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OPTIMAL DECAY FOR A WAVE-HEAT SYSTEM

WITH COLEMAN–GURTIN THERMAL LAW

FILIPPO DELL’ORO, LASSI PAUNONEN AND DAVID SEIFERT

Abstract. We study the long-term behaviour of solutions to a one-dimensional coupled
wave-heat system with Coleman–Gurtin thermal law. Our approach is based on the
asymptotic theory of C0-semigroups and recent results developed for coupled control
systems. As our main results, we represent the system as a feedback interconnection
between the wave part and the Coleman–Gurtin part and we show that the associated
semigroup in the history framework of Dafermos is polynomially stable with optimal
decay rate t−2 as t → ∞. In particular, we obtain a sharp estimate for the rate of energy
decay of classical solutions to the problem.

1. Introduction

The study of the asymptotic behaviour of solutions to coupled PDE systems has attracted
a considerable amount of attention in the recent literature. In this article, we focus on a
one-dimensional coupled wave-heat system consisting of a wave equation and a Coleman–
Gurtin equation. More specifically, we use the asymptotic theory of strongly continuous
semigroups combined with recent results on coupled abstract control systems to derive an
optimal rational decay rate for classical solutions to the system

(1.1)







utt(x, t) = uxx(x, t), x ∈ (−1, 0), t > 0,

wt(x, t) = wxx(x, t) +

∫ ∞

0

g(s)wxx(x, t− s) ds, x ∈ (0, 1), t > 0.

The equations are coupled, for t > 0, through the transmission conditions

(1.2) ut(0, t) = w(0, t), ux(0, t) = wx(0, t) +

∫ ∞

0

g(s)wx(0, t− s) ds

at the interface x = 0, and in addition we impose the Dirichlet boundary conditions

(1.3) u(−1, t) = w(1, t) = 0.

The convolution kernel g : [0,∞) → [0,∞) is a convex integrable function (thus non-
increasing and vanishing at infinity) of unit total mass, taking the explicit form

g(s) =

∫ ∞

s

µ(r) dr, s ≥ 0,
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where µ : (0,∞) → [0,∞) is a non-increasing absolutely continuous integrable function
(possibly unbounded near zero). In particular, µ is differentiable almost everywhere with
µ′(s) ≤ 0 for almost every s > 0. Finally, we impose initial conditions of the form











u(x, 0) = u0(x), x ∈ (−1, 0),

ut(x, 0) = v0(x), x ∈ (−1, 0),

w(x, 0) = w0(x), w(x,−s) = ϕ0(x, s), x ∈ (0, 1), s > 0,

where u0, v0, w0, ϕ0 are assigned data. In particular, ϕ0 accounts for the so-called initial
past history of w.

The stability analysis of coupled wave-heat systems has been the subject of intensive
investigations over the past few decades. Their intrinsic mathematical interest apart, the
main motivation for studying such systems stems from the fact that they can be viewed
as linearisations of more complex fluid-structure models arising in fluid mechanics; see for
instance [2, 25, 33]. In the absence of the integral term, (1.1) reduces to the classical wave-
heat system, whose asymptotic properties have been extensively analysed in the literature;
see for instance [1, 3, 5, 15, 23, 32, 33] and the references therein. In particular, it is known
that in this case the associated solution semigroup is semi-uniformly stable in the sense
that all classical solutions converge to zero at a uniform rate, and more specifically the
semigroup is polynomially stable with optimal decay rate t−2 as t → ∞. In particular,
the semigroup fails to be exponentially stable. To the best of the authors’ knowledge, the
system in (1.1) with a non-trivial kernel g was first studied in [31]. In fact, the analysis in
[31] deals with a more general system in which the Laplacian wxx appearing in the second
equation is replaced by βwxx for some β ≥ 0. The cases β > 0 and β = 0 correspond to
the so-called Coleman–Gurtin [11] and Gurtin–Pipkin [20] models, respectively. Thus our
system (1.1) corresponds to the Coleman–Gurtin case with β = 1, a choice which entails
no essential loss of generality. One of the main results of [31] is that if β = 0 and if the
so-called Dafermos condition

(1.4) µ′(s) + δµ(s) ≤ 0

holds for some δ > 0 and almost every s > 0, then the semigroup associated with the
wave-Gurtin–Pipkin system in the history space framework of Dafermos [13] is exponen-
tially stable. Since the Gurtin–Pipkin dissipation given solely by the convolution term
∫∞
0
g(s)wxx(t−s) ds is weaker than the dissipation provided by the Laplacian wxx, this re-

sult serves to illustrate that the classical wave-heat system fails to be exponentially stable
on account of overdamping. It is a reasonable guess, therefore, that the wave-Coleman–
Gurtin system (1.1), too, fails to be exponentially stable, and this has been confirmed in
[31], at least in the special case where g is an exponential function.

In the present paper, we complete the analysis begun in [31] by finding the optimal
(semi-uniform) decay rate of the semigroup (S(t))t≥0 associated with (1.1) in the history
space framework of Dafermos. More precisely, assuming the condition

(1.5) µ(t+ s) ≤ Ce−δtµ(s)

for some C ≥ 1 and δ > 0 and for every t ≥ 0 and s > 0, we show in Theorem 4.2
and Proposition 4.3 that (S(t))t≥0 is polynomially stable with optimal decay rate t−2

as t → ∞. Observe that this decay rate coincides with that of the classical wave-heat
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system. Note also that (1.5) is weaker than (1.4). For instance, condition (1.4), in contrast
to (1.5), does not allow flat zones or horizontal inflection points; see for instance [8, 9].
Our approach consists in writing the system in (1.1)–(1.2) as a feedback interconnection
between the wave part and the Coleman–Gurtin part. Based on this decomposition we
show that the infinitesimal generator A of (S(t))t≥0 has a special block operator structure
which can be used to derive a sharp resolvent estimate; see Theorems 3.1 and 3.4. This
resolvent estimate, combined with the asymptotic theory of C0-semigroups, finally leads
to the desired decay estimates. The general decomposition approach used in this paper
extends to the case where the wave part in (1.1) has spatially varying parameters, and also
to more complex systems, such as chains consisting of several coupled wave and Coleman–
Gurtin-type equations. In the latter case the decoupling approach reduces the study of
the more complicated system to the analysis of its simpler constituent parts, and in this
way facilitates efficient treatment of chains of coupled equations. The same approach can
potentially also be employed in the stability analysis of coupled PDEs on networks.

Notation. We introduce the (complex) Hilbert spaces

H1
l (−1, 0) = {ϕ ∈ H1(−1, 0) : ϕ(−1) = 0}, H1

r (0, 1) = {ϕ ∈ H1(0, 1) : ϕ(1) = 0},
with the inner products 〈ϕ, ψ〉H1

l (−1,0) = 〈ϕ′, ψ′〉L2(−1,0) and 〈ϕ, ψ〉H1
r (0,1) = 〈ϕ′, ψ′〉L2(0,1).

We also introduce the so-called memory space M = L2
µ(0,∞;H1

r (0, 1)) of H
1
r (0, 1)-valued

functions on (0,∞) which are square-integrable with respect to the measure µ(s)ds, en-
dowed with the natural inner product

〈η, ξ〉M =

∫ ∞

0

µ(s)〈η(s), ξ(s)〉H1
r (0,1) ds.

The state space of our problem will be

H = H1
l (−1, 0)× L2(−1, 0)× L2(0, 1)×M,

with the natural inner product

〈(u, v, w, η), (ũ, ṽ, w̃, η̃)〉H = 〈u, ũ〉H1

l (−1,0) + 〈v, ṽ〉L2(−1,0) + 〈w, w̃〉L2(0,1) + 〈η, η̃〉M.

Throughout the paper, the Young, Hölder and Poincaré inequalities will be used without
explicit mention. Square roots of complex numbers are defined with a branch cut along
(−∞, 0]. In particular, Re

√
λ ≥ 0 for all λ ∈ C, with strict inequality for λ 6∈ (−∞, 0].

We denote the open right and left half-planes in the complex plane by C± = {λ ∈ C :
Reλ ≷ 0}. Given (complex) Banach spaces X and Y we write L(X, Y ) for the space
of bounded linear operators from X to Y , and we write L(X) instead of L(X,X). If A
is a closed linear operator acting on a Banach or Hilbert space, we denote its spectrum
by σ(A) and its resolvent set by ρ(A). We frequently consider the domain D(A) of A as
being endowed with the graph norm ‖x‖A = (‖x‖2 + ‖Ax‖2)1/2. In particular, D(A) is a
Hilbert space whenever X is. Moreover, for λ ∈ ρ(A) we write R(λ,A) for the resolvent
operator (λ − A)−1. Finally, we use conventional asymptotic notation, including ‘big O’
and ‘little o’, and we occasionally write p . q to indicate that p ≤ Cq for some (implicit)
constant C > 0.
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2. The System Operator and Wellposedness

We begin by introducing the infinitesimal generator of the right-translation semigroup on
M, that is, the linear operator

Tη = −ηs, D(T ) =
{

η ∈ M : ηs ∈ M, lim
s→0

‖η(s)‖H1
r (0,1) = 0

}

,

where ηs denotes the (weak) derivative of η with respect to the variable s > 0. Integration
by parts with respect to s together with a limiting argument can be used to show (as in
[18]) that

(2.1) Re〈Tη, η〉M =
1

2

∫ ∞

0

µ′(s)‖η(s)‖2H1
r (0,1)

ds ≤ 0, η ∈ D(T ).

With a view to rewriting (1.1)–(1.2) in the history space framework of Dafermos [13], we
consider for each t > 0 the auxiliary function

ηt(x, s) =

∫ s

0

w(x, t− σ) dσ, x ∈ (0, 1), s > 0,

accounting for the integrated past history of w. We further introduce, still in the spirit
of [31], the function

(2.2) φ(x, t) = w(x, t) +

∫ ∞

0

µ(s)ηt(x, s) ds, x ∈ (0, 1), t > 0.

Integrating by parts (formally) we obtain the identity

w(x, t) +

∫ ∞

0

g(s)w(x, t− s) ds = φ(x, t), x ∈ (0, 1), t > 0.

