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NON-UNIFORM STABILITY OF DAMPED CONTRACTION

SEMIGROUPS

RALPH CHILL, LASSI PAUNONEN, DAVID SEIFERT, REINHARD STAHN AND
YURI TOMILOV

Abstract. We investigate the stability properties of strongly continu-
ous semigroups generated by operators of the form A−BB∗, where A is
the generator of a contraction semigroup and B is a possibly unbounded
operator. Such systems arise naturally in the study of hyperbolic par-
tial differential equations with damping on the boundary or inside the
spatial domain. As our main results we present general sufficient condi-
tions for non-uniform stability of the semigroup generated by A−BB∗

in terms of selected observability-type conditions on the pair (B∗, A).
The core of our approach consists of deriving resolvent estimates for the
generator expressed in terms of these observability properties. We apply
the abstract results to obtain rates of energy decay in one-dimensional
and two-dimensional wave equations, a damped fractional Klein–Gordon
equation and a weakly damped beam equation.

1. Introduction

In this paper we study the stability properties of abstract differential
equations of the form

ẋ(t) = (A−BB∗)x(t), x(0) = x0 ∈ X.(1.1)

Here A generates a strongly continuous contraction semigroup, or typi-
cally a unitary group, on the Hilbert space X and B is a possibly un-
bounded operator, defined on a Hilbert space U . This class of dynamical
systems includes several types of partial differential equations with damp-
ing, especially wave equations [42, 2, 4] and other hyperbolic PDE mod-
els [45, 23]. Equations of this form are also often encountered in control
theory as a result of feedback interconnections and output feedback stabili-
sation [57, 9, 29, 38, 19, 20]. Our main interest is in studying stability prop-
erties of the semigroup (TB(t))t≥0 generated by A−BB∗ and the asymptotic
behaviour of the solution x(·) = TB(·)x0 of (1.1). One of the key results
concerning equations of the form (1.1) is that stability of (TB(t))t≥0 can be
characterised in terms of observability of the pair (B∗, A); see [57, 9, 19, 20].
This relationship is well understood in the context of exponential stabil-
ity and strong stability. In this paper we investigate this relationship for
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semigroups (TB(t))t≥0 which are polynomially stable or more generally non-
uniformly stable. Our main results introduce new observability-type con-
ditions which can be used to guarantee and verify the precise non-uniform
stability properties of the differential equation (1.1).

The problem in (1.1) and the associated semigroup (TB(t))t≥0 are said to
be (uniformly) exponentially stable if ‖x(t)‖ ≤ Me−ωt‖x0‖ for all x0 ∈ X
and t ≥ 0 and for some constants M , ω > 0. The weaker notion of strong
stability requires only that ‖x(t)‖ → 0 for t → ∞ for all x0 ∈ X. The main
benefit of exponential stability over strong stability is that the decay of the
solutions takes place at a guaranteed rate as t → ∞. In this paper we focus
on non-uniform stability [8, 10, 53, 18], where (TB(t))t≥0 is strongly stable
and all classical solutions of (1.1) decay at a specific rate. Non-uniform and
polynomial stability have been investigated in detail especially for damped
wave equations on multidimensional domains [42, 44, 11, 4, 60, 16, 21],
coupled partial differential equations [24], and plate equations [45, 40].

Under suitable assumptions on A and B, exponential stability of the semi-
group (TB(t))t≥0 is equivalent to “exact observability” [63, Ch. 6] of the pair
(B∗, A) [57, 19]. In addition, strong stability can be characterised in terms
of “approximate observability” of (B∗, A) [9]. In this paper we show that
several modified concepts, each of which may be seen as “quantified approx-
imate observability” of the pair (B∗, A), lead to non-uniform stability of the
semigroup (TB(t))t≥0. In particular, we say that (B∗, A) satisfies the non-
uniform Hautus test if there exist functions M,m : R → [r0,∞) with r0 > 0
such that [47, Sec. 2.3]

‖x‖2X ≤ M(s)‖(is −A)x‖2X +m(s)‖B∗x‖2U , x ∈ D(A), s ∈ R.

In addition, if A is skew-adjoint we say that the pair (B∗, A) satisfies the
wavepacket condition if there exist bounded functions γ, δ : R → (0,∞) such
that [47, Sec. 2.5]

‖B∗x‖U ≥ γ(s)‖x‖X , x ∈ WPs,δ(s)(A), s ∈ R.(1.2)

Here WPs,δ(s)(A) denotes the spectral subspace of −iA associated with the
interval (s− δ(s), s + δ(s)) (elements of WPs,δ(s)(A) are called wavepackets
of A).

The following theorem summarises our main results on these two observ-
ability concepts. The precise assumptions of Theorem 1.1 are stated in As-
sumption 2.1 in Section 2.1, and they are automatically satisfied whenever
A generates a strongly continuous contraction semigroup and B ∈ L(U,X).
The results employ a function µ : R → [r0,∞), r0 > 0, such that

‖B∗(1 + is −A)−1B‖ ≤ µ(s), s ∈ R.(1.3)

As shown in Section 2.1, we may always choose µ in such a way that µ(s) .
1 + s2, s ∈ R. Moreover, in the case where B ∈ L(U,X) and in many
concrete applications µ may be taken to be constant. Finally, a measurable
function N : [0,∞) → (0,∞) is said to have positive increase if there exist
α, cα, s0 > 0 such that N(λs)/N(s) ≥ cαλ

α for all λ ≥ 1 and s ≥ s0.

Theorem 1.1. Assume that the operators A and B satisfy Assumption 2.1
and that µ : R → [r0,∞), r0 > 0, is an even function such that (1.3) holds.
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If the pair (B∗, A) satisfies the non-uniform Hautus test for some contin-
uous and even functions M and m, and if the function N : [0,∞) → (0,∞)
defined by N(·) := M(·)µ(·)+m(·)µ(·)2 is strictly increasing and has positive
increase, then (TB(t))t≥0 is non-uniformly stable and

‖TB(t)x0‖ ≤ C

N−1(t)
‖(A−BB∗)x0‖, x0 ∈ D(A−BB∗), t ≥ t0,(1.4)

for some C, t0 > 0, where N−1 is the inverse function of N .
If A is skew-adjoint and (B∗, A) satisfies the wavepacket condition (1.2)

for continuous and even functions γ, δ such that γ(·)−1δ(·)−1 is strictly in-
creasing and has positive increase, then (TB(t))t≥0 is non-uniformly stable
and (1.4) is satisfied for N(·) := γ(·)−2δ(·)−2µ(·)2.

Equations of the form (1.1) in particular include the damped second-order
equation

ẅ(t) + Lw(t) +DD∗ẇ(t) = 0, w(0) ∈ H1/2, ẇ(0) ∈ H,(1.5)

for a positive operator L on a Hilbert space H and D ∈ L(U,H−1/2), where

H1/2 is the domain of the fractional power L1/2 and H−1/2 is its dual with
respect to the pivot spaceH. Non-uniform stability of such systems has been
studied in the literature in the case where D ∈ L(U,H), and in particular it
was shown in [4], [32, App. B] that for such operators D the problem (1.1)
is non-uniformly stable whenever the “Schrödinger group” generated by iL
with the observation operator D∗ is observable in a certain generalised sense.
We subsequently refer to this property as the Schrödinger group associated
with the pair (D∗, iL) being observable. In this paper we show that the same
observability condition for the Schrödinger group generated by iL serves as
as a sufficient condition for the wavepacket condition and the non-uniform
Hautus test for the pair (B∗, A). Moreover, our results generalise the results
in [4, Thm. 2.3] and [32, App. B] to the case of general damping operators
D ∈ L(U,H−1/2). Finally, the second part of Theorem 1.1 was proved in [50,
Thm. 6.3] in the special case where A is a diagonal operator with uniform
spectral gap and B ∈ L(U,X).

