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1. INTRODUCTION

For the past few decades, there has been interest in
studying linear systems subject to input saturation due to
limitations on the control input. Stabilization and output
regulation of such systems have been studied, for example,
in Fuller (1969), Sontag and Sussmann (1990), Teel (1992),
Saberi et al. (2003), Logemann et al. (1998), Slemrod
(1989), Oostveen (2000), Lasiecka and Seidman (2003),
Prieur et al. (2015), Marx et al. (2015), Mironchenko
et al. (2021) and the references therein. However, there
are only few results in the literature dealing with output
regulation of infinite-dimensional linear systems subject to
input saturation Logemann et al. (1998), Oostveen (2000),
Fliegner et al. (2001).

In this paper, we study output regulation of infinite-
dimensional abstract linear systems subject to input sat-
uration. We focus on the class of abstract systems given
by

ẋ(t) = Ax(t) +Bϕ(u(t)) +Bdwd(t), x(0) = x0,

y(t) = B∗x(t)
(1)

on a real Hilbert space X. Here x(t) ∈ X is the state
variable, u(t) ∈ R is the input, y(t) ∈ R is the output,
wd(t) ∈ Rnd is an external disturbance and ϕ is a
saturation function. The saturation function ϕ is defined
as
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ϕ(u) =


u, |u| ≤ 1

1, u > 1

−1, u < −1.

(2)

Our goal is to find a linear feedback control law such that
the output y(t) of the system (1) tracks the given reference
signal yref (t) asymptotically despite disturbances wd(t) in
the system. The reference yref (·) and the disturbance wd(·)
signals are assumed to be generated by an exosystem

v̇(t) = Sv(t), v(0) = v0,

wd(t) = Ev(t),

yref (t) = −Fv(t)

(3)

on a finite-dimensional space W = Rq. Here S ∈ Rq×q,
F ∈ R1×q and E ∈ Rnd×q. Furthermore, we make the
following assumptions on the system (1) and the exosystem
(3).

Assumption 1.1. (1) The operator A generates a C0-
semigroup T (t) of contractions on X, B ∈ L(R, X)
and the operator A − κBB∗ generates a strongly
stable contraction semigroup T−κBB∗(t) for any κ >
0.

(2) The spectrum σ(S) of S lies on the imaginary axis.

As the main contribution, we extend the output regulation
theory in (Saberi et al., 2003, Ch. 3) for finite-dimensional
linear systems subject to input saturation to the class of
systems in (1)-(2) under Assumption 1.1. The considered
class of systems (1) arise in the study of systems with
collocated actuators and sensors Oostveen (2000). We
present a linear output feedback control law that solves the
output regulation problem. In addition, we demonstrate
the results on a flexible satellite model subject to input
saturation.



Stabilization is an important part of control design for
the output regulation. Stabilization problem for infinite-
dimensional linear systems subject to input saturation has
been studied, for example in Slemrod (1989), Lasiecka and
Seidman (2003), Prieur et al. (2015), Curtain and Zwart
(2016), Marx et al. (2015) and Mironchenko et al. (2021).
The output regulation of infinite-dimensional linear sys-
tems subject to input saturation has been studied, for ex-
ample in Logemann et al. (1998), Logemann et al. (1999),
Logemann and Adam (2001) and Fliegner et al. (2003)
for exponentially stable single-input single-output regular
linear systems and in Oostveen (2000) for strongly stable
single-input single-output linear systems. The results in
these references use integral control to achieve output
tracking of constant reference signals. The key novelty in
our work is that we allow the reference and disturbance
signals to be combination of sinusoids. The output tracking
is achieved by using a linear output feedback control law
which is a generalization of the control law presented in
(Saberi et al., 2003, Thm. 3.3.3).

The paper is organized as follows. In Section 2, we present
preliminaries on semilinear systems and the output regu-
lation problem. Section 3 is devoted to our main results
where we present a linear feedback control law and the
solvability conditions for the output regulation of the sys-
tem (1). In Section 4, we present a numerical example
where we consider output regulation of a flexible satellite
model subject to input saturation. Concluding remarks
and further research directions are presented in Section
5.