The system (1.1)–(1.2) can now be rewritten as

(2.3)











utt(x, t) = uxx(x, t), x ∈ (−1, 0), t > 0,

wt(x, t) = φxx(x, t), x ∈ (0, 1), t > 0,

ηtt(x, s) = Tηt(x, s) + w(x, t), x ∈ (0, 1), s, t > 0,

with the boundary conditions (1.3) and the coupling conditions

ut(0, t) = w(0, t), ux(0, t) = φx(0, t)(2.4)

for t > 0. By introducing the state vector z(t) = (u(·, t), v(·, t), w(·, t), ηt(·, ·))T , we may
convert the above problem into an abstract Cauchy problem in the space H, namely

(2.5)

{

ż(t) = Az(t), t ≥ 0,

z(0) = z0,
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where A : D(A) ⊂ H → H is the linear operator

A









u
v
w
η









=









v
u′′

φ′′

Tη + w









, D(A) =











































u
v
w
η









∈ H

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

u ∈ H2(−1, 0)
v ∈ H1

l (−1, 0)
w ∈ H1

r (0, 1)
η ∈ D(T )
φ ∈ H2(0, 1)
u′(0) = φ′(0)
v(0) = w(0)



































,

and z0 = (u0, v0, w0, η
0)T ∈ H with η0(x, s) =

∫ s

0
ϕ0(x, σ) dσ for x ∈ (0, 1) and s > 0.

Theorem 2.2 below shows that A generates a contraction semigroup on H. The proof is
based on the special block operator structure of A introduced in the same result. This
structure of A also plays a central role later in Section 3, where we use it together with
the results in [24] in order to derive an optimal resolvent estimate for A on iR.

To state the theorem, we first define some notation related to extrapolation spaces
for semigroup generators. If A : D(A) ⊂ Z → Z generates a C0-semigroup (T (t))t≥0

on a Hilbert space Z, then D(A) is a Hilbert space with respect to the graph norm
of A. We define Z−1 to be the completion of the space Z with respect to the norm
‖z‖Z

−1
= ‖(λ0 − A)−1z‖Z with λ0 ∈ ρ(A) (the space Z−1 is independent of the choice of

λ0 ∈ ρ(A)). The operator A : D(A) ⊂ Z → Z extends to A−1 : D(A−1) ⊂ Z−1 → Z−1

with domain D(A−1) = Z; see for instance [16, Sec. II.5]. The operator A−1 generates a
C0-semigroup (T−1(t))t≥0 on the Banach space Z−1 such that for every t ≥ 0 the operator
T−1(t) ∈ L(Z−1) is an extension of T (t) ∈ L(Z). Finally, for an operator B ∈ L(Cm, Z−1)
we let

ZB = D(A) + Ran(R(λ0, A−1)B)

for λ0 ∈ ρ(A) (the space ZB ⊂ Z is again is independent of the choice of λ0 ∈ ρ(A)).

Definition 2.1 ([29, Def. 5.1]). Assume that A : D(A) ⊂ Z → Z generates a C0-
semigroup on Z and that C ∈ L(D(A),Cm). The Λ-extension of C is defined as the
operator

CΛz = lim
λ→∞
λ>0

λCR(λ,A)z

and the domain D(CΛ) consists of those z ∈ Z for which the limit exists.

Theorem 2.2. Let Z1 = H1
l (−1, 0) × L2(−1, 0) and Z2 = L2(0, 1) × M. There exist

semigroup generators Ak : D(Ak) ⊂ Zk → Zk and operators Bk ∈ L(C, Zk,−1), Ck ∈
L(D(Ak),C) for k = 1, 2, and a constant D1 > 0 such that

A =

(

A1,−1 B1C2Λ

−B2C1Λ A2,−1 − B2D1C2Λ

)

,(2.6a)

D(A) =

{(

z1
z2

)

∈ ZB1

1 × ZB2

2

∣

∣

∣

∣

A1,−1z1 +B1C2Λz2 ∈ Z1

A2,−1z2 − B2(C1Λz1 +D1C2Λz2) ∈ Z2

}

.(2.6b)

Moreover, the operator A generates a contraction semigroup (S(t))t≥0 on H = Z1 × Z2.
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The proof of Theorem 2.2 is a direct consequence of Proposition 2.14 at the end of this
section. Our approach in the proof of this result and subsequent ones does not require us
to derive explicit expressions for the operators B1, B2 or the Λ-extensions C1Λ and C2Λ

of the operators C1 and C2. In particular, explicit knowledge of these operators is not
required for the purposes of proving well-posedness or deriving resolvent estimates for A
by means of the results in [24].

Remark 2.3. The fact that A generates a contraction semigroup was already proved
in [31] under slightly stronger assumptions on the memory kernel; cf. hypotheses (H1)-
(H2) in [31]. We also stress that (1.5) is not needed in the semigroup generation part,
but only in the resolvent estimates carried out in the next section.

Before proceeding to prove Theorem 2.2, we shall motivate the block operator struc-
ture of A based on the properties of the coupled PDE system (2.3) with the boundary
conditions (1.3) and the coupling conditions (2.4). The block structure in (2.6) arises
from the decomposition of the full coupled PDE system into two natural subparts: a
wave equation and a Coleman–Gurtin-type diffusion equation. Indeed, if we introduce
two auxiliary functions U1 and Y1, the ‘wave part’ of the coupled PDE system is given by











utt(x, t) = uxx(x, t), x ∈ (−1, 0), t > 0,

u(−1, t) = 0, ut(0, t) = U1(t), Y1(t) = ux(0, t), t > 0,

u(x, 0) = u0(x), ut(x, 0) = v0(x), x ∈ (−1, 0).

(2.7)

Thus, for t > 0, the value for ut(·, t) at x = 0 is given by U1(t), while Y1(t) is determined
by the value of ux(·, t) at x = 0.

Introducing two further auxiliary functions U2 and Y2, the remaining ‘Coleman–Gurtin
part’ is given by























wt(x, t) = φxx(x, t), x ∈ (0, 1), t > 0,

ηtt(x, s) = Tηt(x, s) + w(x, t), x ∈ (0, 1), s, t > 0,

−φx(0, t) = U2(t), Y2(t) = w(0, t), w(1, t) = 0, t > 0,

w(x, 0) = w0(x), η0(x, s) =
∫ s

0
ϕ0(x, σ) dσ, x ∈ (0, 1), s > 0.

(2.8)

For t > 0, the value of φx(·, t) at x = 0 is determined by U2(t), and Y2(t) is determined
by the value of w(·, t) at x = 0.

The PDE models (2.7) and (2.8) become equivalent to the coupled PDE system (2.3)
once we require that for all t > 0 the auxiliary functions U1(t), U2(t), Y1(t), and Y2(t),
satisfy the identities

{

U1(t) = Y2(t)

U2(t) = −Y1(t)
⇐⇒

{

ut(0, t) = w(0, t)

ux(0, t) = φx(0, t),
(2.9)

which are precisely the coupling conditions (2.4). The block operator structure (2.6) fol-
lows this decomposition of the coupled PDE into two parts. In particular, the operators
(A1, B1, C1, D1) are related to the wave part (2.7) and (A2, B2, C2) are related to the
Coleman–Gurtin part (2.8). This decomposition is moreover closely connected to mathe-
matical systems theory, where U1 and U2 would be interpreted as the inputs of the PDE
models (2.7) and (2.8), respectively, and Y1 and Y2 would define the outputs of the two
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systems [12, 28, 22]. In the terminology of systems theory, the coupling conditions (2.9)
on the inputs U1(t) and U2(t) and the outputs Y1(t) and Y2(t) in (2.9) define a feedback
interconnection between the wave part and the Coleman–Gurtin part.

In the remaining part of this section, we shall use the results from infinite-dimensional
systems theory in [28, 22, 30] to prove the block operator representation (2.6) of A.

2.1. Background on regular tuples and boundary nodes. The operators appearing
in (2.6) form “regular tuples” in the sense of Definition 2.5 below. Such operators are
closely related to the theory regular linear systems [30], [29, Sec. 5].

Definition 2.4. Assume that A generates a C0-semigroup (T (t))t≥0 on a Hilbert space
Z. An operator B ∈ L(Cm, Z−1) is admissible [29, Rem. 3.3] with respect to (T (t))t≥0 if
there exists τ > 0 such that

∫ τ

0

T−1(t)Bu(t) dt ∈ Z, u ∈ L2(0, τ ;Cm).

Correspondingly, an operator C ∈ L(D(A),Cm) is admissible [29, Rem. 3.4] with respect
to (T (t))t≥0 if there exist τ, κ > 0 such that

∫ τ

0

‖CT (t)z‖2
Cm dt ≤ κ‖z‖2Z , z ∈ D(A).

Definition 2.5. Assume that A : D(A) ⊂ Z → Z generates a C0-semigroup (T (t))t≥0

on a Hilbert space Z and that B ∈ L(Cm, Z−1) and C ∈ L(D(A),Cm) are admissible
with respect to (T (t))t≥0. Then the tuple (A,B,C,D) is said to be regular if D ∈ C

m×m,
Ran(R(λ,A−1)B) ⊂ D(CΛ) for some (or, equivalently, all) λ ∈ ρ(A) and

sup
Reλ≥σ

‖CΛR(λ,A−1)B‖Cm <∞

for some σ ≥ 0. The transfer function P of the regular tuple (A,B,C,D) is defined by

P (λ) = CΛR(λ,A−1)B +D, λ ∈ ρ(A).

The regular tuple (A,B,C,D) is called impedance passive if

Re〈A−1z +BU, z〉Z ≤ Re〈CΛz +DU,U〉Cm(2.10)

for all U ∈ Cm and z ∈ ZB satisfying A−1z +BU ∈ Z.

Choosing z ∈ D(A) and U = 0 ∈ Cm in (2.10) shows that the semigroup generated by
A in an impedance passive regular tuple (A,B,C,D) is contractive.

Our aim is to relate the wave part (2.7) and the Coleman–Gurtin part (2.8) of our
coupled PDE system to regular tuples (A1, B1, C1, D1) and (A2, B2, C2, D2), respectively.
We shall do this by first formulating both of these PDEs as abstract boundary control
systems [7, 22, 27] of the form



















ż(t) = Lz(t), t ≥ 0,

Gz(t) = U(t), t ≥ 0,

Y (t) = Kz(t), t ≥ 0,

z(0) = z0

(2.11)
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on a Hilbert space Z with L : D(L) ⊂ Z → Z and K,G : D(L) ⊂ Z → Cm. As is
shown in Lemma 2.9 below, under suitable assumptions the operators A, B, C and D
of the regular tuples exist and can be expressed in terms of L, G, and K. The benefit
of using the framework of abstract boundary control systems is that (2.11) has a form
which closely resembles both the wave part (2.7) and the Coleman–Gurtin part (2.8)
with suitable choices of a differential operator L : D(L) ⊂ Z → Z and boundary trace
operators G,K : D(L) ⊂ Z → C. We call (2.11) a boundary control system if the operator
L, G and K form a boundary node defined as below.