As our last observability-type concept we introduce non-uniform observ-
ability of the pair (B∗, A), which requires that there exist β ≥ 0 and τ, cτ > 0
such that

cτ‖(1−A)−βx‖2X ≤
∫ τ

0
‖B∗T (t)x‖2U dt, x ∈ D(A),(1.6)

where (T (t))t≥0 is the contraction semigroup generated by A. Note that if
β = 0, then non-uniform observability reduces to the classical notion of exact
observability of (B∗, A). The main result of Section 4, Theorem 4.4, shows
that if (B∗, A) is non-uniformly observable with parameter β ∈ (0, 1] and if
B ∈ L(U,X), then the semigroup (TB(t))t≥0 is polynomially stable and (1.4)

holds for N−1(t) = t1/(2β). Related generalisations of exact observability
have previously been used as sufficient conditions for non-uniform stability
of damped second-order systems of the form (1.5) in [2, 3, 1]. Moreover,
in the the special case β = 1/2, similar generalised observability conditions
were used in [54] and [24, Sec. 5] to prove polynomial stability of (1.1).
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Finally, non-uniform stability of (1.5) for a special class of dampings sat-
isfying ‖L−βx‖ . ‖D∗x‖ . ‖L−βx‖ for some β > 0 and all x ∈ X was
studied in [45], and for DD∗ = f(L) with some function f in [23]. In Sec-
tion 4 we show that the assumptions in [45] imply non-uniform observability
of the pair (B∗, A), and our results in particular establish a new proof of [45,
Thm. 2.1].

The core of our approach in Sections 3 and 4 consists of deriving upper
bounds for the resolvent norms ‖(is − A + BB∗)−1‖, s ∈ R, in terms of
the different types of observability-type condition. In Section 5 we address
optimality of our results. In particular, we present an abstract result which
describes how sharpness of the resolvent bound can be used to deduce op-
timality of the decay rate (1.4) of the semigroup (TB(t))t≥0. In addition,
in the case where A is skew-adjoint we prove a lower bound for resolvent
norms of A − BB∗ in terms of the restrictions of B∗ to eigenspaces of A.
Combining these two results allows us to prove that Theorem 1.1 is optimal
in several situations of interest, and in particular if A has compact resolvent
and uniformly separated eigenvalues.

In the last part of the paper we apply our main results to derive rates of
energy decay for solutions of selected PDE models, namely wave equations
on one- and two-dimensional spatial domains with different types of damp-
ing, a fractionally damped Klein–Gordon equation, and a weakly damped
Euler–Bernoulli beam equation. In most of these examples the wavepackets
are simply finite linear combinations of eigenfunctions [63, Sec. 6.9]. In our
one-dimensional wave and beam equations, the eigenvalues of A have a uni-
form spectral gap and, as a result, we obtain a particularly simple form of
the wavepacket condition (1.2). Moreover, our general optimality results in
Section 5 guarantee that the decay estimates we obtain in these cases are
sharp. On the other hand, for two-dimensional wave equations with viscous
damping our results are typically suboptimal. This is due to the phenom-
enon that in certain cases the smoothness of the damping profile improves
the degree of polynomial stability [11, 4, 21], whereas observability-type con-
ditions do not in general distinguish between smooth and rough dampings.
Indeed, comparing different types of viscous damping reveals natural lim-
itations to optimality of decay rates derived from observability conditions,
and we discuss this topic in detail in Section 6.1.

The paper is organised as follows. In Section 2 we state the main as-
sumptions on the operators A and B and recall essential results concerning
non-uniform stability of strongly continuous semigroups. In Section 3 we
present the main results showing that the non-uniform Hautus test and the
wavepacket condition imply non-uniform stability of (TB(t))t≥0. In particu-
lar, in the second part of Section 3 we reformulate these results specifically
for damped second-order systems, and present sufficient conditions for non-
uniform stability of (1.5) based on observability of the Schrödinger group.
Next, in Section 4 we show that non-uniform observability in the sense
of (1.6) implies polynomial stability of (TB(t))t≥0. In Section 5 we present a
series of abstract results concerning optimality of the stability results in the
previous sections. Finally, in Section 6 we study energy decay for several
PDE models.
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Notation. If X and Y are Banach spaces and A : D(A) ⊆ X → Y
is a linear operator, we denote by D(A), Ker(A) and Ran(A) the domain,
kernel and range of A, respectively. Moreover, σ(A), σp(A), and ρ(A) denote
the spectrum, the point spectrum and the resolvent set of A, respectively.
The space of bounded linear operators from X to Y is denoted by L(X,Y ).
The notation X →֒ Y will mean that X ⊆ Y with continuous and dense
embedding. We denote the norm on a space X by ‖·‖X and its inner product
by 〈·, ·〉X , and we omit the subscripts when there is no risk of ambiguity.
We assume all our Banach and Hilbert spaces to be complex.

Let R+ := [0,∞), and let C± stand for the open right and left half-planes
{λ ∈ C | Re λ ≷ 0 }, respectively. We denote by χE the characteristic
function of a set E. For two functions f : I ⊆ R → R+ and g : R+ → R+

we write f(t) = O(g(|t|)) if there exist C, t0 > 0 such that f(t) ≤ Cg(|t|)
whenever |t| ≥ t0. If in addition g(t) > 0 whenever |t| ≥ t0, we write
f(t) = o(g(|t|)) if f(t)/g(|t|) → 0 as |t| → ∞. For real-valued quantities
p and q, we use the notation p . q if p ≤ Cq for some constant C > 0
which is independent of all the parameters that are free to vary in the given
situation.

2. Preliminaries

2.1. Standing assumptions and well-posedness. Let A : D(A) ⊆ X →
X be the generator of a contraction semigroup (T (t))t≥0 on a Hilbert space
X. All semigroups considered in this paper are strongly continuous. For
λ0 ∈ ρ(A) we equip D(A) with the graph norm ‖x‖1 = ‖(λ0 − A)x‖X , x ∈
D(A), and denote the Hilbert space defined in this way by X1. Defining X−1

as the completion of X with respect to the norm ‖x‖−1 = ‖(λ0 −A)−1x‖X ,
we obtain a Hilbert space X−1 such that X1 →֒ X →֒ X−1. The operator
A has a unique extension A−1 to X−1, with domain D(A−1) = X, and A−1

generates a contraction semigroup (T−1(t))t≥0 on X−1 which is unitarily
equivalent to (T (t))t≥0. In particular, A−1 ∈ L(X,X−1) and the operators
A, A−1 are unitarily equivalent and thus have the same spectrum. Moreover,
any S ∈ L(X) commuting with A has a (unique) continuous extension to
an operator in L(X−1), unitarily equivalent to S; see [63, Sec. 2.10].

To state our main assumptions, we let V be a Hilbert space such that
X1 ⊆ V ⊆ X with continuous embeddings. In particular, V is dense in
X and we consider the Gelfand triple V →֒ X →֒ V ∗, where V ∗ is the
dual of V with respect to the pivot space X [63, Sec. 2.9]. We denote
by 〈·, ·〉V ∗,V : V ∗ × V → C the unique continuous extension of the inner
product of X, and we define VA := {x ∈ V | A−1x ∈ V ∗ }. In the following
we state our standing assumptions on the operators A : D(A) ⊆ X → X
and B ∈ L(U,X−1), where U is another Hilbert space.

Assumption 2.1. The operators A : D(A) ⊆ X → X and B ∈ L(U,X−1)
have the following properties.

(H1) The generator A of the contraction semigroup (T (t))t≥0 satisfies
Re〈A−1x, x〉V ∗,V ≤ 0 for all x ∈ VA.

(H2) We have B ∈ L(U, V ∗) and Ran((λ0 − A−1)
−1B) ⊆ V for some (or

equivalently all) λ0 ∈ ρ(A).
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Assumption 2.1 in particular requires that Ran(B) ⊆ X−1 ∩ V ∗. Note
that when A is not skew-adjoint, the space V ∗ is not necessarily contained
in X−1; it is instead a subspace of Xd

−1, the first extrapolation space for the
adjoint A∗ [63, Sec. 2.10]. If B ∈ L(U,X), which we will refer to as B being
bounded, then Assumption 2.1 is automatically satisfied for any generator A
of a contraction semigroup (T (t))t≥0 with the choices V = V ∗ = X.

We write B∗ ∈ L(V,U) for the adjoint of B ∈ L(U, V ∗), where V is
identified with (V ∗)∗ via the pivot duality through X. In particular,

〈Bu, x〉V ∗,V = 〈u,B∗x〉U , x ∈ V, u ∈ U.