1.1 Notation

For normed linear spaces X and Y , L(X,Y ) denotes the
set of bounded linear operators from X to Y . For a linear
operator A, D(A), R(A) and σ(A) denote the domain, the
range and the spectrum of A, respectively.

2. PRELIMINARIES

In this section, we present definitions and lemmas that are
used in proving the main results. Consider the system (1)
on a real Hilbert space X with A : D(A) ⊂ X → X,
B ∈ L(R, X) and Bd ∈ L(Rnd , X).

Definition 2.1. Let G(·) = B∗(·I −A)−1B be the transfer
function of the system (A,B,B∗). Then s ∈ C is called a
transmission zero if G(s) = 0.

Lemma 2.2. (Curtain and Zwart, 2020, Thm. 11.1.5).
Consider the semilinear differential equation

ẋ(t) = Ax(t) + f(x(t)), t ≥ 0, x(0) = x0, (4)

where A is the infinitesimal generator of the C0-semigroup
on the Hilbert space X. If f : X → X is uniformly
Lipschitz continuous, then the system (4) has a unique
mild solution on [0,∞) with the following properties:

(i) For 0 ≤ t < ∞ the solution depends continuously
on the initial condition, uniformly on any bounded
interval [0, τ ] ⊂ [0,∞).

(ii) If x0 ∈ D(A), then the mild solution is a classical
solution on [0,∞).

Definition 2.3. (Curtain and Zwart, 2020, Def. 11.2.2).
Consider the semilinear differential equation (4) on the

Hilbert space X. Assume that f : X → X is locally
Lipschitz continuous.

Then the origin of (4) is stable if for every ϵ > 0 there
exists a δ > 0 such that whenever ∥x0∥ < δ there exists
a solution x(t) of (4) on [0,∞) satisfying ∥x(t)∥ < ϵ for
all t ≥ 0. If, in addition, there exists γ > 0 such that
∥x0∥ < γ implies that ∥x(t)∥ → 0 as t → ∞, then the
origin is said to be asymptotically stable. The origin is said
to be globally asymptotically stable if for every x0 ∈ X we
have ∥x(t)∥ → 0 as t → ∞.

From the theory of output regulation of finite-dimensional
linear systems subject to input saturation we know that
the output regulation problem, in general, is not solvable
for all initial conditions v0 ∈ Rq of the exosystem (Saberi
et al., 2003, Rem. 3.2.2). However, if we restrict to the
initial conditions v0 of the exosystem lying inside a given
compact set, then the output regulation problem is solv-
able. In this work, we focus on this semi-global output
regulation problem of (1).

Semi-Global Output Regulation Problem. Consider
the systems (1)-(3) and a compact set W0 ⊂ Rq. Find a
linear output feedback control law in the form

u(t) = −κy(t) + Lv(t) (5)

such that κ > 0, L ∈ R1×q and

(1) The origin of the system ẋ(t) = Ax(t) +Bϕ(−κy(t)),
x(0) = x0 is globally asymptotically stable.

(2) For all x0 ∈ X and v0 ∈ W0, the error between the
output y(t) and the reference signal yref (t) satisfies

lim
t→∞

y(t)− yref (t) = 0.

3. MAIN RESULTS

In this section, we present our main theorem which pro-
vides the solvability conditions and the control law for the
semi-global output regulation of the system (1). The the-
orem is an infinite-dimensional generalization of (Saberi
et al., 2003, Thm. 3.3.3) where a low-and-high-gain state
feedback control design is used to achieve semi-global out-
put regulation of finite-dimensional linear systems subject
to input saturation. In our case, since the considered class
of systems can be stabilized strongly using negative output
feedback, it is not necessary to find a stabilizing state
feedback law separately. Consequently, there is no low-
gain requirement on the stabilizing feedback law and there
is only one gain parameter that corresponds to negative
output feedback. So, the strong stabilizability property
of the system (1) by output feedback enables simplifying
the control design compared to the original one in (Saberi
et al., 2003, Thm. 3.3.3). Our approach for showing the
asymptotic convergence of the regulation error is moti-
vated by the techniques in (Curtain and Zwart, 2020, Thm.
11.2.11).