Definition 2.6. The triple (G,L,K) in (2.11) is said to be an (internally well-posed)
boundary node on the Hilbert spaces (Cm, Z,Cm) (or sometimes, for short, on Z) if the
linear operators L : D(L) ⊂ Z → Z and G,K : D(L) ⊂ Z → Cm have the following
properties:

(a) The restriction L|Ker(G) : Ker(G) ⊂ Z → Z generates a C0-semigroup on Z;
(b) G,K ∈ L(D(L),Cm);
(c) Ran(G) = C

m.

The boundary node is impedance passive if

Re〈Lz, z〉Z ≤ Re〈Gz,Kz〉Cm , z ∈ D(L).

The transfer function P : C+ → Cm×m of an impedance passive boundary node of the
form (2.11) is defined so that, for λ ∈ C+ and U ∈ Cm,

P (λ)U = Kz,

where z ∈ D(L) satisfies (λ− L)z = 0 and Gz = U .

Remark 2.7. Conditions (a) and (b) in Definition 2.6 imply that Ker(G) is a complete
finite-codimensional subspace of D(L) (equipped with the graph norm of L). This in
particular implies thatD(L) is a Hilbert space or, equivalently, that L is a closed operator.
Moreover, D(L) is densely and continuously embedded in Z.

Remark 2.8. In defining the transfer function of a boundary node, we do not distin-
guish between P in Definition 2.6 and its analytic extensions to domains containing C+.
The existence and uniqueness of the solution z ∈ D(L) of the ‘abstract boundary value
problem’ (λ−L)z = 0 and Gz = U for any U ∈ Cm and λ ∈ C+ follow from [7, Thm. 2.9].

The next lemma collects results from [22, 28, 29, 30] to show how an impedance passive
boundary node (G,L,K) on a Hilbert space Z gives rise to a regular tuple (A,B,C,D)
on the same space.

Lemma 2.9. Let (G,L,K) be an impedance passive boundary node on the Hilbert spaces
(Cm, Z,Cm). Assume that the transfer function P of the boundary node satisfies

sup
s∈R

‖P (σ + is)‖ <∞
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for some σ ≥ 0 and that P (λ) converges to a limit as λ → ∞ through the positive reals.
Then there exists an impedance passive regular tuple (A,B,C,D) on Z such that

A = L|Ker(G),

Lz = A−1z +BGz,

Kz = CΛz +DGz,

D = lim
λ→∞
λ>0

P (λ) ∈ C
m×m

for z ∈ D(L). Furthermore, ZB = D(L), Ran(B) ∩ Z = {0} and P coincides with the
transfer function of the regular tuple (A,B,C,D) on ρ(A) ∩ C+.

Proof. By [22, Thm. 2.3 and Prop. 2.5], the boundary node (G,L,K) defines a ‘system
node’ Snode in the sense of [22, Def. 2.1] or [28, Def. 2.1]. By definition, the system node
Snode is a linear block operator

Snode =

(

A&B
C&D

)

: D(Snode) ⊂ Z × C
m → Z × C

m

with components C&D : D(Snode) ⊂ Z × Cm → Cm and

A&B : D(Snode) ⊂ Z × C
m → Z, A&B

(

z
U

)

= A−1z +BU,

(

z
U

)

∈ D(Snode),

where A : D(A) ⊂ Z → Z is the generator of a C0-semigroup on Z and B ∈ L(Cm, Z−1).
The result [22, Thm. 2.3(ii)] in particular shows that A = L|Ker(G) and that the ‘control
operator’ B ∈ L(Cm, Z−1) of the system node Snode satisfies Lz = A−1z + BGz for
z ∈ D(L). Moreover, by [22, Thm. 2.3(v)] we have Z ∩ Ran(B) = {0} and, letting
λ0 ∈ ρ(A) ∩ C+,

D(L) = D(A) + Ran(R(λ0, A−1)B) = ZB,

while by [22, Thm. 2.3(iv)] the ‘combined observation and feedthrough operator’ C&D of
Snode is given by

C&D

(

z
U

)

= Kz

for all z ∈ D(L) satisfying Gz = U . This further implies that the ‘observation operator’
C ∈ L(D(A),Cm) of Snode satisfies Cz = Kz for all z ∈ D(A) = Ker(G). Moreover, the
transfer function Pnode of the system node [28, Def. 2.1] then has the form

Pnode(λ)U = C&D

(

R(λ,A−1)BU
U

)

= KR(λ,A−1)BU(2.12)

for all U ∈ Cm and λ ∈ ρ(A) ∩ C+. But if we write z = R(λ,A−1)BU ∈ ZB = D(L)
then [22, Thm. 2.3(v)] implies that Gz = GR(λ,A−1)BU = U , and thus

(λ− L)z = (λ−A−1)z −BGz = (λ− A−1)R(λ,A−1)BU − BU = 0.

This shows that in fact Pnode(λ)U = Kz = P (λ)U for all U ∈ Cm and λ ∈ ρ(A) ∩ C+.
By [28, Thm. 4.2] the system node Snode is impedance passive if (and only if)

Re〈A−1z +BU, z〉Z ≤ Re

〈

C&D

(

z
U

)

, U

〉

Cm
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for all z ∈ D(L) and U ∈ Cm satisfying Gz = U . This property holds since for any
z ∈ D(L) and U ∈ Cm such that Gz = U we have A−1z +BU = A−1z + BGz = Lz and
C&D(z, U)T = Kz, and thus

Re〈A−1z +BU, z〉Z = Re〈Lz, z〉Z ≤ Re〈Kz,Gz〉Cm = Re

〈

C&D

(

z
U

)

, U

〉

Cm

(2.13)

by impedance passivity of the boundary node. Furthermore, our assumption that P (and
thus also Pnode) is uniformly bounded on a vertical line in C+ together with [28, Thm. 5.1]
shows that Snode is well-posed in the sense of [28, Def. 2.1] (or [29, Def. 4.4]). In particular,
the operators B ∈ L(Cm, Z−1) and C ∈ L(D(A),Cm) are admissible with respect to the
semigroup generated by A [29, Prop. 4.9].

Our assumption that P (λ) converges to a well-defined limit as λ → ∞ with λ > 0
together with [29, Thm. 5.6] (or [30, Thm. 5.8]) implies that the system node Snode is
‘regular’ in the sense of [29, Def. 5.2]. If we define D = limλ→∞,λ>0 P (λ), then [29,
Thm. 5.5] shows that Ran(R(λ,A−1)B) ⊂ D(CΛ) and the transfer function P has the
form

P (λ) = CΛR(λ,A−1)B +D, λ ∈ C+.

Thus (A,B,C,D) is regular in the sense of Definition 2.5. Finally, let z ∈ D(L) = ZB be
arbitrary. Then there exist z0 ∈ D(A) = Ker(G), λ0 ∈ ρ(A) ∩ C+ and U ∈ Cm such that
z = z0 + R(λ0, A−1)BU . By [22, Thm. 2.3(v)] we have GR(λ0, A−1)B = I, and hence
Gz = U . Now a direct computation using Cz0 = Kz0 and (2.12) shows that

Kz = Kz0 +KR(λ0, A−1)BU = Cz0 + P (λ0)U

= CΛz0 + CΛR(λ0, A−1)BU +DU

= CΛz +DGz;

see also [30, Rem. 4.11]. Since the same computation also shows that

C&D

(

z
U

)

= Kz = CΛz +DU

for z ∈ D(L) and U ∈ Cm satisfying Gz = U , the estimate in (2.13) implies that the
regular tuple (A,B,C,D) is impedance passive. �

Remark 2.10. In the study of our wave-heat system we shall require only the case
m = 1 of the general framework set out above. However, as already mentioned in the
Introduction, the same framework with m > 1 can be used in an analogous way to analyse
more complicated coupled systems, such as for instance the wave-heat-wave system.

2.2. The wave-part. We now show that the wave part (2.7) can be written in the
form (2.11) for some operators G1, L1 and K1 defining a boundary node, and that this
representation also defines a regular tuple (A1, B1, C1, D1) via Lemma 2.9. Boundary
control systems and regular tuples associated with one-dimensional and multidimensional
wave equations are rather well understood; see for instance [22, Sec. 5], [29, Ex. 5.8] as
well as [19, 21, 34]. To prove this property for the wave part, we begin by identifying the
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operators L1, G1, and K1 of the boundary node (G1, L1, K1). We can write (2.7) as a first
order system



















(

ut(x, t)
vt(x, t)

)

=

(

v(x, t)
uxx(x, t)

)

, x ∈ (−1, 0), t > 0,

v(0, t) = U1(t), Y1(t) = ux(0, t), u(−1, t) = 0, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (−1, 0).

If, for t ≥ 0, we consider z1(t) = (u(·, t), v(·, t))T to be the state of an abstract differential
equation of the form (2.11) on the Hilbert space Z1 = H1

l (−1, 0)×L2(−1, 0), then natural
choices for the operators G1, L1 and K1 of the boundary node (G1, L1, K1) are

L1

(

u
v

)

=

(

v
u′′

)

, D(L1) = (H2(−1, 0) ∩H1
l (−1, 0))×H1

l (−1, 0),

G1

(

u
v

)

= v(0) and K1

(

u
v

)

= u′(0)

for all (u, v)T ∈ D(L1). In particular, the boundary condition at x = −1 is part of the
definition of D(L1), and the condition at x = 0 is determined by G1.

Proposition 2.11. The tuple (G1, L1, K1) is an impedance passive boundary node on
(C, Z1,C) and defines an impedance passive regular tuple (A1, B1, C1, D1). In particular,
D1 = 1 ∈ C and the operator

A1

(

u
v

)

=

(

v
u′′

)

, D(A1) =

{(

u
v

)

∈ H2(−1, 0)×H1
l (−1, 0)

∣

∣

∣

∣

u(−1) = v(0) = 0

}

is skew-adjoint with compact resolvent. The spectrum of A1 consists of simple eigenvalues,
namely σ(A1) = { ikπ | k ∈ Z }. Writing {ψk | k ∈ Z } for the corresponding set of
orthonormal eigenvectors, the operator C1 satisfies |C1ψk| = 1 for all k ∈ Z.

