control
operator for TA2

.
• The sets of admissible control (observation) operators

for TA and TA2
are the same.

Note that above we assumed for Ỹ to be self-dual.
We first search for admissible observations for (4) on the

state space X by considering observations such that C ∈
L(X1/2, Y ). Typically the “most unbounded” observation of
interest would be the point observation

Cpx(ξ, t) = x(ξp, t) (11)

for some ξp ∈ Ω. By Sobolev embeddings, when Ω ⊂ R2,
Hs(Ω) ⊂ C(Ω̄) for s > 1, thus Cp ∈ L(X,C). That is,
all the observations of interest for (4) are bounded operators
from X to Y . As such, CΛ = C and if U , Ud and Q are
admissible control operators for TA2

, then Definition 1.(ii)
holds.

Consider next admissible control operators for TA2
, thus

also for TA. We start with the operator Q = IV = IX−1/2
.

Note that in this case the “input space” V is not self-
dual, but instead the correct dual is the X-dual of X−1/2,
i.e. V ′ = X1/2. Thus we have Q∗ ∈ L(X1/2, V

′) and
Q ∈ L(V,X−1/2), i.e. the triple (A,Q,C) is a regular linear
system.

For a single control input of the type (5a), we have B =
g(ξ). If g ∈ Xs, then B ∈ L(C, Xs). That is, if

g ∈ X−1/2 = D((−Ã2)δ),

then B is an admissible control operator for TA2
.



We conclude the section by gathering our findings in the
following result.

Theorem 6: Given Assumption 3, assume that the control
shape functions gi and the disturbance shape functions g′j sat-
isfy gi, g′j ∈ X−1/2 = D((−Ã2)δ) for each i = 1, 2, ...,m,
j = 1, 2, ..., d and a small δ > 0. Then the translated Navier–
Stokes equations (4) with the dynamics operator (10), the
nonlinearity (7), the control (5a), the disturbance (5b) and
py point observations (11) form a regular nonlinear system
on the state space X = D((−Ã2)1/2+δ).

IV. THE CONTROLLER

We use a low-gain -type controller design introduced
in [13] to solve Problem 2. The only system information
required to construct the controller is the transfer function
gains

G(±iωk) = C(±iωkI −A)−1B

of the linearized system (A,B,C) for the frequencies ωk =
2πlk/T for each lk ∈ V. A good estimate for these gains
of the linearized system can be obtained experimentally
from the gains of the nonlinear system ΣN , see [13], and
robustness of the controller means that the approximate gains
can be used to achieve the output tracking goal.

The controller consists of two finite-dimensional systems.
The first system ΣF is described by the transfer function

GF (s) = IY −
nv∏
k=0

s2 + ω2
k

s2 + εs+ ω2
k

IY ,

where ε > 0 is the control tuning parameter. The second
system ΣR is described by the transfer function

GR(s) =

nv∏
k=0

s2 + ω2
k

s2 + 2s+ ω2
k

×
nv∑
k=0

(
ρkRk
s− iωk

+
ρ−kR−k
s+ iωk

)
,

where

Rk = G∗(iωk)(G(iωk)G∗(iωk))−1,

R−k = G∗(−iωk)(G(−iωk)G∗(−iωk))−1,

ρk =

nv∏
j 6=k,j=0

ω2
j − ω2

k + 2iωk

ω2
j − ω2

k

,

ρ−k =

nv∏
j 6=k,j=0

ω2
j − ω2

k − 2iωk

ω2
j − ω2

k

.

We denote a state space realization of GF on XF = CnF
by

ẋF (t) = AFxF (t) +BFuF (t), xF (0) = xF0 ∈ XF ,

yF (t) = CFxF (t),

and a state space realization of GR on XR = CnR by

ẋR(t) = ARxR(t) +BRuR(t), xR(0) = xR0 ∈ XR,

yR(t) = CRxR(t) +DRuR(t).

After coupling the two subsystems of the controller as
depicted in Fig. 1, i.e. by setting uF = y − yr + yF
and uR = yF , we have the structure of an error feedback

+
+ uF ΣF

yF ΣR
u ΣN

y

–
+ yr

ud

Fig. 1: The closed-loop system

controller (3) with z = [xF , xR]T ∈ XF ×XR,

G1 =

[
AF +BFCF 0

BRCF AR

]
, G2 =

[
−BF

0

]
, (12a)

K =
[
DRCF CR

]
. (12b)

The following result is obtained in [13] for the class
of regular nonlinear systems and we formulate it for the
incompressible 2D Navier–Stokes equations.

Theorem 7: Assume that G(iωk) is surjective for each
k = 1, 2, . . . nv and the assumptions of Thm. 6 hold. There
exists ε∗ > 0 such that an error feedback controller (3) with
the operators chosen as (12) with 0 < ε ≤ ε∗ solves Problem
2 for the system (10)-(11).

Proof: The proof follows directly from Theorem 6 and
[13, Sec. 5.2].