Theorem 3.1. Consider the systems (1), (3) and the given
compact set W0 ⊂ Rq. Under the Assumption 1.1, the
semi-global output regulation problem is solvable if there
exist Π ∈ L(Rq, X) with R(Π) ⊂ D(A) and Γ ∈ R1×q such
that they solve the regulator equations

ΠS = AΠ+BΓ +BdE

0 = B∗Π+ F
(6)



and there exists a δ > 0 such that supt≥0∥Γv(t)∥ ≤ 1 − δ

for all v(t) = eStv0 with v0 ∈ W0. In this case, for any
κ > 0 the feedback law

u(t) = −κy(t) + (κB∗Π+ Γ)v(t) (7)

solves the semi-global output regulation problem.

Proof. By Assumption 1.1, we have that A − κBB∗

generates a strongly stable contraction semigroup for any
κ > 0. In addition, the saturation function ϕ is uniformly
Lipschitz continuous on R, ϕ(0) = 0 and

⟨u, ϕ(u)⟩R = u2, if |u| ≤ 1,

⟨u, ϕ(u)⟩R > 1, if u > 1,

⟨u, ϕ(u)⟩R > 1, if u < −1.

Therefore, by (Curtain and Zwart, 2020, Thm. 11.2.11),
we have that the origin of

ẋ(t) = Ax(t) +Bϕ(−κy(t)),

x(0) = x0

is globally asymptotically stable.

Next, using the feedback law (7), we will show that y(t)−
yref (t) → 0 as t → ∞. Assume that supt≥0∥Γv(t)∥ ≤ 1−δ.
Let us introduce a new variable ξ(t) = x(t)−Πv(t) which
is the mild solution of

ξ̇(t) = Aξ(t) +B[ϕ(−κB∗ξ(t) + Γv(t))− Γv(t)]

ξ(0) = ξ0.
(8)

on X, where we have used u(t) = −κy(t) + (κB∗Π +
Γ)v(t) = −κB∗ξ(t)+Γv(t). We will begin by showing that
the mild solution ξ(t) of (8) exists for t ∈ [0,∞). Let us
consider the composite system

ξ̇e(t) = Aeξe(t) + fe(ξe(t))

ξe(0) = ξe0
(9)

on X × Rq where

ξe(t) =

[
ξ(t)
v(t)

]
, ξe0 =

[
ξ0
v0

]
, Ae =

[
A 0
0 S

]
,

fe(ξe(t)) =

[
B[ϕ(−κB∗ξ(t) + Γv(t))− Γv(t)]

0

]
.

Here the operator Ae generates a C0-semigroup (since it
is block-diagonal and A generates a C0-semigroup) and
since ϕ is uniformly Lipschitz continuous and B and Γ
are bounded linear operators, we have that fe is uniformly
Lispschitz continuous. In fact, using ∥ϕ(u1) − ϕ(u2)∥ ≤
∥u1 − u2∥ for u1, u2 ∈ R, for ξe1 = (ξ1, v1)

T , ξe2 =
(ξ2, v2)

T ∈ X × Rq, we have

∥fe(ξe1)− fe(ξe2)∥
≤ ∥B∥∥ϕ(−κB∗ξ1 + Γv1)− ϕ(−κB∗ξ2 + Γv2)∥

+ ∥B∥∥Γ∥∥v1 − v2∥
≤ ∥B∥κ∥B∗∥∥ξ1 − ξ2∥+ 2∥B∥∥Γ∥∥v1 − v2∥
≤ C∥ξe1 − ξe2∥,

where C = max {κ∥B∥2, 2∥B∥∥Γ∥}. Thus by Lemma 2.2,
the system (9) has a unique mild solution ξe(t) for t ∈
[0,∞). The mild solution ξe(t) satisfies

ξe(t) =

[
T (t) 0
0 eSt

]
ξe0 +

∫ t

0

[
T (t− s) 0

0 eS(t−s)

]
fe(ξe(s))ds.