Proof. It is easy to show that the restriction A1 = L1|Ker(G1) : D(A1) ⊂ Z1 → Z1 with
the above domain is skew-adjoint and has compact resolvent. In particular, A1 generates
a unitary group on Z1. It is also straightforward to show that G1, K1 ∈ L(D(L1),C),
and certainly Ran(G1) = C. Thus (G1, L1, K1) is a boundary node on (C, Z1,C) in the
sense of Definition 2.6. If z = (u, v)T ∈ D(L1) then using v(−1) = 0 we readily see, using
integration by parts, that

Re〈L1z, z〉Z1
= Re〈v(0), u′(0)〉C = Re〈G1z,K1z〉C.

Thus (G1, L1, K1) is impedance passive.
To show that the wave part also defines a regular tuple, we compute the transfer function

P1 of the boundary node (G1, L1, K1). By definition, if λ ∈ C+ then P1(λ) = K1z, where
z = (u, v)T ∈ D(L1) is such that

{

(λ− L1)z = 0

G1z = 1
⇐⇒











λu(x) = v(x), x ∈ (−1, 0),

λv(x) = u′′(x), x ∈ (−1, 0),

u(−1) = 0, v(0) = 1.
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We have

u(x) =
sinh(λ(x+ 1))

λ sinh(λ)
,

and hence P1(λ) = u′(0) = coth(λ). Since supτ∈R|coth(1 + iτ)| < ∞ and P1(λ) → 1 as
λ → ∞ with λ > 0, Lemma 2.9 shows that the wave part defines an impedance passive
regular tuple (A1, B1, C1, D1) on Z1 and that D1 = limλ→∞ P1(λ) = 1.

The eigenvalues of A1 are ikπ for k ∈ Z, and the corresponding orthonormal eigenvec-
tors are given by

ψ0 =

(

x+ 1
0

)

and ψk =
1

kπ

(

sin(kπ(x+ 1))
ikπ sin(kπ(x+ 1))

)

for k 6= 0.

Since {ψk | k ∈ Z } ⊂ D(A1) = Ker(G1), we have C1ψk = K1ψk = (−1)k for all k ∈ Z. �

2.3. Coleman–Gurtin part. As our next step we show that the Coleman–Gurtin part,
too, defines an impedance passive regular tuple. Based on the structure (2.8) we may
consider z2(t) = (w(·, t), ηt(·, ·))T for t ≥ 0 to be the state of the boundary node on the
Hilbert space Z2 = L2(0, 1)×M, and we may choose the operators L2 : D(L2) ⊂ Z2 → Z2

and G2, L2 : D(L2) ⊂ Z2 → C as

L2

(

w
η

)

=

(

φ′′

Tη + w

)

, D(L2) =

{(

w
η

)

∈ H1
r (0, 1)×D(T )

∣

∣

∣

∣

φ ∈ H2(0, 1)

}

,

G2

(

w
η

)

= −φ′(0) and K2

(

w
η

)

= w(0)

for all (w, η)T ∈ D(L2).

Proposition 2.12. The tuple (G2, L2, K2) is an impedance passive boundary node on
(C, Z2,C) and defines an impedance passive regular tuple (A2, B2, C2, D2). In particular,
D2 = 0 and the transfer function P2 of the regular tuple is given by

P2(λ) =
tanh

√

λ/ℓ(λ)
√

λℓ(λ)
, λ ∈ C+,

where ℓ : C+ \ {0} → C is defined by

ℓ(λ) = 1 +
1

λ

∫ ∞

0

µ(s)(1− e−λs) ds.

The proof of Proposition 2.12 requires the following lemma.

Lemma 2.13. The operator A2 = L2|Ker(G2) satisfies Ran(I − A2) = Z2.

Proof. We begin by showing that, for every η̂ ∈ M, the function ξ̂ defined by

ξ̂(x, s) =

∫ s

0

e−(s−σ)η̂(x, σ) dσ, x ∈ (0, 1), s > 0,

belongs to M and satisfies the estimate ‖ξ̂‖M ≤ ‖η̂‖M. To this end, we introduce the
auxiliary function K defined by

K(s) =

∫ s

0

e−(s−σ)
√

µ(σ)‖η̂(σ)‖H1
r (0,1) dσ, s > 0.
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By Young’s inequality for convolutions we have ‖K‖L2(0,∞) ≤ ‖η̂‖M. Hence, using the

monotonicity of µ, we obtain ‖ξ̂‖M ≤ ‖K‖L2(0,∞) ≤ ‖η̂‖M, as desired.
Next, for an arbitrarily given ẑ = (ŵ, η̂)T ∈ Z2, we consider the equation (I −A2)z = ẑ

in the unknown z = (w, η)T ∈ D(A2). Componentwise, we get the system

(2.14)

{

w(x)− φ′′(x) = ŵ(x), x ∈ (0, 1),

η(x, s)− Tη(x, s)− w(x) = η̂(x, s), x ∈ (0, 1), s > 0.

Integrating the second identity and using η(x, 0) = 0, we find

(2.15) η(x, s) = (1− e−s)w(x) + ξ̂(x, s), x ∈ (0, 1), s > 0.

From the definition of φ we infer that w(x) = φ(x)/ℓ(1)− ˆ̺(x), where

ˆ̺(x) =
1

ℓ(1)

∫ ∞

0

µ(s)ξ̂(x, s) ds, x ∈ (0, 1).

Substituting into the first equation in (2.14), we arrive at

φ(x)

ℓ(1)
− φ′′(x) = ŵ(x) + ˆ̺(x), x ∈ (0, 1).

The general solution of this equation above with the boundary condition φ(1) = 0 (coming
from the fact that w(1) = η(1, s) = 0) can be written as

(2.16) φ(x) = b sinh

(

1− x
√

ℓ(1)

)

− Φ(x), x ∈ (0, 1),

where b ∈ C and

Φ(x) =
√

ℓ(1)

∫ 1

x

sinh

(

r − x
√

ℓ(1)

)

(ŵ(r) + ˆ̺(r)) dr, x ∈ (0, 1).

Accordingly, we have

(2.17) w(x) =
b

ℓ(1)
sinh

(

1− x
√

ℓ(1)

)

− Φ(x)

ℓ(1)
− ˆ̺(x), x ∈ (0, 1).

We now claim that φ ∈ H2(0, 1) and w ∈ H1
r (0, 1). By (2.16) and (2.17), the claim follows

provided that ˆ̺ ∈ H1
r (0, 1). But the latter is true, since

‖ ˆ̺‖H1
r (0,1) ≤

√
κ

ℓ(1)
‖ξ̂‖M ≤

√
κ

ℓ(1)
‖η̂‖M

by our earlier estimate, where κ =
∫∞
0
µ(s) ds denotes the total mass of µ. Next we show

that the function η given by (2.15) belongs to M. Since we already know that ξ̂ ∈ M,
we only need to prove that the map s 7→ (1− e−s)w lies in M. But this follows from the
estimate

∫ ∞

0

µ(s)|1− e−s|2‖w‖2H1
r (0,1)

ds ≤ κ‖w‖2H1
r (0,1)

.

Since η, η̂, w ∈ M, we also have ηs = η̂ + w − η ∈ M. Finally, by monotonicity of µ,

‖η(s)‖H1
r (0,1) ≤ |1− e−s|‖w‖H1

r (0,1) +
es

µ(s)

(∫ s

0

µ(σ) dσ

)
1

2

‖η̂‖M → 0
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as s→ 0, and we have thus proved that η ∈ D(T ).
It remains only to show that the constant b in (2.16) may be chosen in such a way that

φ′(0) = 0, but a straightforward calculation yields

b =

[

1
√

ℓ(1)
cosh

(

1
√

ℓ(1)

)]−1 ∫ 1

0

cosh

(

r
√

ℓ(1)

)

(

ŵ(r) + ˆ̺(r)
)

dr,

and this completes the proof. �

Proof of Proposition 2.12. We begin by showing that (G2, L2, K2) is an impedance passive
boundary node in the sense of Definition 2.6. We note first that Ran(G2) = C. If
z = (w, η)T ∈ D(L2), then using w(1) = 0 and (2.1) we readily get

Re〈L2z, z〉Z2
= Re〈w(0),−φ′(0)〉C − ‖w‖2H1

r (0,1)
+ Re〈Tη, η〉M

≤ Re〈w(0),−φ′(0)〉C = Re〈G2z,K2z〉C.
This estimate already shows that (G2, L2, K2) is impedance passive if it is a boundary node
in the sense of Definition 2.6. Moreover, the same estimate shows that Re〈L2z, z〉 ≤ 0
for z ∈ Ker(G2), and thus the restriction A2 = L2|Ker(G2) is dissipative. By Lemma 2.13
we also have Ran(I − A2) = Z2, and therefore A2 generates a contraction semigroup on
Z2 by the Lumer–Phillips theorem. In order to prove that (G2, L2, K2) is an impedance
passive boundary node it remains to verify that G2, K2 ∈ L(D(L2),C). Recall that the
norm on D(L2) is taken to be the graph norm of L2, that is to say

‖z‖2D(L2)
= ‖L2z‖2Z2

+ ‖z‖2Z2
= ‖φ′′‖2L2(0,1) + ‖Tη + w‖2M + ‖w‖2L2(0,1) + ‖η‖2M,

for z = (w, η)T ∈ D(L2) ⊂ Z2. Note first that

|G2z| = |φ′(0)| . ‖φ′‖H1(0,1) . ‖φ′‖L2(0,1) + ‖z‖D(L2).

By interpolation and an application of Young’s inequality we have

‖φ′‖L2(0,1) . ‖φ‖L2(0,1) + ‖z‖D(L2),

and hence |G2z| . ‖φ‖L2(0,1) + ‖z‖D(L2). In order to show that G2 ∈ L(D(L2),C), it
remains to control the term ‖φ‖L2(0,1). To this end we observe that, by definition of φ,

‖φ‖L2(0,1) . ‖z‖D(L2) +

∫ ∞

0

µ(s)‖η(s)‖H1
r (0,1) ds . ‖z‖D(L2) + ‖η‖M . ‖z‖D(L2),

and hence boundedness of G2 follows. In order to show that K2 ∈ L(D(L2),C) we first
note that, since w(1) = 0, we have |K2z| = |w(0)| . ‖w‖H1

r (0,1). Next, the definition of φ
implies

‖w‖H1
r (0,1) . ‖φ′‖L2(0,1) + ‖η‖M . ‖φ′‖L2(0,1) + ‖z‖D(L2).