Moreover, (H2) in Assumption 2.1 and the closed graph theorem imply that
B∗(λ−A−1)

−1B ∈ L(U) for all λ ∈ ρ(A). We formally define the operator
AB = A−1 −BB∗ on X by

ABx = A−1x−BB∗x, x ∈ D(AB),(2.1a)

D(AB) = {x ∈ V | A−1x−BB∗x ∈ X }.(2.1b)

As shown in the following lemma, Assumption 2.1 guarantees that AB gen-
erates a contraction semigroup (TB(t))t≥0 on X. In particular, the orbits of
this semigroup are the solutions of the abstract Cauchy problem

ẋ(t) = ABx(t), t ≥ 0,(2.2a)

x(0) = x0 ∈ X.(2.2b)

For x0 ∈ X the orbit x(·) = TB(·)x0 is a mild solution of (2.2), and it is a
classical solution if and only if x0 ∈ D(AB) [6, Ch. 3].

Lemma 2.2. Let A and B satisfy Assumption 2.1. Then the operator
AB defined in (2.1) generates a strongly continuous contraction semigroup
(TB(t))t≥0 on X. Moreover, we have ρ(A) ∩ C+ ⊆ ρ(AB) ∩C+,

Re〈(is −AB)x, x〉 ≥ ‖B∗x‖2, s ∈ R, x ∈ D(AB),(2.3)

and

‖(λ−A−1)
−1B‖2 ≤ 1

Reλ
‖B∗(λ−A−1)

−1B‖, λ ∈ C+.(2.4)

Proof. First note that if x ∈ X and u ∈ U are such that A−1x + Bu =:
y ∈ X, then condition (H2) implies that for any λ0 ∈ ρ(A) we have x =
(λ0 − A−1)

−1(λ0x− y + Bu) ∈ V and A−1x = y − Bu ∈ V ∗. Thus x ∈ VA

and condition (H1) implies that

Re〈A−1x+Bu, x〉X = Re〈A−1x, x〉V ∗,V +Re〈Bu, x〉V ∗,V(2.5a)

≤ Re〈B∗x, u〉U .(2.5b)

Let s ∈ R and x ∈ D(AB), and choose u = −B∗x. Then (2.5) immediately
implies (2.3). In particular, AB is dissipative.

To prove that ρ(A) ∩ C+ ⊆ ρ(AB) ∩ C+, fix λ ∈ ρ(A) ∩ C+, let u ∈ U
and choose x = (λ−A−1)

−1Bu. Then A−1x+Bu = λ(λ−A−1)
−1Bu ∈ X

and (2.5) implies that

(Reλ)‖(λ−A−1)
−1Bu‖2 ≤ Re〈B∗(λ−A−1)

−1Bu, u〉.
In particular, this inequality implies (2.4). Moreover, this estimate shows
that the operator G(λ) := B∗(λ − A−1)

−1B ∈ L(U) satisfies ReG(λ) ≥
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0, and consequently I + G(λ) is boundedly invertible in L(U). A direct
verification shows that λ−AB has bounded inverse given by

(λ−AB)
−1 = (λ−A−1)

−1(I −B(I +G(λ))−1B∗(λ−A)−1),(2.6)

and we deduce the required spectral inclusion ρ(A) ∩ C+ ⊆ ρ(AB) ∩ C+.
In particular, AB is closed. Since AB is dissipative and C+ ⊆ ρ(AB), its
domain is dense in X by [63, Prop. 3.1.6]. Hence AB is m-dissipative, and by
the Lumer–Phillips theorem it generates a strongly continuous contraction
semigroup on X. �

Remark 2.3. If Assumption 2.1 holds, then for every λ ∈ C+ the right-
hand side of (2.6) extends uniquely to a mapping from the (not necessarily
closed) subspace X + Ran(B) of X−1 to X, simply by replacing (λ − A)−1

by (λ−A−1)
−1. We use this formula to define the extension of (λ−AB)

−1

to an operator (λ−AB)
−1 : X +Ran(B) → X. In particular, we have

(λ−AB)
−1B = (λ−A−1)

−1B(I +G(λ))−1 ∈ L(U,X)

for λ ∈ C+. The identity (λ−AB)
−1 = (I + (1− λ)(λ−AB)

−1)(1−AB)
−1

shows that also for arbitrary λ ∈ ρ(AB) the operator (λ − AB)
−1 extends

uniquely to a mapping from X + RanB into X, and that (λ − AB)
−1B ∈

L(U,X). For λ ∈ ρ(AB) and u ∈ U we have (λ−AB)
−1Bu ∈ V and

(λ−A−1 +BB∗)(λ−AB)
−1Bu = Bu,

and if x ∈ V is such that (λ− A−1 +BB∗)x ∈ X + Ran(B) (in particular,
if x ∈ D(A)), then

(λ−AB)
−1(λ−A−1 +BB∗)x = x.

Remark 2.4. Define XB := D(A) + Ran((λ0 − A−1)
−1B), where λ0 ∈

ρ(A). The space XB is independent of the choice of λ0, and XB ⊆ V by
Assumption 2.1. Moreover, the domain of AB has the useful alternative
characterisation

D(AB) = {x ∈ XB | A−1x+BB∗x ∈ X }.
Here the non-trivial inclusion can be verified as in the beginning of the proof
of Lemma 2.2.

Our results in Section 3 employ a parameter which describes the growth of
the operator-valued function λ 7→ B∗(λ−A−1)

−1B on a vertical line in C+.
In particular, we take µ : R → [r0,∞), r0 > 0, to be a function such that

‖B∗(1 + is−A−1)
−1B‖ ≤ µ(s), s ∈ R,(2.7)

and the rate of growth of µ affects the resolvent estimates in our results.
The following lemma shows that µ can be taken to be uniformly bounded
whenever B ∈ L(U,X), and that estimate (2.7) always holds for a quadratic
function µ.

Lemma 2.5. If A and B satisfy Assumption 2.1, then the following hold.

(a) The estimate (2.7) holds for µ(s) = c(1+s2), s ∈ R, for some c > 0.

(b) If B ∈ L(U,X), then (2.7) holds for µ(s) ≡ c with some c > 0.

(c) If (2.7) holds, then ‖(1 + is −A−1)
−1B‖ ≤ µ(s)1/2 for s ∈ R.
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Proof. Part (b) follows directly from the assumption that A generates a
contraction semigroup, which implies that ‖(1 + is − A)−1‖ ≤ 1 for all
s ∈ R. Moreover, part (c) follows from (2.4) in Lemma 2.2. To prove
part (a), fix s ∈ R and let R = (1 + is − A−1)

−1. Using the identity
R = (I −A−1)

−1 − is(I −A)−1R we see that

‖B∗RB‖ ≤ ‖B∗(I −A−1)
−1B‖+ |s|‖B∗(I −A)−1‖‖RB‖ . 1 + |s|‖RB‖

and similarly

‖RB‖ ≤ ‖(I −A−1)
−1B‖+ |s|‖(1 + is−A)−1‖‖(I −A−1)

−1B‖ . 1 + |s|.
Together these estimates give ‖B∗(1 + is−A−1)

−1B‖ . 1 + s2, s ∈ R. �

Estimates of the form (2.7) have been studied extensively in the con-
trol theory literature. In particular, for a bounded function µ the estimate
in (2.7) is known as the property of well-posedness of the operator-valued
“transfer function” λ 7→ B∗(λ − A−1)

−1B; see [56, 29, 59, 64]. This prop-
erty has been verified in the literature for several different types of PDE
systems; see for instance [2, 29, 38, 64, 3]. As shown in the next lemma,
validity of (2.7) for a bounded function µ moreover implies that B∗ is an
admissible observation operator for the semigroup (T (t))t≥0, which is to say
that B∗T (·)x ∈ L2(0, τ ;U) for all x ∈ D(A) and τ > 0. This property
will be useful in discussing the relationship between our results and existing
results in the literature. In addition, the following lemma shows that under
the same assumption B is an admissible control operator in the sense that∫ τ
0 T−1(τ − t)Bu(t) dt ∈ X for all u ∈ L2(0, τ ;U) and τ > 0.

Lemma 2.6. Let A and B satisfy Assumption 2.1. If (2.7) is satisfied for
a bounded function µ, then B and B∗ are, respectively, admissible control
and observation operators for the semigroup (T (t))t≥0 generated by A.