Furthermore, if ξe0 ∈ D(Ae), then ξe(t) is a classical
solution for t ∈ [0,∞). In particular, we have

ξ(t) = T (t)ξ0

+

∫ t

0

T (t− s)B[ϕ(−κB∗ξ(s) + Γv(s))− Γv(s)]ds

which is the mild solution for the system (8) and if ξ0 ∈
D(A), then ξ(t) is a classical solution for t ∈ [0,∞).

Next, we show that the solution ξ(t) is uniformly bounded.
For ξ0 ∈ D(A), we have

d

dt
∥ξ(t)∥2 = 2

〈
ξ̇(t), ξ(t)

〉
= 2 ⟨Aξ(t) +B[ϕ(−κB∗ξ(t) + Γv(t))− Γv(t)], ξ(t)⟩X
≤ 2 ⟨B[ϕ(−κB∗ξ(t) + Γv(t))− Γv(t)], ξ(t)⟩X
= 2 ⟨ϕ(−κB∗ξ(t) + Γv(t))− Γv(t), B∗ξ(t)⟩R

(10)
where we have used the contractivity of A. Now by using
the definition (2) of the saturation function ϕ and the
assumption supt≥0∥Γv(t)∥ ≤ 1− δ, we show that the right
hand side of (10) is always non-positive. If we consider
those t ≥ 0 such that | − κB∗ξ(t) + Γv(t)| ≤ 1, then

⟨ϕ(−κB∗ξ(t) + Γv(t))− Γv(t), B∗ξ(t)⟩R
= ⟨−κB∗ξ(t) + Γv(t)− Γv(t), B∗ξ(t)⟩R
= −κ∥B∗ξ(t)∥2 ≤ 0.

If we consider those t ≥ 0 such that −κB∗ξ(t)+Γv(t) > 1,
then −κB∗ξ(t) > 1 − Γv(t) > 0. This implies that
B∗ξ(t) < 0. Therefore

⟨ϕ(−κB∗ξ(t) + Γv(t))− Γv(t), B∗ξ(t)⟩R
= ⟨1− Γv(t), B∗ξ(t)⟩R ≤ 0.

Finally, if we consider those t ≥ 0 such that −κB∗ξ(t) +
Γv(t) < −1, then −κB∗ξ(t) < −1−Γv(t) < 0. This implies
that B∗ξ(t) > 0. Therefore

⟨ϕ(−κB∗ξ(t) + Γv(t))− Γv(t), B∗ξ(t)⟩R
= ⟨−1− Γv(t), B∗ξ(t)⟩R ≤ 0.

Therefore d
dt∥ξ(t)∥

2 ≤ 0. Integrating (10), we obtain for
all t ≥ 0

∥ξ(t)∥2 ≤ ∥ξ0∥2

+ 2

∫ t

0

⟨ϕ(−κB∗ξ(s) + Γv(s))− Γv(s), B∗ξ(s)⟩R ds

≤ ∥ξ0∥2.
(11)

By the continuity of ξ(t) with respect to the initial
conditions, the above inequality holds for all ξ0 ∈ X. This
implies that for all ξ0 ∈ X, ξ(t) is bounded uniformly
in t on [0,∞). Next, we show that the mild solution ξ(t)
converges to zero as t → ∞. Let us reformulate the system
(8) as

ξ̇(t) = (A− κBB∗)ξ(t)

−B[−κB∗ξ(t) + Γv(t)− ϕ(−κB∗ξ(t) + Γv(t))]

ξ(0) = ξ0.

Denote û(t) := −κB∗ξ(t) + Γv(t)− ϕ(−κB∗ξ(t) + Γv(t)).
Since Bû ∈ L1

loc(0,∞;X), the solution of the above system
is given by

ξ(t) = T−κBB∗(t)ξ0 −
∫ t

0

T−κBB∗(t− s)Bû(s)ds. (12)

We will first show that û ∈ L2(0,∞;R). We will begin
by splitting the interval [0,∞) into three parts. Let Ω1 :=
{t ∈ [0,∞) | −κB∗ξ(t)+Γv(t) > 1}, Ω2 := {t ∈ [0,∞) | −



κB∗ξ(t) + Γv(t) < −1} and Ω3 := {t ∈ [0,∞) | | −
κB∗ξ(t) + Γv(t)| ≤ 1}. Then using the definition of ϕ, the
assumption supt≥0∥Γv(t)∥ ≤ 1−δ and κB∗ξ(t) < Γv(t)−1
on Ω1, we obtain∫