The term ‖φ′‖L2(0,1) can be estimated as before, and the boundedness of K2 follows. Thus
(G2, L2, K2) is a boundary node on (C, Z2,C) in the sense of Definition 2.6.

The transfer function P2 of the boundary node is defined, for λ ∈ C+, by P2(λ) = K2z,
where z = (w, η)T ∈ D(L2) solves the problem (λ−L2)z = 0 and G2z = 1. Arguing as in
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the proof of Lemma 2.13, the first component of z can be written as

w(x) =
sinh

(
√

λ/ℓ(λ)(1− x)
)

√

λℓ(λ) cosh
√

λ/ℓ(λ)
, x ∈ (0, 1),

and hence

P2(λ) = w(0) =
tanh

√

λ/ℓ(λ)
√

λℓ(λ)
, λ ∈ C+.

We now show that P2(λ) → 0 uniformly in Imλ as Reλ → ∞. This implies in
particular that P2(λ) → 0 as λ → ∞ through the reals and that there exists σ > 0 such
that sups∈R|P2(σ + is)| < ∞. Thus by Lemma 2.9 the Coleman–Gurtin part defines an
impedance passive regular tuple (A2, B2, C2, D2) with D2 = limλ→∞ P2(λ) = 0. In order
to prove the required uniform decay estimate, observe first that ℓ(λ) = 1 + O(|λ|−1) and
hence λℓ(λ) = λ + O(1) and λ/ℓ(λ) = λ + O(1) as |λ| → ∞ in the right half-plane. In
particular, |λℓ(λ)| ≥ 1

2
Reλ for Reλ sufficiently large. Moreover,

Re
√

λ/ℓ(λ) = Re
√
λ+O(1)

as |λ| → ∞ with λ ∈ C+, and for λ ∈ C+ we have Re
√
λ ≥

√
Reλ. It follows that

Re
√

λ/ℓ(λ) ≥ 1
2

√
Reλ for Reλ sufficiently large. Thus

|P2(λ)| ≤
1

|
√

λℓ(λ)|

∣

∣

∣

∣

1− 2

e2
√

λ/ℓ(λ) + 1

∣

∣

∣

∣

≤
√

2

Reλ

(

1 +
2

e
√
Reλ − 1

)

when Reλ is sufficiently large, and the claim follows. �

2.4. Proof of Theorem 2.2. Theorem 2.2 is an immediate corollary of the following
more detailed proposition.

Proposition 2.14. The operator A has the form

A =

(

A1,−1 B1C2Λ

−B2C1Λ A2,−1 −B2D1C2Λ

)

,(2.18)

D(A) =

{(

z1
z2

)

∈ ZB1

1 × ZB2

2

∣

∣

∣

∣

A1,−1z1 +B1C2Λz2 ∈ Z1,
A2,−1z2 − B2(C1Λz1 +D1C2Λz2) ∈ Z2

}

,(2.19)

where (A1, B1, C1, D1) and (A2, B2, C2, D2) are the impedance passive regular tuples as-
sociated to the wave part and the Coleman–Gurtin part, respectively. The operator A

generates a contraction semigroup on the space H.

Proof. By definition, we have H = Z1 × Z2. Let (G1, L1, K1) and (G2, L2, K2) be the
boundary nodes associated to the wave part and the Coleman–Gurtin part, respectively,
as defined in Propositions 2.11 and 2.12. If we write z1 = (u, v)T and z2 = (w, η)T , the
operator A and its domain may be written as

A









u
v
w
η









=

(

L1 0
0 L2

)(

z1
z2

)

, D(A) =

{(

z1
z2

)

∈ D(L1)×D(L2)

∣

∣

∣

∣

G1z1 = K2z2,
G2z2 = −K1z1

}

.
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Since D2 = 0, Lemma 2.9 implies that L1 = A1,−1 +B1G1, K1 = C1Λ +D1G1 on D(L1),
and L2 = A2,−1 + B2G2, K2 = C2Λ on D(L2). It follows that, for (z1, z2)

T ∈ D(A),
G1z1 = K2z2 = C2Λz2 and

G2z2 = −K1z1 = −C1Λz1 −D1G1z1 = −C1Λz1 −D1C2Λz2,

and hence

L1z1 = A1,−1z1 +B1G1z1 = A1,−1z1 +B1C2Λz2,

L2z2 = A2,−1z2 +B2G2z2 = (A2,−1 −B2D1C2Λ)z2 − B2C1Λz1.

These formulas show that the operator A has the desired form (2.18) onD(A) and that the
inclusion “⊂” holds in (2.19). It therefore remains to show that the inclusion “⊃” holds in
(2.19). To this end, assume that (z1, z2)

T ∈ ZB1

1 ×ZB2

2 is such that A1,−1z1+B1C2Λz2 ∈ Z1

and A2,−1z2−B2(C1Λz1+D1C2Λz2) ∈ Z2. Then (z1, z2)
T ∈ D(L1)×D(L2) by Lemma 2.9,

so it suffices to show that G1z1 = K2z2 and G2z2 = −K1z1. Lemma 2.9 also implies that
Zk ∩ Ran(Bk) = {0} for k = 1, 2. We have

Z1 ∋ A1,−1z1 +B1C2Λz2 = L1z1 − B1G1z1 +B1C2Λz2 = L1z1 +B1(−G1z1 +K2z2),

and since L1z1 ∈ Z1 we see that G1z1 = K2z2. Since G1z1 = K2z2 = C2Λz2 and C1Λz1 +
D1C2Λz2 = K1z1 we find similarly that

Z2 ∋ A2,−1z2 − B2(C1Λz1 +D1C2Λz2) = L2z2 −B2(G2z2 +K1z1),

which implies that G2z2 = −K1z1, as required.
Finally, since A has the form in Proposition 2.14 where (Ak, Bk, Ck, Dk) for k = 1, 2 are

impedance passive regular tuples with D1 = 1 ≥ 0 and D2 = 0, the operator A generates
a contraction semigroup by [24, Lem. 4.2]. �

3. Resolvent Estimates

We now study the behaviour of the resolvent operatorR(is,A) as s→ ±∞. In Section 3.1,
we establish an asymptotic upper bound on ‖R(is,A)‖, and then in Section 3.2 we shall
show this upper bound to be optimal.

3.1. Upper bound. Our main result here is the following.

Theorem 3.1. Assume that (1.5) holds. Then the operator A satisfies σ(A) ⊂ C− and

‖R(is,A)‖ = O(|s|1/2), s→ ±∞.

The proof of Theorem 3.1 is based on the following abstract result from [24], which we
state in the special case where A1 has compact resolvent and the eigenvalues of A1 have
a uniform gap (but are not necessarily simple).

Theorem 3.2 ([24, Thm. 3.7]). Let (A1, B1, C1, D1) and (A2, B2, C2, D2) be impedance
passive regular tuples on Z1 and Z2, respectively, with Cm×m ∋ D1 ≥ 0 and D2 = 0 ∈
Cm×m. Assume that A1 is skew-adjoint with compact resolvent and spectrum σ(A1) =
{ isk | k ∈ Z }, that the eigenvalues of A1 satisfy infk 6=l|sk−sl| > 0, and that the semigroup
generated by A2 is exponentially stable. In addition, assume that there exists a constant
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γ0 > 0 such that ‖C1z‖Cm ≥ γ0‖z‖Z1
for all z ∈ Ker(isk −A1) and k ∈ N, and that there

exists a non-increasing function ν : R+ → (0, 1] such that

Re〈P2(is)U, U〉Cm ≥ ν(|s|)‖U‖2
Cm, U ∈ C

m, s ∈ R.

Then the block operator A defined by

A =

(

A1,−1 B1C2Λ

−B2C1Λ A2,−1 − B2D1C2Λ

)

,

D(A) =

{(

z1
z2

)

∈ ZB1

1 × ZB2

2

∣

∣

∣

∣

A1,−1z1 +B1C2Λz2 ∈ Z1,
A2,−1z2 −B2(C1Λz1 +D1C2Λz2) ∈ Z2

}

,

satisfies iR ⊂ ρ(A) and

‖R(is,A)‖ = O(ν(|s|)−1), s→ ±∞.

Proof. The theorem was proved in more general form in [24, Thm. 3.7]. The regular
tuples (A1, B1, C1, D1) and (A2, B2, C2, D2) correspond to (Ac, Bc, Cc, Dc) and (A,B,C,D)
in [24], respectively. Similarly, the transfer functions P1 and P2 correspond to the transfer
functions G and P in [24]. The current statement follows from [24, Thm. 3.7] if we let
Ωε = R, in which case the required condition (2) of [24, Thm. 3.5] is trivially satisfied.
The non-increasing function ν corresponds to the function η in [24, Thm. 3.7]. Moreover,
as explained in [24, Rem. 3.8], the assumption that the eigenvalues of A1 satisfy the
uniform gap condition infk 6=l|sk − sl| > 0 implies that it is possible to choose δ and γ
in [24, Thm. 3.7] to be constant functions. With these choices [24, Thm. 3.7] implies that
iR ⊂ ρ(A) and there exists a constant M > 0 such that ‖R(is,A)‖ ≤ M/ν(|s|) for all
s ∈ R. �

We begin by showing that the semigroup generated by the operator A2 = L2|Ker(G2) :
D(A2) ⊂ Z2 → Z2 introduced in Section 2.3 is exponentially stable whenever condi-
tion (1.5) is satisfied.

Lemma 3.3. If condition (1.5) holds, the contraction semigroup generated by A2 is ex-
ponentially stable.

Proof. Recall that A2 is the infinitesimal generator of a contraction semigroup on Z2 =
L2(0, 1)×M, as was shown in the proof of Proposition 2.12. We prove that iR ⊂ ρ(A2) and
supr∈R‖R(ir, A2)‖ < ∞. The claim then follows from the Gearhart-Prüss theorem [16,
Thm. V.1.11]. To this end we begin by introducing the space N = L2

g(0,∞;H1
r (0, 1))

of H1
r (0, 1)-valued functions on (0,∞) which are square-integrable with respect to the

measure g(s)ds, endowed with the inner product

〈η, ξ〉N =

∫ ∞

0

g(s)〈η(s), ξ(s)〉H1
r(0,1) ds.