Proof. Since A and B satisfy Assumption 2.1, it is straightforward to verify
that the operator S : D(S) ⊆ X × U → X × U defined by

S =

(
A−1 B
B∗ 0

)
, D(S) =

{(
x
u

)
∈ X × U : A−1x+Bu ∈ X

}

is a system node on (U,X,U) in the sense of [59, Def. 2.1]. Moreover,
estimate (2.5) for (x, u) ∈ D(S) and [59, Thm. 4.2] imply that the system
node S is impedance passive in the sense of [59, Def. 4.1]. The transfer
function of the system node S is given by G(λ) = B∗(λ − A−1)

−1B for
λ ∈ ρ(A). Hence the assumption that (2.7) is satisfied for a bounded function
µ together with [59, Thm. 5.1] imply that the system node S is well-posed
in the sense of [59, Def. 2.6]. In particular, B ∈ L(U,X−1) and B∗ ∈
L(X1, U) are, respectively, admissible control and observation operators for
the semigroup generated by A. �

2.2. Damped second-order problems. In this section we wish to use the
framework introduced in Section 2.1 to study a class of abstract second-order
equations with damping. To this end, we consider a positive self-adjoint and
boundedly invertible operator L : D(L) ⊆ H → H on a Hilbert spaceH. We
writeH1 for the domain of L, and defineH1/2 as the domain of the fractional

power L1/2, and H−1/2 as the dual of H1/2 with respect to the pivot space
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H. For an operator D ∈ L(U,H−1/2), where U is another Hilbert space, we
consider the differential equation

ẅ(t) + Lw(t) +DD∗ẇ(t) = 0, t ≥ 0,(2.8a)

w(0) = w0 ∈ H1/2, ẇ(0) = w1 ∈ H.(2.8b)

Such systems have been studied extensively; see for instance [37, 29, 4, 3]
and the references therein. This class of systems in particular contains the
wave equation with viscous damping on a two-dimensional bounded and
convex domain Ω ⊆ R

2 with (necessarily Lipschitz) boundary ∂Ω,

wtt(ξ, t)−∆w(ξ, t) + b(ξ)2wt(ξ, t) = 0, t > 0,

where b ∈ L∞(Ω) is a non-negative function and we impose Dirichlet bound-
ary conditions. In this situation we may chooseH = U = L2(Ω), let L = −∆
be the (negative) Laplacian on H with Dirichlet boundary conditions, and
define D ∈ L(U,H) by Du = bu for all u ∈ U . This partial differential
equation will be studied in detail in Section 6.1.

In order to formulate the abstract system (2.8) as a first-order abstract
Cauchy problem of the form (2.2), we proceed as in [64, Sec. 6]. In particular,
we let x(·) = (w(·), ẇ(·)) and take X to be the Hilbert space X = H1/2 ×
H equipped with the inner product 〈x, y〉X = 〈x1, y1〉H1/2

+ 〈x2, y2〉H for

x = (x1, x2), y = (y1, y2) ∈ X. The operators A : D(A) ⊆ X → X and
B : U → X−1 in Section 2.1 are defined as

A =

(
0 I
−L 0

)
and B =

(
0
D

)

with D(A) = H1 ×H1/2 and X−1 = H ×H−1/2. Then A is a skew-adjoint
operator and thus it generates a unitary group (T (t))t∈R on X. We may
choose V = H1/2 × H1/2, which has the corresponding dual space V ∗ =
H1/2 ×H−1/2. The dual pairing of V and V ∗ is given by

〈x, y〉V ∗,V = 〈x1, y1〉H1/2
+ 〈x2, y2〉H−1/2,H1/2

for x = (x1, x2) ∈ V ∗, y = (y1, y2) ∈ V .
Condition (H1) is satisfied since Re〈A−1x, x〉V ∗,V = 0 for x ∈ V = VA,

as is easily verified. In addition, we have both B ∈ L(U,X−1) and B ∈
L(U, V ∗). For λ ∈ ρ(A) the resolvent of A has the form

(λ−A)−1 =

(
λ(λ2 + L)−1 (λ2 + L)−1

−L(λ2 + L)−1 λ(λ2 + L)−1

)
,

and an analogous formula holds for (λ−A−1)
−1. Therefore we in particular

have Ran(A−1
−1B) ⊆ V , and thus condition (H2) in Assumption 2.1 is satis-

fied. By Lemma 2.2 the operator AB defined in (2.1) generates a contraction
semigroup on X, as also shown in [37, Prop. 7.6.1] and [29, Thm. 1].

It is straightforward to see that B∗ = (0,D∗) ∈ L(V,U), where D∗ ∈
L(H1/2, U) is the adjoint of D ∈ L(U,H−1/2). Therefore the formula for

(λ−A−1)
−1 implies that

B∗(λ−A−1)
−1B = λD∗(λ2 + L−1)

−1D, λ ∈ C+.
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Moreover, ‖D∗((1 + is)2 + L−1)
−1D‖ = ‖D∗((1 − is)2 + L−1)

−1D‖, s ∈ R.
Hence if

s ‖D∗((1 + is)2 + L−1)
−1D‖ ≤ µ0(s), s ∈ R+,(2.9)

for some µ0 : R+ → [r′0,∞), r′0 > 0, then condition (2.7) holds for some
even function µ : R → [r0,∞), r0 > 0, satisfying µ(s) . µ0(|s|), s ∈ R.
Conversely, property (2.7) implies the above estimate for µ0 : R+ → [r0,∞)
defined by µ0(s) = µ(s), s ∈ R+. The estimate (2.9) has been shown to hold
for a bounded function µ0 for several PDE models having our second-order
form (2.8); see for instance [2, 29, 38]. On the other hand, as shown in [36]
and [65, Sec. 4], unbounded functions µ0 are needed in some cases including
wave equations with boundary damping. In the case where D ∈ L(U,H), we
have B ∈ L(U,X) and, in particular, (2.7) holds for a bounded function µ
by Lemma 2.5.

2.3. Resolvent estimates and non-uniform stability. Throughout the
paper we are interested in finding sufficient conditions for the spectrum of
the operator AB defined in (2.1) to be contained in C− and in obtaining a
resolvent estimate of the form

‖(is −AB)
−1‖ ≤ N(s), s ∈ R,(2.10)

for an explicit function N : R → (0,∞).
In order to pass from the resolvent estimate (2.10) to sharp rates of decay

for the semigroup (TB(t))t≥0 we make use of the following abstract result
from [53, Thm. 3.2]; see [10, Thm. 2.4] for the case where N is a polynomial.
Recall that a measurable function N : R+ → (0,∞) is said to have positive
increase if there exist constants α, s0 > 0 and cα ∈ (0, 1] such that

(2.11)
N(λs)

N(s)
≥ cαλ

α, λ ≥ 1, s ≥ s0.

When N : R+ → (0,∞) is non-decreasing but not necessarily strictly in-
creasing we take N−1 to denote the right-continuous right-inverse of N de-
fined by N−1(t) = sup{ s ≥ 0 | N(s) ≤ t } for t ≥ N(0).

Theorem 2.7 ([53, Thm. 3.2]). Let (T (t))t≥0 be a strongly continuous con-
traction semigroup on a Hilbert space X, with generator A. If iR ⊆ ρ(A)
and if ‖(is − A)−1‖ ≤ N(|s|) for all s ∈ R, where N : R+ → (0,∞) is a
continuous non-decreasing function of positive increase, then

(2.12) ‖T (t)A−1‖ = O
(
N−1(t)−1

)
, t → ∞.

The class of functions satisfying (2.11) contains all regularly varying func-
tions N : R+ → (0,∞) which have positive index [53, Sec. 2], and in par-
ticular it contains any measurable function N : R+ → (0,∞) defined for all
sufficiently large values of s ≥ 0 by N(s) = sα log(s)β , where α > 0 and
β ∈ R. As discussed in [10, 53, 22], Theorem 2.7 is optimal in several senses,
and for a large class of semigroups the condition of positive increase is even
a necessary condition for (2.12) to hold.

Remark 2.8. If N(s) = C(1 + |s|)α in Theorem 2.7 for some constants

C,α > 0, then (2.12) becomes ‖T (t)A−1‖ = O(t1/α) as t → ∞. It is shown
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in [10, Thm. 2.4] that for indvidual orbits of (T (t))t≥0 one obtains the even

better decay rate ‖T (t)x‖ = o(t−1/α) as t → ∞ for all x ∈ D(A).