Ω1

⟨ϕ(−κB∗ξ(s) + Γv(s))− Γv(s), B∗ξ(s)⟩R ds

=

∫
Ω1

⟨1− Γv(s), B∗ξ(s)⟩R ds

≤
∫
Ω1

〈
1− Γv(s),

Γv(s)− 1

κ

〉
R
ds

= − 1

κ

∫
Ω1

∥1− Γv(s)∥2ds

≤ −δ2

κ
ν(Ω1),

where ν is a Lebesgue measure. Moreover, from (11), we
have∫ ∞

0

⟨ϕ(−κB∗ξ(s) + Γv(s))− Γv(s), B∗ξ(s)⟩R ds < ∞

(13)
which implies that Ω1 has finite measure. Similarly, using
the definition of ϕ and −κB∗ξ(t) < −1− Γv(t) on Ω2, we
obtain∫

Ω2

⟨ϕ(−κB∗ξ(s) + Γv(s))− Γv(s), B∗ξ(s)⟩R ds

=

∫
Ω2

⟨−1− Γv(s), B∗ξ(s)⟩R ds

≤
∫
Ω2

〈
1 + Γv(s),

−Γv(s)− 1

κ

〉
R
ds

= − 1

κ

∫
Ω2

∥1 + Γv(s)∥2ds

≤ −δ2

κ
ν(Ω2)

which from (13) implies that Ω2 has finite measure. Fur-
thermore, by using the definition of ϕ, we obtain∫

Ω3

|û(s)|2ds

=

∫
Ω3

| − κB∗ξ(s) + Γv(s)− ϕ(−κB∗ξ(s) + Γv(s))|2ds

= 0.

Since B∗ ∈ L(X,R), supt≥0∥Γv(t)∥ ≤ 1 − δ and ξ(t)
is uniformly bounded, we have that û(t) is uniformly
bounded and therefore by using the above arguments, we
obtain∫ ∞

0

|û(s)|2ds =
∫
Ω1

|û(s)|2ds+
∫
Ω2

|û(s)|2ds < ∞.

Thus û ∈ L2(0,∞;R). By Assumption 1.1, A generates a
contraction semigroup T (t) and B ∈ L(R, X). Therefore,
by (Curtain and Zwart, 2020, Thm. 6.4.4), we have that
the system (A−κBB∗, B,B∗, 0) is input stable, i.e., there
exists a constant β > 0 such that for all t > 0 and
ũ ∈ L2(0,∞;R), we have

∥
∫ t

0

T−κBB∗(t− s)Bũ(s)ds∥2 ≤ β2

∫ t

0

∥ũ(s)∥2ds.

Moreover, by Assumption 1.1, T−κBB∗(t) is strongly sta-
ble. Since û ∈ L2(0,∞;R), (Curtain and Zwart, 2020,
Thm. 5.2.3) implies that ξ(t) → 0 as t → ∞.

Finally, using ξ(t) = x(t)− Πv(t) and B∗Π + F = 0 from
(6), we obtain

y(t)− yref (t) = B∗x(t)− yref (t)

= B∗(ξ(t) + Πv(t)) + Fv(t)

= B∗ξ(t) + (B∗Π+ F )v(t)

= B∗ξ(t) → 0

as t → ∞ which completes the proof.

Remark 3.2. From the proof of Theorem 3.1, we note that
the control law (7) can be written as u(t) = −κB∗ξ(t) +
Γv(t). Now we can see that the system (1) asymptotically
operates in the linear region of saturation since ξ(t) → 0
as t → ∞ and supt≥0∥Γv(t)∥ ≤ 1− δ.

Based on (Byrnes et al., 2000, Sec. V), the solvability
conditions for the regulator equations are given in the
following lemma.