By [17, Rem. 2.3], condition (1.5) is equivalent to the estimate g(s) ≤ Θµ(s) for some
Θ > 0 and all s > 0. It follows that

(3.1) ‖η‖N ≤
√
Θ‖η‖M, η ∈ M,

and hence M ⊂ N with continuous inclusion. Next, given ẑ = (ŵ, η̂)T ∈ Z2 and r ∈ R,
we consider the resolvent equation (ir − A2)z = ẑ in the unknown z = (w, η)T ∈ D(A2).
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Taking the inner product of this equation with z in Z2 and using w(1) = φ′(0) = 0 and
(2.1), we get

‖w‖2H1
r (0,1)

− 1

2

∫ ∞

0

µ′(s)‖η(s)‖2H1
r (0,1)

ds = Re〈(ir − A2)z, z〉Z2
= Re〈ẑ, z〉Z2

.

Since µ′(s) ≤ 0 for almost all s > 0, we have

(3.2) ‖w‖2L2(0,1) ≤ ‖w‖2H1
r (0,1)

≤ ‖z‖Z2
‖ẑ‖Z2

.

The resolvent equation may be rewritten in component form as
{

irw(x)− φ′′(x) = ŵ(x), x ∈ (0, 1),

irη(x, s)− Tη(x, s)− w(x) = η̂(x, s), x ∈ (0, 1), s > 0.

Recalling that M ⊂ N , we may take the inner product in N of the second equation above
with η. Taking the real part of the resulting expression, we obtain

(3.3) − Re〈Tη, η〉N = Re〈w, η〉N + Re〈η̂, η〉N .
Integrating by parts with respect to s and employing a limiting argument (cf. (2.1)) yields

−Re〈Tη, η〉N = −1

2

∫ ∞

0

g′(s)‖η(s)‖2H1
r (0,1)

ds =
1

2
‖η‖2M.

Hence, (3.1), (3.2) and (3.3) imply that

1

2
‖η‖2M ≤

√
Θ‖w‖H1

r (0,1)‖η‖M +Θ‖η̂‖M‖η‖M ≤ 1

4
‖η‖2M + 2Θ‖z‖Z2

‖ẑ‖Z2
,

and combining this with (3.2) we readily arrive at

(3.4) ‖z‖Z2
≤ (1 + 8Θ)‖ẑ‖Z2

.

The desired result now follows at once. Indeed, since A2 the generator of a contraction
semigroup on Z2, we have C+ ⊂ ρ(A2). Hence σ(A2) ∩ iR is contained in the topological
boundary of σ(A2), and thus in the approximate point spectrum of A2. However, (3.4)
shows that no purely imaginary number can be an approximate eigenvalue of A2, since
otherwise there would exist a sequence of unit vectors zn ∈ D(A2) with (ir − A2)zn → 0
in Z2 as n→ ∞, which contradicts (3.4). It follows that iR ⊂ ρ(A2), and now (3.4) yields
the bound supr∈R‖R(ir, A2)‖ ≤ 1 + 8Θ. �

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. By Propositions 2.11 and 2.12, (Ak, Bk, Ck, Dk) for k = 1, 2 are
impedance passive regular tuples with D1 = 1 ∈ C and D2 = 0 ∈ C. Moreover, by
Proposition 2.11 the operator A1 is skew-adjoint with compact resolvent and spectrum
σ(A1) = { ikπ | k ∈ Z } consisting of simple eigenvalues. Furthermore, |C1ψ| = ‖ψ‖ for
all ψ ∈ Ker(ikπ − A1) and k ∈ Z. By Lemma 3.3 the semigroup generated by A2 is
exponentially stable. Due to the structure of A described in Theorem 2.2 we may derive
the desired resolvent estimate using Theorem 3.2 provided we can find a non-increasing
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function ν : R+ → (0, 1] such that ReP2(is) ≥ ν(|s|) for all s ∈ R. We shall show that
there exists a constant c0 ∈ (0, 1] such that

ReP2(is) ≥
c0

1 + |s|1/2 , s ∈ R.(3.5)

We begin by observing that by exponential stability of the semigroup generated by A2

the transfer function P2 of the Coleman–Gurtin part (A2, B2, C2, D2) extends analytically
across the imaginary axis and, in particular, satisfies

P2(is) =
tanh

√

is/ℓ(is)
√

isℓ(is)
, s 6= 0,

where we recall that, for s 6= 0,

(3.6) ℓ(is) = 1 +
1

is

∫ ∞

0

µ(r)(1− e−isr) dr.

Integration by parts yields

(3.7) ℓ(is) = 1 +

∫ ∞

0

g(r)e−isr dr.

This expression shows in particular that we may indeed define ℓ(is) and hence P2(is) in
a natural way also for s = 0, by setting ℓ(0) = 2 and P2(0) = 1/2. In particular, both
s 7→ ℓ(is) and s 7→ P2(is) are continuous on R. We now prove that Re ℓ(is) ≥ 1 for all
s ∈ R. Note first that Re ℓ(is) = Re ℓ(−is) for all s ∈ R and, as has just been noted, that
ℓ(0) = 2. For s > 0, we see from (3.6) that

Re ℓ(is) = 1 +
1

s

∫ ∞

0

µ(r) sin(rs) dr = 1 +
1

s

∞
∑

n=0

∫ 2(n+1)π/s

2nπ/s

µ(r) sin(rs) dr

= 1 +
1

s

∞
∑

n=0

∫ π/s

0

(

µ

(

2nπ

s
+ r

)

− µ

(

(2n+ 1)π

s
+ r

))

sin(rs) dr.

By monotonicity of µ and non-negativity of sin(t) for 0 ≤ t ≤ π all of the integrands
are non-negative, and hence Re ℓ(is) ≥ 1 for all s ∈ R. Next we prove the asymptotic
estimate

(3.8) P2(is) =
1∓ i√
2|s|1/2

+O(|s|−3/2), s→ ±∞.

Note first that, by integrability of µ, ℓ(is) = 1 + O(|s|−1) and hence also ℓ(is)−1 =
1 +O(|s|−1) as |s| → ∞. Thus

(3.9)
√

is/ℓ(is) =
√

is(1 +O(|s|−1)) = |s|1/21± i√
2
(1 +O(|s|−1)), s→ ±∞,

and similarly

(3.10)
1

√

isℓ(is)
=

(

|s|1/21± i√
2
(1 +O(|s|−1))

)−1

=
1∓ i√
2|s|1/2

(1 +O(|s|−1))
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as s→ ±∞. The estimate (3.9) yields

tanh
√

is/ℓ(is) = 1− 2

e2
√

is/ℓ(is) + 1
= 1 +O

(

e−
√
2|s|1/2

)

, |s| → ∞,

and combining this with (3.10) we quickly obtain (3.8). It follows that (3.5) holds for some
c0 ∈ (0, 1] and for |s| sufficiently large. Hence by continuity of the map s 7→ ReP2(is) on
R it suffices, in order to prove (3.5), to show that ReP2(is) > 0 for all s ∈ R. First, from
(3.7) we see that

Im ℓ(is) = −
∫ ∞

0

g(r) sin(rs) dr, s ∈ R,

which implies, in particular, that

|Im ℓ(is)| <
∫ ∞

0

g(r) dr = 1, s ∈ R.

Let us denote by Σ the sector {z ∈ C \ {0} : | arg z| < π/4}. Since Re ℓ(is) ≥ 1 and
|Im ℓ(s)| < 1 we see that ℓ(is) ∈ Σ for all s ∈ R, and because Σ is invariant under the
inversion z 7→ z−1 we also have ℓ(is)−1 ∈ Σ for all s ∈ R. Fix s > 0 and let θ = arg ℓ(is).
Here and in what follows we take arg to be the principal value of the argument, so that
| arg λ| ≤ π for all λ ∈ C. Then arg

√

is/ℓ(is) = π
4
− θ

2
and arg

√

isℓ(is) = π
4
+ θ

2
. Let

a, b > 0 be such that
√

is/ℓ(is) = a+ ib. Then

tanh
√

is/ℓ(is) =
sinh(2a) + i sin(2b)

cosh(2a) + cos(2b)
.

Using that | sin(2b)| < 2b and sinh(2a) > 2a together with monotonicity of the arctangent,
we find that

∣

∣ arg tanh
√

is/ℓ(is)
∣

∣ =

∣

∣

∣

∣

tan−1

(

sin(2b)

sinh(2a)

)∣

∣

∣

∣

< tan−1

(

b

a

)

= arg
√

is/ℓ(is) =
π

4
− θ

2
.

Since argP2(is) = arg tanh
√

is/ℓ(is)−arg
√

isℓ(is), we obtain −π/2 < argP2(is) < π/4.
In particular, ReP2(is) > 0. An analogous argument applies when s < 0, and thus there
exists c0 ∈ (0, 1] such that (3.5) holds. Hence if we let ν(r) = c0/(1 +

√
r) for r ≥ 0,

then (3.5) yields ReP2(is) ≥ ν(|s|) for all s ∈ R. It follows from Theorem 3.2 that
σ(A) ⊂ C− and ‖R(is,A)‖ = O(|s|1/2) as s→ ±∞, as required. �

3.2. Optimality. The following result shows that the resolvent estimate in Theorem 3.1
is optimal.

Theorem 3.4. Suppose that σ(A) ⊂ C−. Then

lim sup
s→∞

s−1/2‖R(is,A)‖ > 0.

Proof. For n ≥ 1 let ẑn = (ûn, v̂n, 0, 0)
T ∈ H, where ûn(x) = sin(2πnx)/2πn and v̂n(x) =

cos(2πnx). In particular, ‖ẑn‖H = 1 for all n ≥ 1. Since σ(A) ⊂ C− by assumption, the
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equation (2πni− A)zn = ẑn has a unique solution zn = (un, vn, wn, ηn)
T ∈ D(A) for each

n ≥ 1. The components satisfy the system

(3.11)



















2πni un(x)− vn(x) = ûn(x), x ∈ (−1, 0),

2πni vn(x)− u′′n(x) = v̂n(x), x ∈ (−1, 0),

2πniwn(x)− φ′′
n(x) = 0, x ∈ (0, 1),

2πni ηn(x, s)− Tηn(x, s)− wn(x) = 0, x ∈ (0, 1), s > 0,

where, as before,

φn(x) = wn(x) +

∫ ∞

0

µ(s)ηn(x, s) ds, x ∈ (0, 1).