In subsequent sections we shall repeatedly make use of the following
lemma when proving resolvent estimates; see e.g. [6, Prop. 4.3.6] for a proof
of a more general result.

Lemma 2.9. Let A be the generator of a contraction semigroup on a Hilbert
space X and let s ∈ R. If there exists cs > 0 such that

(2.13) ‖x‖ ≤ cs‖(is −A)x‖, x ∈ D(A),

then is ∈ ρ(A) and ‖(is −A)−1‖ ≤ cs.

We shall also make use of the following lemma on adjoints in the case
where A is a skew-adjoint operator. Here the composition (λ −AB)

−1B in
part (b) is defined as in Remark 2.3.

Lemma 2.10. Let A and B satisfy Assumption 2.1 and assume that A is
skew-adjoint.

(a) We have

((λ−A−1)
−1B)∗ = B∗(λ+A)−1, λ ∈ ρ(A).

(b) If Re〈A−1x, x〉V ∗,V = 0 for all x ∈ VA, then the adjoint A∗
B of AB

defined in (2.1) is given by

A∗
Bx = −A−1x−BB∗x, x ∈ D(A∗

B),(2.14a)

D(A∗
B) = {x ∈ V | A−1x+BB∗x ∈ X }.(2.14b)

Moreover, ((λ−AB)
−1B)∗ = B∗(λ−A∗

B)
−1 for λ ∈ ρ(AB) ∩ C+.

Proof. To prove part (a), let λ ∈ ρ(A), x ∈ X and u ∈ U . By density of X
in X−1, we may find a sequence (yk)k∈N ⊆ X such that ‖yk −Bu‖X−1 → 0

as k → ∞. Since (λ+A−1)
−1 ∈ L(X−1,X), we also have

‖(λ+A−1)
−1Bu− (λ+A)−1yk‖X → 0, k → ∞.

Hence the definition of B∗ and skew-adjointness of A imply that

〈u,B∗(λ−A)−1x〉U = 〈Bu, (λ−A)−1x〉V ∗,V = 〈Bu, (λ−A)−1x〉X−1,X1

= lim
k→∞

〈yk, (λ−A)−1x〉X−1,X1 = lim
k→∞

〈yk, (λ−A)−1x〉X
= lim

k→∞
〈(λ+A)−1yk, x〉X = 〈(λ+A−1)

−1Bu, x〉X .

Since x and u were arbitrary, we have (B∗(λ−A)−1)∗ = (λ+A−1)
−1B.

To prove (b), we define

ÃBx = −A−1x−BB∗x, x ∈ D(ÃB),

D(ÃB) = {x ∈ V | A−1x+BB∗x ∈ X }.

Since −A and B satisfy Assumption 2.1 (with the same choice of V ), ÃB

generates a contraction semigroup on X by Lemma 2.2. The assumption
that Re〈A−1x, x〉V ∗,V = 0 for x ∈ VA and a simple polarisation argument
imply that 〈A−1x, y〉V ∗,V = −〈x,A−1y〉V,V ∗ for x, y ∈ VA, where we define
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〈z1, z2〉V,V ∗ := 〈z2, z1〉V ∗,V for z1 ∈ V , z2 ∈ V ∗. Hence if x ∈ D(AB) ⊆ VA

and y ∈ D(ÃB) ⊆ VA, then

〈ABx, y〉X = 〈A−1x−BB∗x, y〉V ∗,V = 〈x, (−A−1 −BB∗)y〉V,V ∗ = 〈x, ÃBy〉X .

Thus A∗
B is an extension of ÃB, and since ρ(A∗

B) ∩ ρ(ÃB) 6= ∅ we further

see that A∗
B = ÃB .

Now let λ ∈ ρ(AB) ∩ C+, x ∈ X and u ∈ U . We have (λ − A∗
B)

−1x ∈
D(A∗

B) ⊆ VA. Moreover, by Remark 2.3 we have (λ−AB)
−1Bu ∈ VA and

〈u,B∗(λ−A∗
B)

−1x〉U = 〈Bu, (λ−A∗
B)

−1x〉V ∗,V

= 〈(λ−A−1 +BB∗)(λ−AB)
−1Bu, (λ−A∗

B)
−1x〉V ∗,V

= 〈(λ−AB)
−1Bu, (λ+A−1 +BB∗)(λ−A∗

B)
−1x〉V,V ∗

= 〈(λ−AB)
−1Bu, x〉X .

Since λ ∈ ρ(AB) ∩ C+, x ∈ X and u ∈ U were arbitrary, the proof is
complete. �

The following proposition presents some general consequences of resolvent
estimates of the form (2.10). In particular, the last part concerns the effect
of scaling the operator B on the resulting resolvent estimate. Once again,
the composition (is − AB)

−1B for s ∈ R is defined as in Remark 2.3. As
noted in Section 2.2, the additional assumptions in (b) are in particular
satisfied for the class of second-order systems considered there.

Lemma 2.11. Let A and B satisfy Assumption 2.1 and let AB be as defined
in (2.1). If iR ⊆ ρ(AB) and if N : R → (0,∞) is such that (2.10) holds,
then the following are true.

(a) For s ∈ R, we have

‖B∗(is −AB)
−1‖ ≤ N(s)1/2,

‖(is −AB)
−1B‖ . 1 +N(s),

‖B∗(is−AB)
−1B‖ ≤ 1.

(b) If either B ∈ L(U,X), or

A∗ = −A and Re〈A−1x, x〉V ∗,V = 0, x ∈ VA,

then ‖(is −AB)
−1B‖ ≤ N(s)1/2 for all s ∈ R.

(c) Let κ > 0 and consider the operator AB,κ : D(AB,κ) ⊆ X → X
defined by

AB,κx = A−1x− κ2BB∗x, x ∈ D(AB,κ),

D(AB,κ) = {x ∈ V | A−1x− κ2BB∗x ∈ X }.

Then iR ⊆ ρ(AB,κ) and ‖(is − AB,κ)
−1‖ . 1 + N(s)2 for s ∈ R. If

the assumptions in part (b) hold, then ‖(is − AB,κ)
−1‖ . N(s) for

s ∈ R.
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Proof. To prove the first estimate in (a), fix s ∈ R and y ∈ X, and let
x = (is−AB)

−1y ∈ D(AB). Then ‖x‖ ≤ N(s)‖y‖ and (is−AB)x = y, and
hence, by (2.3) in Lemma 2.2,

‖B∗x‖2 ≤ Re〈y, x〉 ≤ ‖y‖‖x‖ ≤ N(s)‖y‖2.
Since s ∈ R and y ∈ X were arbitrary, the first estimate in part (a) follows.

To prove the second and third estimates in (a), we begin by deriving a
preliminary estimate. Let λ ∈ C+ and u ∈ U . If we define the compo-
sition (λ − AB)

−1B as in Remark 2.3 and let x = (λ − AB)
−1Bu ∈ X,

then Remark 2.3 implies that x ∈ V and A−1x + B(u − B∗x) = λx ∈ X.
Estimate (2.5) in the proof of Lemma 2.2 shows that

(Reλ)‖x‖2 = Re〈A−1x+B(u−B∗x), x〉X ≤ Re〈B∗x, u−B∗x〉U
= Re〈B∗x, u〉U − ‖B∗x‖2U .

In particular, ‖B∗(λ − AB)
−1Bu‖ = ‖B∗x‖ ≤ ‖u‖ for all λ ∈ C+, which

implies the third estimate in (a). On the other hand, for λ = 1 + is with
s ∈ R, the same estimate shows that

‖(1 + is−AB)
−1Bu‖2 ≤ Re〈B∗x, u〉U − ‖B∗x‖2U

≤ Re〈B∗(1 + is −AB)
−1Bu, u〉U ≤ 1.