Lemma 3.3. (Byrnes et al., 2000, Sec. V). Let A− κBB∗

generate a strongly stable contraction semigroup for any
κ > 0. Assume that σ(S) ⊂ iR and S has no nontriv-
ial Jordan blocks. Then the regulator equations (6) are
solvable if and only if no eigenvalue of S coincides with a
transmission zero of the system (1). In this case, Π and Γ
are given by

ΠΦk = (iωk −A)−1(BΓ +BdE)Φk

ΓΦk = −G(iωk)
−1(B∗(iωk −A)−1BdE + F )Φk,

k = 1, 2, · · · , q, where iωk and Φk are the eigenvalues
and the corresponding orthonormal eigenvectors of S,
respectively and G(·) = B∗(·I − A)−1B is the transfer
function of the system (1).

Corollary 3.4. Let the assumptions of Lemma 3.3 hold and
no eigenvalue of S coincides with a transmission zero of
the system (1). Let iωk, k = 1, 2, · · · q be the eigenvalues
and {Φk}qk=1 be the corresponding orthonormal basis of
S. Then for any v0 ∈ W0, the control input (7) has the
representation

u(t) = −κy(t)−
q∑

k=1

eiωkt ⟨v0,Φk⟩ (κ+G(iωk)
−1)FΦk

−
q∑

k=1

eiωkt ⟨v0,Φk⟩G(iωk)
−1B∗(iωk −A)−1BdEΦk.

Remark 3.5. Since the expressions for Γ and Π use in-
formation from the exosystem and the exosystem is de-
termined by the reference and disturbance signals, we
can derive expressions for Γv(t) and B∗Πv(t) in terms
of frequency, phase and amplitude of the reference and
disturbance signals. This is illustrated in the following.

For simplicity, we assume that yref (t) = a cos(ωt+φ) and
wd(t) ≡ 0. Then the exosystem can be chosen as

v̇(t) = Sv(t), v(0) = v0 =

[
1
0

]
, S =

[
0 ω
−ω 0

]
,

F = −a [cos(φ) sin(φ)] , E = 0.

Moreover, the eigenvalues of S are ±iω and the cor-
responding orthonormal eigenvectors of S are given by

1√
2

{[
1
i

]
,

[
1
−i

]}
.

Now, substituting the above information and the expres-
sion for ΓΦk from Lemma 3.3 in



Γv(t) =

2∑
k=1

eiωkt ⟨v0,Φk⟩ΓΦk

we obtain Γv(t) = a|G(iω)−1| cos (ωt+ φ+ θ), where θ =
tan−1(β/α), α = Re(G(iω)), β = −Im(G(iω)). Similarly,
we obtain B∗Πv(t) = a cos (ωt+ φ).

Furthermore, the condition supt≥0∥Γv(t)∥ ≤ 1 − δ in

Theorem 3.1 can be reformulated as |aG(iω)−1| ≤ 1 − δ
and the control input (7) can be written as

u(t) = −κy(t) + κa cos (ωt+ φ)

+ a|G(iω)−1| cos (ωt+ φ+ θ).
(14)

This implies that the above feedback law (14) solves the
semi-global output regulation problem provided that the
frequency ω from the reference signal satisfies G(iω) ̸= 0
and |aG(iω)−1| ≤ 1−δ. This shows that it is not necessary
to formulate the exosystem in order to solve the semi-
global output regulation problem.

4. NUMERICAL EXAMPLE

In this section, we illustrate our main results in Section
3 on a flexible satellite model that is composed of two
symmetrical flexible solar panels and a center rigid body
(Bontsema et al. (1988), He and Ge (2015)). Modeling
the satellite panels as viscously damped Euler-Bernoulli
beams of length 1, the satellite model that we consider is
described by (Govindaraj et al. (2020))

ẅl(ξ, t) + w′′′′
l (ξ, t) + 5ẇl(ξ, t) = 0, −1 < ξ < 0, t > 0,

ẅr(ξ, t) + w′′′′
r (ξ, t) + 5ẇr(ξ, t) = 0, 0 < ξ < 1, t > 0,

ẅc(t) = w′′′
l (0, t)− w′′′

r (0, t) + ϕ(u(t)) + wd(t),

θ̈c(t) = −w′′
l (0, t) + w′′

r (0, t),

w′′
l (−1, t) = 0, w′′′

l (−1, t) = 0,

w′′
r (1, t) = 0, w′′′

r (1, t) = 0,

ẇl(0, t) = ẇr(0, t) = ẇc(t),

ẇ′
l(0, t) = ẇ′

r(0, t) = θ̇c(t),

y(t) = ẇc(t),
(15)