Let us introduce the auxiliary functions U±
n = 1

2
(vn±u′n) on (−1, 0). Then, using the first

two equations in (3.11), it is readily seen that

(U+
n )

′(x) = 2πni U+
n (x)− cos(2πnx), (U−

n )
′(x) = −2πni U−

n (x)

for all x ∈ (−1, 0), and solving these subject to U+
n (−1) + U−

n (−1) = vn(−1) = 0 yields

U+
n (x) = e2πni(x+1)U+

n (−1)−
∫ x

−1

e2πni(x−τ) cos(2πnτ) dτ,

U−
n (x) = −e−2πni(x+1)U+

n (−1)

for all x ∈ (−1, 0). Since vn = U+
n + U−

n and u′n = U+
n − U−

n , it follows that

vn(x) =
(

e2πni(x+1) − e−2πni(x+1)
)

U+
n (−1)−

∫ x

−1

e2πni(x−τ) cos(2πnτ) dτ,(3.12)

u′n(x) =
(

e2πni(x+1) + e−2πni(x+1)
)

U+
n (−1)−

∫ x

−1

e2πni(x−τ) cos(2πnτ) dτ(3.13)

for all x ∈ (−1, 0). In particular, (3.12) yields

(3.14)

‖vn‖2L2(−1,0) ≥
1

2

∫ 0

−1

∣

∣

(

e2πni(x+1) − e−2πni(x+1)
)

U+
n (−1)

∣

∣

2
dx

−
∫ 0

−1

∣

∣

∣

∣

∫ x

−1

e2πni(x−τ) cos(2πnτ) dτ

∣

∣

∣

∣

2

dx ≥ |U+
n (−1)|2 − 1

3
.

It moreover follows from (3.12) and (3.13) that vn(0) = −1/2 and u′n(0) = 2U+
n (−1)−1/2.

Integrating the fourth equation in (3.11) and using the fact that ηn(x, 0) = 0 yields

ηn(x, s) =
1− e−2πnis

2πni
wn(x), x ∈ (0, 1), s > 0.

Hence φn = αnwn, where

(3.15) αn = 1 +
1

2πni

(

κ−
∫ ∞

0

µ(s)e−2πnis ds

)

with κ =
∫∞
0
µ(s) ds, and in particular φ′

n(0) = αnw
′
n(0). Note also that αn → 1 as

n → ∞, so by considering only sufficiently large values of n ≥ 1 we may assume that
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αn 6= 0. Now using (3.15) in the third equation in (3.11) we find that

w′
n(x) =

2πni

αn

∫ x

0

wn(τ) dτ + w′
n(0), x ∈ (0, 1).

Let us set σn =
√

2πni/αn and

W±
n (x) =

1

2

(

wn(x)∓ σn

∫ x

0

wn(τ) dτ

)

, x ∈ (0, 1).

Then (W±
n )′ = 1

2
w′

n(0)∓σnW±
n , and solving these differential equations subject toW+

n (1)+
W−

n (1) = wn(1) = 0 yields

W+
n (x) = e−σn(x−1)W+

n (1) +
1− e−σn(x−1)

2σn
w′

n(0),

W−
n (x) = −eσn(x−1)W+

n (1)− 1− eσn(x−1)

2σn
w′

n(0)

for all x ∈ (0, 1). Since W+
n (0) = W−

n (0), it follows that

W+
n (1) =

eσn + e−σn − 2

2(eσn + e−σn)σn
w′

n(0).

Thus, using the relation wn(0) = W+
n (0) +W−

n (0) we see, after a few elementary manip-
ulations, that

(3.16) wn(0) = −tanh σn
σn

w′
n(0).

Observe in particular that tanh σn → 1 as n → ∞. Combining the coupling conditions
vn(0) = wn(0), u

′
n(0) = φ′

n(0) with the identities vn(0) = −1/2, u′n(0) = 2U+
n (−1) − 1/2

obtained above and using the fact that φ′
n(0) = αnw

′
n(0), it follows from (3.16) that

{

2w′
n(0) tanhσn = σn,

2w′
n(0)αn = 4U+

n (−1)− 1.

Now the definition of σn implies that

U+
n (−1) =

1

4
+

αnσn
4 tanhσn

∼ σn
4

∼
√
2πni

4

as n→ ∞, and hence, using (3.14),

‖zn‖2H ≥ ‖vn‖2L2(−1,0) ≥ |U+
n (−1)|2 − 1

3
≥ πn

16

for all sufficiently large n ≥ 1. The result now follows from the fact that ‖ẑn‖H = 1 for
all n ≥ 1. �

Remark 3.5. An alternative approach to proving optimality of the resolvent bound in
Theorem 3.1 is to give a precise description of the part of the spectrum of A lying in a
neighbourhood of the imaginary axis and then to bound the resolvent norm from below
by means of the elementary estimate ‖R(λ,A)‖ ≥ dist(λ, σ(A))−1 for λ ∈ ρ(A). Our
approach is shorter and more direct. The required description of the spectrum of A may
nevertheless be found in the appendix.
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4. Energy Decay

In this last main section we convert the resolvent estimate obtained in Theorem 3.1 into
a decay rate for the semigroup (S(t))t≥0 generated by A. In particular, we shall show
that (S(t))t≥0 is semi-uniformly polynomially stable. The key to this is the following
well-known theoretical result due to Borichev and Tomilov [6, Thm. 2.4].

Theorem 4.1. Let A be the generator of a bounded C0-semigroup (T (t))t≥0 on a Hilbert
space Z, and suppose that σ(A) ∩ iR = ∅. For each fixed α > 0 the following statements
are equivalent:

(i) ‖R(is, A)‖ = O(|s|α) as |s| → ∞;
(ii) ‖T (t)A−1‖ = O(t−1/α) as t→ ∞;
(iii) ‖T (t)z‖Z = o(t−1/α) as t→ ∞ for every z ∈ D(A).

A C0-semigroup satisfying the equivalent conditions of Theorem 4.1 is said to be poly-
nomially stable (with parameter α.) By [4, Prop. 1.3] the implication (ii) =⇒ (i) holds
much more generally and even for C0-semigroups on Banach spaces, whereas passing from
(i) to (ii) in general requires a logarithmic correction factor in the Banach space setting,
as is shown in [4, Thm. 1.5] and [6, Thm. 4.1]. For C0-semigroups on Hilbert spaces
the implication (i) =⇒ (ii) has recently been extended beyond the case of polynomial
resolvent growth in [26, Thm. 3.2].

From now on we consider the C0-semigroup (S(t))t≥0 generated by the operator A

associated with system (1.1). Since the orbits of the semigroup (S(t))t≥0 with initial
values z0 ∈ D(A) correspond to classical solutions of the abstract Cauchy problem (2.5),
we may interpret parts (ii) and (iii) of Theorem 4.1 as statements about (uniform) rates
of energy decay of classical solutions to our problem (1.1).

Theorem 4.2. Assume that (1.5) holds. Then the semigroup (S(t))t≥0 generated by the
operator A is polynomially stable with parameter 1/2. In particular, for any vector z0 =
(u, v, w, η)T ∈ D(A), the associated classical solution of (2.5) satisfies ‖S(t)z0‖H = o(t−2)
as t→ ∞.

Proof. This follows immediately from Theorems 3.1 and 4.1. �

Our next result shows that optimality of the resolvent bound in Theorem 3.1, as estab-
lished in Theorem 3.4, implies optimality of the decay rate in Theorem 4.2.

Proposition 4.3. Let (S(t))t≥0 be the C0-semigroup generated by A. Given any func-
tion r : R+ → (0,∞) such that r(t) = o(t−2) as t → ∞, there exists a vector z0 =
(u, v, w, η)T ∈ D(A) such that

(4.1) lim sup
t→∞

‖S(t)z0‖H
r(t)

= ∞.

In other words, for any such function r there exist initial data giving rise to a classical
solution of (2.5) whose energy decays strictly more slowly than r(t) as t→ ∞.

Proof. Replacing r(t) by sups≥t r(s) for t ≥ 0 if necessary, we may assume that r is
non-increasing. Suppose, for the sake of a contradiction, that (4.1) is false for all z0 ∈
D(A). Since 1 ∈ ρ(A) by contractivity of the semigroup (S(t))t≥0 and since (I − A)−1
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maps H onto D(A), we then have supt≥0 r(t)
−1‖S(t)(I − A)−1z0‖H < ∞ for all z0 ∈ H.

Thus supt≥0 r(t)
−1‖S(t)(I − A)−1‖ < ∞ by the uniform boundedness principle, and we

may let C = supt≥0 r(t)
−1‖S(t)(I − A)−1‖, a positive real number. Note in particular

that ‖S(t)(I − A)−1‖ → 0 as t → ∞, and hence σ(A) ⊂ C− by [4, Prop. 1.3]. On
the other hand, it follows straightforwardly from Theorem 3.4 and [10, Prop. 5.4] that
lim supt→∞ t2‖S(t)(I − A)−1‖ > 0, so we may find a sequence (tn)n≥1 of positive real
numbers such that tn → ∞ as n→ ∞ and a constant c > 0 such that t2n‖S(tn)(I−A)−1‖ ≥
c for all n ≥ 1. Thus Cr(tn) ≥ ‖S(tn)(I − A)−1‖ ≥ ct−2

n for all n ≥ 1, which contradicts
the assumption that r(t) = o(t−2) as t→ ∞. �

Appendix: The Spectrum of A

In this appendix we describe, using similar techniques as in [14], the spectrum of A near
the imaginary axis. We shall assume throughout that (1.5) holds. For δ > 0 as in (1.5),
we introduce the vertical strip Πδ = {λ ∈ C : − δ

2
< Reλ ≤ 0}, and we denote by Zℓ the

zero set of the map ℓ : Πδ \ {0} → C, noting that, by (1.5),

ℓ(λ) = 1 +
1

λ

∫ ∞

0

µ(s)(1− e−λs) ds

is indeed well-defined for every λ ∈ Πδ \ {0}. We also consider the set

Σ =
{

λ ∈ Πδ \ (Zℓ ∪ {0})
∣

∣

∣

√

ℓ(λ)λ sinhλ cosh
√

λ
ℓ(λ)

+ coshλ sinh
√

λ
ℓ(λ)

= 0
}

.

Theorem A.1. The spectrum σ(A) of the operator A satisfies σ(A) ∩ Πδ = Σ ∪ Zℓ.

In the proof of this theorem we shall make use of the following technical lemma whose
proof is similar to the argument in the first part of the proof of Lemma 2.13 and conse-
quently omitted.