This inequality together with the property that (see Remark 2.3)

(is −AB)
−1Bu =

(
I + (is−AB)

−1
)
(1 + is−AB)

−1Bu, s ∈ R,

finally implies the second estimate in (a).
In order to prove (b), we first note that under the additional assumptions

it follows either from boundedness of B or from Lemma 2.10(b) that the
adjoint A∗

B is given by (2.14) and that ((is−AB)
−1B)∗ = B∗(−is−A∗

B)
−1,

s ∈ R. Proceeding as in the case of the first estimate in part (a), we may
use the structure of A∗

B to show that ‖B∗(−is−A∗
B)

−1‖2 ≤ ‖(−is−A∗
B)

−1‖
for s ∈ R. Hence for all s ∈ R we have

‖(is −AB)
−1B‖ = ‖B∗(−is −A∗

B)
−1‖ ≤ ‖(is −AB)

−1‖1/2 ≤ N(s)1/2.

To show (c), let κ > 0 and s ∈ R be fixed. Moreover, let x ∈ D(AB,κ)
and y = (is − AB,κ)x ∈ X. Estimate (2.3) in Lemma 2.2 (applied to the
operators A and κB) implies that ‖B∗x‖2 ≤ κ−2‖x‖‖y‖. We have

y = (is−A−1 + κ2BB∗)x = (is −A−1 +BB∗)x+ (κ2 − 1)BB∗x,

and since x ∈ V and (is−A−1 +BB∗)x ∈ X +Ran(B), Remark 2.3 gives

x = (is −AB)
−1y + (1− κ2)(is −AB)

−1BB∗x.

Using Young’s inequality we obtain

‖x‖2 ≤ 2N(s)2‖y‖2 + 2(1− κ2)2‖(is −AB)
−1B‖2‖B∗x‖2

≤ 2N(s)2‖y‖2 + 2
(1− κ2)2

κ2
‖(is −AB)

−1B‖2‖x‖‖y‖

≤ 2N(s)2‖y‖2 + 1

2
‖x‖2 + 2(1− κ2)4

κ4
‖(is−AB)

−1B‖4‖y‖2.
Since AB,κ generates a contraction semigroup by Lemma 2.2, the claims
follow from parts (a) and (b) together with Lemma 2.9. �
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The estimate ‖B∗(is − AB)
−1B‖ ≤ 1, s ∈ R, in part (a) was proved

in [49, Lem. 2.2.6, P6] in the case where B ∈ L(U,X), and a similar result
for general B in the case of second-order systems was presented in [66,
Thm. 1.3].

3. Frequency domain criteria for resolvent bounds and

non-uniform stability

3.1. Criteria for first-order problems. In this section we consider the
semigroup (TB(t))t≥0 generated by the operator AB defined in (2.1), and
present sufficient conditions for non-uniform stability of this semigroup in
terms of observability properties of the pair (B∗, A). Theorem 2.7 allows us
to focus on estimating the resolvent of AB on the imaginary axis, and shows
that whenever ‖(is − AB)

−1‖ ≤ N(|s|), s ∈ R, for some continuous non-
decreasing N : R+ → (0,∞) with positive increase, the classical solutions
x(·) = TB(·)x0, x0 ∈ D(AB), of (2.2) satisfy

‖TB(t)x0‖ ≤ C

N−1(t)
‖ABx0‖, t ≥ t0,(3.1)

for some constants C, t0 > 0.
Our first main result is based on the following Hautus-type condition with

variable parameters. The same condition with bounded functions M and m
was used in [47] to study observability properties of the pair (B∗, A).

Definition 3.1. The pair (B∗, A) is said to satisfy the non-uniform Hautus
test if there exist M , m : R → [r0,∞), r0 > 0, such that

‖x‖2X ≤ M(s)‖(is −A)x‖2X +m(s)‖B∗x‖2U , x ∈ D(A), s ∈ R.(3.2)

The following theorem presents a norm bound for the resolvent of AB on
iR when the pair (B∗, A) satisfies the non-uniform Hautus test. General
properties of the function µ in condition (3.3) were discussed in Section 2.1
and in Lemma 2.5.

Theorem 3.2. Let A and B satisfy Assumption 2.1. Assume further that
M,m,µ : R → [r0,∞), r0 > 0, are such that the pair (B∗, A) satisfies the
non-uniform Hautus test for the functions M and m, and

‖B∗(1 + is−A−1)
−1B‖ ≤ µ(s), s ∈ R.(3.3)

Then the operator AB defined in (2.1) satisfies iR ⊆ ρ(AB) and

‖(is −AB)
−1‖ . M(s)µ(s) +m(s)µ(s)2, s ∈ R.

Conversely, if N : R → (0,∞) is such that ‖(is − AB)
−1‖ ≤ N(s) for

all s ∈ R, then (3.2) holds for M(·) = 2N(·)2 and a function m such that
m(s) . 1 + N(s)2 for s ∈ R. If, in addition, either B ∈ L(U,X), or
A∗ = −A and Re〈A−1x, x〉V ∗,V = 0 for all x ∈ VA, then one may choose
m = 2N .

Proof. Since AB generates a contraction semigroup on X by Lemma 2.2,
Lemma 2.9 shows that the inclusion iR ⊆ ρ(AB) and the resolvent estimate
will follow from a suitable lower bound for is − AB , s ∈ R. To this end,
let s ∈ R and x ∈ D(AB) be fixed and let y = (is − AB)x. If we let
R = (1 + is − A−1)

−1 and define x1 = x + RBB∗x, then (is − A−1)x1 =
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y−RBB∗x ∈ X and hence x1 ∈ D(A). Applying (3.2) and using the identity
B∗x1 = (I +B∗RB)B∗x shows that

‖x1‖2 ≤ M(s)‖(is −A)x1‖2 +m(s)‖B∗x1‖2

≤ M(s)(‖y‖ + ‖RB‖‖B∗x‖)2 +m(s)(1 + ‖B∗RB‖)2‖B∗x‖2

. M(s)‖y‖2 +
(
M(s)‖RB‖2 +m(s)(1 + ‖B∗RB‖2)

)
‖B∗x‖2.

Since ‖B∗x‖2 ≤ Re〈y, x〉 ≤ ‖y‖‖x‖ by Lemma 2.2, we may further estimate
the norm of x = x1 −RBB∗x by

‖x‖2 . ‖x1‖2 + ‖RB‖2‖B∗x‖2

. M(s)‖y‖2 +
(
M(s)‖RB‖2 +m(s)(1 + ‖B∗RB‖2)

)
‖x‖‖y‖

≤ M(s)‖y‖2 + ε‖x‖2 + 1

4ε

(
M(s)‖RB‖2 +m(s)(1 + ‖B∗RB‖2)

)2‖y‖2,

where ε > 0. We have ‖B∗RB‖ ≤ µ(s) by assumption, and Lemma 2.2
further implies that ‖RB‖2 ≤ ‖B∗RB‖ ≤ µ(s). Letting ε be sufficiently
small we obtain

‖x‖2 .
(
M(s) +M(s)2‖RB‖4 +m(s)2(1 + ‖B∗RB‖2)2

)
‖y‖2

.
(
M(s)2µ(s)2 +m(s)2µ(s)4

)
‖y‖2

.
(
M(s)µ(s) +m(s)µ(s)2

)2 ‖(is −AB)x‖2.
Since x ∈ D(AB) was arbitrary, Lemma 2.9 implies that is ∈ ρ(AB) and
‖(is −AB)

−1‖ . M(s)µ(s) + m(s)µ(s)2.
To prove the other claims, assume that ‖(is − AB)

−1‖ ≤ N(s) and let
s ∈ R and x ∈ D(A) be arbitrary. Using the properties in Remark 2.3, the
claims follow from the estimate

‖x‖2 = ‖(is −AB)
−1(is−A)x+ (is−AB)

−1BB∗x‖2

≤ 2‖(is −AB)
−1‖2‖(is −A)x‖2 + 2‖(is −AB)

−1B‖2‖B∗x‖2

and Lemma 2.11. �

Remark 3.3. In the case where µ is a bounded function the resolvent
estimate in Theorem 3.2 takes the form ‖(is − AB)

−1‖ . M(s) + m(s),
s ∈ R. As shown in Lemma 2.5, if A and B satisfy Assumption 2.1, then
condition (3.3) is always satisfied for µ(s) = c(1+s2), s ∈ R, with some c > 0.
However, in the absence of a more precise bound for ‖B∗(1+ is−A−1)

−1B‖
the proof of Theorem 3.2 can be modified to derive an alternative resolvent
growth bound. Indeed, if the operator R in the proof is redefined as R =
(I − A−1)

−1 and if x1 is defined as before, then we have (is − A−1)x1 =
y + (is − 1)RBB∗x, and estimates analogous to those in the original proof
show that iR ⊆ ρ(AB) and

‖(is −AB)
−1‖ . M(s)(1 + s2) +m(s), s ∈ R.