V. A NUMERICAL EXAMPLE

Let Ω be the unit disk and consider the Navier–Stokes
equations (1) with ν = 1/25 around a steady state solution
corresponding to the body force

fw(ξ1, ξ2) =
[
ξ2(1− ξ2

1 − ξ2
2), −ξ1(1− ξ2

1 − ξ2
2)
]T ∈ H̃

and fu = 0, fd = 0. Our output tracking goal is to have the
point observation

y(t) = C

[
v1(ξ, t)
v2(ξ, t)

]
= v2

( [
0.4, −0.4

]
, t
)
∈ L(X,R)

track the reference signal

yr(t) = 0.5 sin(2t) (13)

despite the disturbance

fd(ξ, t) = Bdud(t) = P
[
0, χΩd(ξ)

]T
(1 + cos(2t)),

where χΩd is the characteristic function and Ωd =
[−0.4,−0.1] × [−0.4,−0.1]. The output tracking is to be
achieved, approximately and locally, by using the control

fu(ξ, t) = Bu(t) = P
[
χΩu(ξ), 0

]T
u(t)

where Ωu = [−0.6,−0.3]× [0.1, 0.4]. Now U = Ud = Y =
R and since χΩu , χΩd ∈ Hs(Ω) for any s < 1/2 [19], also
B ∈ L(U,X−1/2) and Bd ∈ L(Ud, X−1/2). As such, if the
steady state (ve, pe) is locally exponentially stable, then the
translated system (4) forms a regular nonlinear system on
the state space X .

We use the Taylor-Hood finite element spatial discretiza-
tion for the Navier–Stokes equations. With the help of



functions included in the Matlab PDE toolbox, the unit
disk is approximated by 694 triangles with the maximum
edge length of ≈ 0.1, which leads to approximation order
of 1453 for each of the velocity components and 380 for
the pressure. The steady state solution (ve, pe), with the
steady state velocity depicted in Fig 2, is calculated using
the Newton’s method, and we assume pe(0) = 0 to obtain a
unique steady state pressure.
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Fig. 2: The steady state velocity field ve(ξ), where color
depicts speed of the fluid

We check numerically that linearization of the translated
system (4) is exponentially stable. Then we design an error
feedback controller (12) with V = {0, 1, 2, 3} and choose as
the control tuning parameter ε = 0.095 to roughly maximize
stability margin of the linearized closed-loop system. For the
simulation, we relax the incompressibility condition by using
a penalty method with the penalty parameter εp = 10−5, see
e.g. [9, Ch. 5.2], to decouple the fluid pressure from the fluid
velocity. As the initial state, we use

xe0 =
[
ve − ve1/2, 0

]T ∈ X × Z,
where ve1/2(ξ) is the steady state velocity corresponding
to the body force fw1/2 = 0.5fw and fu = 0, fd = 0.
Evolution of the closed-loop system is then solved using
Crank–Nicolson method with the time step ∆t = 0.01
together with Newton iteration.

Output tracking performance of the controller is depicted
in Fig. 3 and a snapshot of the fluid velocity at the time
t = 120 is shown in Fig. 4. The controller achieves
output tracking of (13) with satisfactory performance for
the chosen initial state despite the disturbance. The effect
of the disturbance is not clearly visible in Fig. 3, since
the frequencies of yr and ud coincide. The locations of Ωu
and Ωd with respect to the observed point also lead to the
disturbance not being clearly visible in Fig. 4, although the
fluid velocity inside the disturbed region has a dominantly
positive ξ2-component for the most part.

A small tracking error remains after the transient behavior.
This could be due to the approximate nature of the output
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Fig. 3: The point observation y(t) (red) and the reference
output yr(t) (black) for t ∈ [0, 120] and t ∈ [110, 120]
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Fig. 4: The velocity field v(ξ, 120), where color depicts
speed of the fluid. Boundaries of the control and the

disturbance domains are highlighted with black and red,
respectively, and the observation point is highlighted with

green.

tracking, but also at least partially due to the discretization
schemes. A comparison of tracking errors using different
time step sizes for the implemented Crank–Nicolson method
is presented in Figure 5. The figure indicates that refining
step size from 0.1 to 0.025 is beneficial, but further refine-
ment to the implemented 0.01 has little effect. Recall that in
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0

0.1

e

Fig. 5: Tracking error comparison of the implemented time
step 0.01 (red) to the time steps 0.025 (black), 0.05 (blue)

and 0.1 (cyan) for t ∈ [110, 120].

practice the controller would be constructed without having
to rely on system approximations, since the construction



only requires knowledge of the transfer function gains at
certain frequencies, which can be experimentally estimated
with good accuracy.

VI. CONCLUSION

We studied a velocity output tracking problem for the
incompressible 2D Navier–Stokes equations. As the main
result, we showed that the studied equations subject to
in-domain control and point observation form a regular
nonlinear system, in the sense of [13], on a smooth enough
state space. As such, a specific error feedback controller, in-
troduced in [13], achieves approximate local velocity output
tracking of periodic sinusoidal reference signals. Achieved
output tracking is approximate in the sense that a finite
number of harmonics of the system output and the reference
output are the same.

The same control approach can be implemented directly
for other fluid flow models as well. To do so, the fluid
should be viscous for the decomposition similar to (10a)
to exist, and with the nonlinearity modeled by a term of
the type (x · ∇)x. Additionally, the domain Ω together with
the boundary Γ should be such that the estimates used in
Sec. III are justified. This means that no loss of regularity
of the solutions may occur at least until the regularity level
associated to X1/2.
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operator semigroups. Birkhäuser Advanced Texts: Basel Textbooks.
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