where wl(ξ, t) and wr(ξ, t) are the transverse displace-
ments of the left and the right beam, respectively, ẇl(ξ, t)
and w′

l(ξ, t) denote time and spatial derivatives of wl(ξ, t),
respectively, wc(t) and θc(t) are the linear and angular
displacements of the rigid body, respectively, the function
ϕ(u(t)) is the saturated external control input defined in
(2) and wd(t) is an external disturbance. Here ẇc(t) =

ẇl(ξ, t)|ξ=0 = ẇr(ξ, t)|ξ=0 and θ̇c(t) = ẇ′
l(ξ, t)|ξ=0 =

ẇ′
r(ξ, t)|ξ=0 are linear and angular velocities of the rigid

body, respectively.

As shown in Govindaraj et al. (2023), the satellite model
(15) can be written in the form (1) and the operator A
generates an exponentially stable contraction semigroup
on the state space X = L2(−1, 0;R2) × L2(0, 1;R2) ×
R2. It can be also verified that A − κBB∗ generates an
exponentially stable contraction semigroup on X for any
κ > 0 (Govindaraj et al., 2020, Sec. 3). This implies that
Assumption 1.1(1) is satisfied.

Our goal is to track the reference signal yref (t) =
0.09 sin (1.5t) and reject the disturbance wd(t) ≡ 0.08.
Motivated by this, we choose the exosystem

v̇(t) = Sv(t), v(0) =

[
0

0.09
0.08

]
, S =

[
0 1.5 0

−1.5 0 0
0 0 0

]
with F = [1 0 0], E = [0 0 1]. The eigenvalues of S
are given by {0,±1.5i} and therefore, Assumption 1.1(2)
is satisfied. Moreover, it can be verified that the system
(1) does not have any transmission zeros at 0, 1.5i and
−1.5i (Govindaraj et al., 2023, Lem. 4.1) implying that
the regulator equations are solvable.

The control input from Section 3 is given by u(t) =
−κy(t)+(κB∗Π+Γ)v(t). The control parameters Γ and Π
can be obtained by using Lemma 3.3 as in Remark 3.5 and
they are given by Γv(t) = 0.09|G(1.5i)−1| sin (1.5t+ θ) +
0.08, θ = tan−1(β/α), α = Re(G(iω)), β = −Im(G(iω))
and B∗Πv(t) = 0.09 sin (1.5t) where G(·) is the transfer
function of the satellite system (A,B,B∗). Simulations
are carried out in Matlab with κ = 100 on the time
interval [0, 15]. The solutions of the satellite system (15)
are approximated by using Legendre Spectral Galerkin
method with number of basis functions N = 10 Asti
(2020). Figure 1 shows that after the transient period the
controller operates in the linear region of the saturation
function and supt≥0∥Γv(t)∥ ≤ 1− δ. The output tracking
and the tracking error are depicted in Figures 2 and 3
respectively and the velocity profile of the right solar panel
is depicted in Figure 4.
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Fig. 1. Behaviour of saturated control input ϕ(u) (above)
and Γv(t) (below) over the time interval [0,15]
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Fig. 2. Output tracking

5. CONCLUSION

We considered output regulation problem for the class
of strongly stabilizable infinite-dimensional linear systems



0 5 10 15

0

0.5

1

Fig. 3. Tracking error

Fig. 4. Velocity profile of the right solar panel

with collocated actuators and sensors subject to input
saturation. Strong stabilization of the system enabled us
to construct a linear feedback control law that solves the
semi-global output regulation problem. The results were
illustrated on a flexible satellite model subject to input
saturation where output tracking of a given sinusoidal
reference signal and rejection of a constant disturbance
signal were achieved by using the proposed control law.

Many future research directions are possible. In this work,
we considered a particular class of infinite-dimensional
systems with bounded input and output operators. So,
the theory can be developed for wider class of systems,
for example, for the systems with unbounded input and
output operators and multi-input multi-output systems.
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