This estimate is in general sharper than what is obtained from Theorem 3.2
with a quadratic upper bound for µ. Finally, for general µ the estimates in
the proof of Theorem 3.2 also establish the more precise bound

‖(is −AB)
−1‖ . M(s)1/2 +M(s)‖(1 + is−A−1)

−1B‖2 +m(s)µ(s)2
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for s ∈ R. This improves on the original estimate if ‖(1+is−A−1)
−1B‖ → 0

as |s| → ∞. The latter holds, for instance, if B ∈ L(U,X) is compact.

Recall that the pair (B∗, A) is said to be exactly observable if

∫ τ

0
‖B∗T (t)x‖2 dt ≥ cτ‖x‖2, x ∈ D(A),

for some τ > 0 and cτ > 0 [63, Def. 6.1.1]. If (3.3) is satisfied for a bounded
function µ, then Lemma 2.6 and [47, Thm. 2.4] imply that the non-uniform
Hautus test is satisfied for some bounded functions M and m if and only
if the pair (B∗, A) is exactly observable. In this situation Theorem 3.2 and
the Gearhart–Prüss theorem imply that (TB(t))t≥0 is exponentially stable,
similarly as in [57, 19].

Our next resolvent estimate for a skew-adjoint operator A is based on
lower bounds for B∗ restricted to so-called wavepackets of A. Similar con-
ditions have previously been used to study exact observability of the pair
(B∗, A), for example in [17, 51, 47].

Definition 3.4. Let A be a self-adjoint operator on X. For s ∈ R and
δ(s) > 0 we define WPs,δ(s)(A) to be the spectral subspace of A associated
with the interval (s − δ(s), s + δ(s)) ⊆ R. The elements x ∈ WPs,δ(s)(A)
are called (s, δ(s))-wavepackets of A. If A is skew-adjoint, then we define
WPs,δ(s)(A) to be WPs,δ(s)(−iA).

The following proposition presents a sufficient condition for non-uniform
stability of (TB(t))t≥0 given in terms of the action of B∗ on wavepackets
of A. In the case where µ is a bounded function and the pair (B∗, A) is
exactly observable, it is possible by Lemma 2.6 and [47, Cor. 2.17] to choose
δ(s) ≡ δ0 > 0 and γ(s) ≡ γ0 > 0, and our result then implies exponential
stability of (TB(t))t≥0.

Theorem 3.5. Let A and B satisfy Assumption 2.1 and suppose that A is
skew-adjoint. Suppose further that µ : R → [r0,∞), r0 > 0, is such that

‖B∗(1 + is−A−1)
−1B‖ ≤ µ(s), s ∈ R.

If there exist bounded functions γ, δ : R → (0,∞) such that

‖B∗x‖U ≥ γ(s)‖x‖X , x ∈ WPs,δ(s)(A), s ∈ R,(3.4)

then iR ⊆ ρ(AB) and

‖(is −AB)
−1‖ .

µ(s)2

γ(s)2δ(s)2
, s ∈ R.

Proof. By Lemma 2.2, AB generates a contraction semigroup on X. Thus
by Lemma 2.9 the claims will follow from suitable lower bounds for the
operators is − AB , s ∈ R. Let s ∈ R and x ∈ D(AB) be fixed and let
y = (is − AB)x. Further let P0 ∈ L(X) be the orthogonal projection onto
WPs,δ(s)(A), and let P∞ = I − P0. Define

x0 = P0x, x∞ = P∞x, y0 = P0y, and y∞ = P∞y.

Since x0 ∈ WPs,δ(s)(A) and B∗x0 = B∗x−B∗x∞, (3.4) implies that

‖x‖2 = ‖x0‖2 + ‖x∞‖2 . γ(s)−2
(
‖B∗x‖2 + ‖B∗x∞‖2

)
+ ‖x∞‖2.(3.5)
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We now estimate ‖x∞‖ and ‖B∗x∞‖ in turn. We begin by introducing the
operator R = (1 + is − A−1)

−1, noting that ‖R‖ ≤ 1 since A generates a
contraction semigroup. Applying P∞R to both sides of the identity y =
(is−AB)x we obtain

(is −A)Rx∞ = Ry∞ − P∞RBB∗x,(3.6)

and hence

x∞ = Rx∞ +Ry∞ − P∞RBB∗x.(3.7)

Now since R and P∞ commute, we have Rx∞ ∈ Ran(P∞), and the spec-
tral theorem for self-adjoint operators implies that ‖Rx∞‖ ≤ δ(s)−1‖(is −
A)Rx∞‖. Thus

‖x∞‖ . δ(s)−1‖(is −A)Rx∞‖+ ‖y‖+ ‖RB‖‖B∗x‖.
By (3.6) we have

‖(is −A)Rx∞‖ ≤ ‖Ry∞‖+ ‖P∞RBB∗x‖ ≤ ‖y‖+ ‖RB‖‖B∗x‖,
and therefore

(3.8) ‖x∞‖ . δ(s)−1
(
‖y‖+ ‖RB‖‖B∗x‖

)
.

In order to estimate ‖B∗x∞‖ we begin by observing that, by (3.7),

(3.9) ‖B∗x∞‖ ≤ ‖B∗R‖‖x∞‖+ ‖B∗R‖‖y‖+ ‖B∗(I − P0)RB‖‖B∗x‖.
Since A is skew-adjoint, we have B∗(1 + is −A)−1 = ((1 − is+A−1)

−1B)∗

by Lemma 2.10. Hence the resolvent identity gives

‖B∗R‖ = ‖(1− is+A−1)
−1B‖ = ‖RB − 2(1 − is+A)−1RB‖ ≤ 3‖RB‖,

and since ‖(1 + is−A)P0‖ . 1 + δ(s) . 1 we see using (2.4) in Lemma 2.2
that

‖B∗(I − P0)RB‖ ≤ ‖B∗RB‖+ ‖B∗R(1 + is −A)P0RB‖
. ‖B∗RB‖+ ‖RB‖2 . ‖B∗RB‖.

Using these estimates and (3.8), we obtain from (3.9) that

‖B∗x∞‖ . ‖RB‖‖x∞‖+ ‖RB‖‖y‖ + ‖B∗RB‖‖B∗x‖
. δ(s)−1‖RB‖‖y‖+

(
δ(s)−1‖RB‖2 + ‖B∗RB‖

)
‖B∗x‖.

Inserting our bounds for ‖x∞‖ and ‖B∗x∞‖ into (3.5), and using the esti-
mate ‖B∗x‖2 ≤ ‖x‖‖y‖ implied by (2.3) in Lemma 2.2, we deduce after a
straightforward calculation that

‖x‖2 . γ(s)−2
(
‖B∗x‖2 + ‖B∗x∞‖2

)
+ ‖x∞‖2

. δ(s)−2
(
1 + γ(s)−2‖RB‖2

)
‖y‖2

+
(
γ(s)−2

(
1 + δ(s)−2‖RB‖4 + ‖B∗RB‖2

)
+ δ(s)−2‖RB‖2

)
‖x‖‖y‖.

Since ‖RB‖2 ≤ ‖B∗RB‖ ≤ µ(s) by Lemma 2.2 and our assumption we
obtain, after dropping dominated terms, the estimate

‖x‖2 . γ(s)−2δ(s)−2µ(s)‖y‖2 + γ(s)−2δ(s)−2µ(s)2‖x‖‖y‖.
An application of Young’s inequality now yields

‖x‖2 . γ(s)−4δ(s)−4µ(s)4‖y‖2,
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and the claim follows from Lemma 2.9. �

Remark 3.6. In the situation where µ is a bounded function, Theorem 3.5
can alternatively be proved by combining Theorem 3.2, Lemma 2.6 and
results in [47]. Indeed, in this case Lemma 2.6 implies that B∗ is admissible
and by [47, Prop. 2.16] the pair (B∗, A) satisfies the non-uniform Hautus
test (3.2) for some functions M and m such that M(s) . γ(s)−2δ(s)−2

and m(s) . γ(s)−2 for s ∈ R. The claim of Theorem 3.5 then follows from
Theorem 3.2. Similarly as in Remark 3.3, the end of the proof of Theorem 3.5
can be modified to establish the potentially sharper resolvent estimate

‖(is −AB)
−1‖ . ν(s) + ν(s)2‖(1 + is−A−1)

−1B‖2 + µ(s)2

γ(s)2
, s ∈ R,

where ν(s) = δ(s)−1(1 + γ(s)−1‖(1 + is−A−1)
−1B‖).