Lemma A.2. For any η̂ ∈ M and λ ∈ Πδ, the function ξη̂,λ defined by

ξ̂η̂,λ(x, s) =

∫ s

0

e−λ(s−σ)η̂(x, σ) dσ, x ∈ (0, 1), s > 0,

belongs to M, and ‖ξ̂η̂,λ‖M ≤ 2
√
C

δ+2Reλ
‖η̂‖M.

Proof of Theorem A.1. We divide the proof into three steps.

Step 1. We first show that 0 6∈ σ(A), which is to say that for every ẑ = (û, v̂, ŵ, η̂)T ∈ H
the equation Az = ẑ has a unique solution z = (u, v, w, η)T ∈ D(A). Componentwise, we
obtain



















v(x) = û(x), x ∈ (−1, 0),

u′′(x) = v̂(x), x ∈ (−1, 0),

φ′′(x) = ŵ(x), x ∈ (0, 1),

T η(x, s) + w(x) = η̂(x, s), x ∈ (0, 1), s > 0.

Integrating the last equation and using η(x, 0) = 0, we obtain

(A.1) η(x, s) = sw(x)− ξ̂η̂,0(x, s), x ∈ (0, 1), s > 0.



WAVE-HEAT SYSTEM WITH COLEMAN–GURTIN THERMAL LAW 25

Solving for u and φ by using the conditions u(−1) = 0 and φ(1) = 0 we find that

u(x) = a(x+ 1) + x

∫ x

−1

v̂(r) dr −
∫ x

−1

rv̂(r) dr, x ∈ (−1, 0),

φ(x) = b(1− x)− x

∫ 1

x

ŵ(r) dr +

∫ 1

x

rŵ(r) dr, x ∈ (0, 1),

for some a, b ∈ C. Note in particular that u ∈ H2(−1, 0) and φ ∈ H2(0, 1). Next, recalling
the definition of φ, we find

w(x) =
1

2
φ(x) +

1

2

∫ ∞

0

µ(s)ξ̂η̂,0(x, s) ds, x ∈ (0, 1).

From Lemma A.2 we obtain
∥

∥

∥

∥

∫ ∞

0

µ(s)ξ̂η̂,0(x, s) ds

∥

∥

∥

∥

H1
r (0,1)

≤ √
κ‖ξ̂η̂,0‖M ≤ 2δ−1

√
κC‖η̂‖M,

where κ =
∫∞
0
µ(s) ds. In particular, we have w ∈ H1

r (0, 1). Since the map s 7→ s2µ(s) is
an element of L1(0,∞), it follows from Lemma A.2 that the function η defined in (A.1)
belongs to M. Note also that ηs = w − η̂ ∈ M. Finally, by monotonicity of µ, we have

‖η(s)‖H1
r (0,1) ≤ s‖w‖H1

r (0,1) +
1

µ(s)

(
∫ s

0

µ(σ) dσ

)1/2

‖η̂‖M → 0, s→ 0,

which implies that η ∈ D(T ). It remains only to show that the constants a, b ∈ C may
be chosen in such a way that the coupling conditions v(0) = w(0) and u′(0) = φ′(0) are
satisfied. Straightforward computations show that these conditions are equivalent to

b = 2û(0)−
∫ ∞

0

µ(s)ξ̂η̂,0(0, s) ds−
∫ 1

0

rŵ(r) dr, a = −b−
∫ 0

−1

v̂(r) dr −
∫ 1

0

ŵ(r) dr.

Since all of the integrals are finite, we may indeed find suitable constants a, b ∈ C.

Step 2. We prove that Zℓ ⊂ σ(A) by showing that λ−A is not onto for λ ∈ Zℓ. Pick any
ŵ ∈ L2(0, 1)\H1(0, 1) and set ẑ = (0, 0, ŵ, 0)T ∈ H. If λ−A were onto, then there would
exist z = (u, v, w, η)T ∈ D(A) such that λz − Az = ẑ. In component form, the problem
becomes



















λu(x) = v(x), x ∈ (−1, 0),

λv(x) = u′′(x), x ∈ (−1, 0),

λw(x)− φ′′(x) = ŵ(x), x ∈ (0, 1),

λη(x, s)− Tη(x, s) = w(x), x ∈ (0, 1), s > 0.

Integrating the last equation with η(x, 0) = 0 we get η(x, s) = 1
λ
(1 − e−λs)w(x) for

x ∈ (0, 1) and s > 0. Since ℓ(λ) = 0 a short calculation yields φ = 0, and now the third
equation implies that w = λ−1ŵ /∈ H1

r (0, 1). This is the desired contradiction.

Step 3. Let λ ∈ Πδ \ (Zℓ ∪ {0}) be arbitrary. In the light of Steps 1 and 2, the result
will be proved once we have shown that λ ∈ Σ ⇐⇒ λ ∈ σ(A). To this end, let us fix
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an arbitrary ẑ = (û, v̂, ŵ, η̂)T ∈ H. Our goal is to show that the equation λz − Az = ẑ
admits a unique solution z = (u, v, w, η)T ∈ D(A) if and only if

(A.2)
√

ℓ(λ)λ sinhλ cosh
√

λ
ℓ(λ)

+ coshλ sinh
√

λ
ℓ(λ)

6= 0.

In component form, our problem becomes


















λu(x)− v(x) = û(x), x ∈ (−1, 0),

λv(x)− u′′(x) = v̂(x), x ∈ (−1, 0),

λw(x)− φ′′(x) = ŵ(x), x ∈ (0, 1),

λη(x, s)− Tη(x, s)− w(x) = η̂(x, s), x ∈ (0, 1), s > 0.

Integrating the last equation and using η(x, 0) = 0 we find

(A.3) η(x, s) =
1− e−λs

λ
w(x) + ξ̂η̂,λ(x, s), x ∈ (0, 1), s > 0.

Recalling the definition of φ, we have

(A.4) w(x) =
φ(x)

ℓ(λ)
− 1

ℓ(λ)

∫ ∞

0

µ(s)ξ̂η̂,λ(x, s) ds, x ∈ (0, 1).

Using the boundary condition u(−1) = 0 we obtain

u(x) = a(λ) sinh(λ(x+ 1))− U(λ, x), x ∈ (−1, 0),

where a(λ) ∈ C and

U(λ, x) =
1

λ

∫ x

−1

sinh(λ(x− r))(v̂(r) + λû(r)) dr, x ∈ (−1, 0).

Once u has been found, v is determined by the first equation of our system. It is straight-
forward to check that u ∈ H2(−1, 0) and v ∈ H1

l (−1, 0). Let us introduce the auxiliary
function

ˆ̺η̂,λ(x) =
λ

ℓ(λ)

∫ ∞

0

µ(s)ξ̂η̂,λ(x, s) ds, x ∈ (0, 1).

The general solution for φ subject to the boundary condition φ(1) = 0 may be written as

(A.5) φ(x) = −b(λ) sinh
(√

λ
ℓ(λ)

(1− x)
)

− Φ(λ, x), x ∈ (0, 1),

where b(λ) ∈ C and

Φ(λ, x) =

√

ℓ(λ)

λ

∫ 1

x

sinh
(√

λ
ℓ(λ)

(r − x)
)

(ŵ(r) + ˆ̺η̂,λ(r)) dr, x ∈ (0, 1).

By (A.4), we also have

(A.6) w(x) = −b(λ)
ℓ(λ)

sinh
(√

λ
ℓ(λ)

(1− x)
)

− Φ(λ, x)

ℓ(λ)
− ˆ̺η̂,λ(x)

λ
, x ∈ (0, 1).

Once w has been found, η is determined by (A.3). We now show that φ ∈ H2(0, 1),
w ∈ H1

r (0, 1) and η ∈ D(T ). In fact, it follows from (A.5) and (A.6) that φ ∈ H2(0, 1)
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and w ∈ H1
r (0, 1) provided that ˆ̺η̂,λ ∈ H1

r (0, 1). The latter follows from Lemma A.2,
which also yield the bounds

∥

∥

∥

∥

λ

ℓ(λ)

∫ ∞

0

µ(s)ξ̂η̂,λ(x, s) ds

∥

∥

∥

∥

H1
r (0,1)

≤
∣

∣

∣

∣

λ

ℓ(λ)

∣

∣

∣

∣

√
κ‖ξ̂η̂,λ‖M ≤

∣

∣

∣

∣

λ

ℓ(λ)

∣

∣

∣

∣

2
√
κC

δ + 2Reλ
‖η̂‖M.

In order to prove that η ∈ D(T ), we first show that η ∈ M. Since ξ̂η̂,λ ∈ M by Lemma A.2,
we only need to show that the map s 7→ (1− e−λs)w lies in M. To this end, note that

∫ ∞

0

µ(s)|1− e−λs|2‖w‖2H1
r (0,1)

ds ≤ 2κ‖w‖2H1
r (0,1)

+ ‖w‖2H1
r (0,1)

∫ ∞

0

µ(s)e−2(Reλ)s ds.

Since −2Reλ < δ, (1.5) implies that
∫∞
0
µ(s)e−2(Reλ)s ds < ∞, and hence η ∈ M. Thus

ηs = η̂ + w − λη ∈ M as well. Finally, by monotonicity of µ, we have

‖η(s)‖H1
r (0,1)

≤ |1− e−λs|
|λ| ‖w‖H1

r (0,1)
+

e−(Re λ)s

µ(s)

(
∫ s

0

µ(σ) dσ

)1/2

‖η̂‖M → 0

as s → 0. Thus η ∈ D(T ). It remains only to show that the coefficients a(λ), b(λ) ∈ C

may be chosen in such a way that the coupling conditions v(0) = w(0) and u′(0) = φ′(0)
are satisfied. It is straightforward to show that these conditions are equivalent to the
matrix equation





ℓ(λ)λ sinhλ sinh
√

λ
ℓ(λ)

ℓ(λ)λ coshλ −
√

ℓ(λ)λ cosh
√

λ
ℓ(λ)





(

a(λ)
b(λ)

)

=

(

f̂(λ)
ĝ(λ)

)

,

where

f̂(λ) = ℓ(λ)

(

û(0) + λU(λ, 0)− ˆ̺η̂,λ(0)

λ

)

− Φ(λ, 0), ĝ(λ) = ℓ(λ)(Ux(λ, 0)− Φx(λ, 0)).

Hence we may uniquely determine a(λ), b(λ) if and only if the determinant of the matrix
appearing on the left-hand side is non-zero, which in turn is equivalent to (A.2). �
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