Remark 3.7. It is easy to see from the proofs of Theorems 3.2 and 3.5
that if the assumptions are satisfied only for |s| ≥ s0 for some s0 > 0, then
iR \ (−is0, is0) ⊆ ρ(AB) and the resolvent estimate will hold for |s| ≥ s0.
The same comment applies to the results in the remainder of this paper.
Since the non-uniform decay rate is determined only by the resolvent norms
for large values of |s|, this property is useful in situations where iR ⊆ ρ(AB)
is already known or can be shown using other methods.

3.2. Criteria for second-order problems. In this section we focus on
studying the resolvent growth for the operator AB defined in (2.1) in the
case where the operators

A =

(
0 I
−L 0

)
and B =

(
0
D

)

on X and U , respectively, satisfy the assumptions in Section 2.2. In partic-
ular, L : H1 ⊆ H → H is a positive self-adjoint and boundedly invertible
operator andD ∈ L(U,H−1/2). We shall reformulate the conditions of Theo-
rem 3.2 and Theorem 3.5 in terms of the operators L and D. In addition, we
shall present further sufficient conditions for non-uniform stability in terms
of generalised observability properties of the “Schrödinger group” generated
by iL.

In the proofs of our results we shall employ a change of variables which
transforms A into a block-diagonal operator Adiag; see for instance the proof
of [47, Thm. 3.8]. Recalling that V = H1/2 × H1/2, we define a unitary
operator Q ∈ L(V,X) by

Q =
1√
2

(
I I

iL1/2 −iL1/2

)
, with Q−1 =

1√
2

(
I −iL−1/2

I iL−1/2

)
.(3.10)

We then have A = QAdiagQ
−1, where

Adiag =

(
iL1/2 0
0 −iL1/2

)
: D(Adiag) ⊆ V → V

with domain D(Adiag) = H1 × H1. The following lemma describes the
wavepackets of A in terms of the wavepackets of L1/2.
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Lemma 3.8. Let L and A be as in Section 2.2 and let δ : R → (0,∞) be
such that sups∈R δ(s) ≤ ‖L−1/2‖. Then for every s ∈ R we have

WPs,δ(s)(A) =

{(
w

i sign(s)L1/2w

) ∣∣∣∣ w ∈ WP|s|,δ(s)(L
1/2)

}
.(3.11)

Proof. Let s > 0 be fixed. We have WPs,δ(s)(A) = Ran(χIs,δ(s)(−iA)), where

Is,δ(s) = (s − δ(s), s + δ(s)). Using the decomposition A = QAdiagQ
−1 and

the upper bound for δ we see that

χIs,δs
(−iA) = Q

(
χIs,δ(s)(L

1/2) 0

0 0

)
Q−1 =

1√
2

(
χIs,δ(s)(L

1/2) 0

iL1/2χIs,δ(s)(L
1/2) 0

)
Q−1.

The functional calculus for the positive and boundedly invertible operator
L implies that

χIs,δ(s)(L
1/2)H1/2 = Ran

(
χIs,δ(s) (L

1/2)
)
,

and hence (3.11) follows from surjectivity of Q−1. The proof in the case
s < 0 is analogous. �

The next result is a counterpart of Theorem 3.5 for damped second-order
systems. We refer to [54, Sec. 3] for a related result on polynomial stability
of second-order systems in the case where L has discrete spectrum and
D ∈ L(U,H).

Theorem 3.9. Let L, D, A and B be as in Section 2.2 and assume that
µ0 : R+ → [r0,∞), r0 > 0, is such that

s ‖D∗((1 + is)2 − L−1)
−1D‖ ≤ µ0(s), s ∈ R+.

If there exist bounded functions γ0, δ0 : R+ → (0,∞) such that

‖D∗w‖U ≥ γ0(s)‖w‖H , w ∈ WPs,δ0(s)(L
1/2), s ≥ 0,

then iR ⊆ ρ(AB) and

‖(is −AB)
−1‖ .

µ0(|s|)2
γ0(|s|)2δ0(|s|)2

, s ∈ R.

Proof. If we let s0 = min{‖L−1/2‖, 1} then σ(L1/2) ⊆ [s0,∞). Define δ :
R → (0,∞) by

(3.12) δ(s) =
s0δ0(|s|)

2 sups≥0 δ0(s)
, s ∈ R.

Fix s ∈ R and let x ∈ WPs,δ(s)(A) be arbitrary. Lemma 3.8 implies that

x = (w, i sign(s)L1/2w) for some w ∈ WP|s|,δ(s)(L
1/2). Noting that L1/2w ∈

WP|s|,δ(s)(L
1/2), our assumptions imply that

‖B∗x‖U = ‖D∗L1/2w‖U ≥ γ0(|s|)‖L1/2w‖H =
γ0(|s|)√

2
‖x‖X .

Thus the conditions of Theorem 3.5 hold for δ : R+ → (0,∞) defined

in (3.12) and for γ : R+ → (0,∞) defined by γ(s) = γ0(|s|)/
√
2 for s ∈ R. As

shown in Section 2.2, our assumptions imply that ‖B∗(1+ is−A−1)
−1B‖ .

µ0(|s|), s ∈ R, and thus the claims follow from Theorem 3.5. �
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The recent literature contains several studies of non-uniform stability for
second-order systems based on observability properties of the Schrödinger
group associated with (D∗, iL) when D ∈ L(U,H) is a bounded operator.
In particular, the Hautus-type condition (3.13) in the following proposition
was used as a starting point for deriving resolvent estimates for AB in [4,
Thm. 2.3] in the case of constant parameters M0 and m0, and with variable
parameters in [32, App. B]; see also [40]. In both cases the results were used
to prove non-uniform stability of wave equations with viscous damping. The
following result generalises the results on resolvent growth in [32, App. B]
to operators L with possibly non-compact resolvent and operators D ∈
L(U,H−1/2).

Proposition 3.10. Let L, D, A and B be as in Section 2.2. Moreover, let
M0 : R+ → (0,∞) and m0 : R+ → [r0,∞), r0 > 0, be such that

‖w‖2H ≤ M0(s)‖(s2 − L)w‖2H +m0(s)‖D∗w‖2U , w ∈ H1, s ≥ 0,(3.13)

and define η := infs≥0M0(s)(1+s)2 > 0. Then the conditions of Theorem 3.9
are satisfied for the functions γ0, δ0 : R+ → (0,∞) defined by

δ0(s) =
min{√η, 1/2}√
2M0(s)(1 + s)

and γ0(s) =
1√

2m0(s)
(3.14)

for s ≥ 0. If, in addition, µ0 : R+ → [r0,∞), r0 > 0, is such that

s ‖D∗((1 + is)2 − L−1)
−1D‖ ≤ µ0(s), s ∈ R+,(3.15)

then iR ⊆ ρ(AB) and

‖(is −AB)
−1‖ . (1 + s2)M0(|s|)m0(|s|)µ0(|s|)2, s ∈ R.

Proof. Let s ≥ 0. The function δ0 in (3.14) is bounded and for every r ∈
(s− δ0(s), s+ δ0(s)) we have

|s2 − r2| = |s− r||s+ r| ≤ min{√η, 1/2}(2s + δ0(s))√
M0(s)(1 + s)

≤ 1√
2M0(s)

.

If w ∈ WPs,δ0(s)(L
1/2), this estimate and the functional calculus for L imply

that ‖(s2 − L)w‖2 ≤ (2M0(s))
−1‖w‖2. Hence (3.13) yields

‖D∗w‖2 ≥ 1

2m0(s)
‖w‖2.

Since s ≥ 0 and the wavepacket w were arbitrary, the conditions of Theo-
rem 3.9 are satisfied for the functions δ0 and γ0 defined by (3.14), and the
remaining claims follow from Theorem 3.9. �

Our result shows in particular that if (3.13) holds for constant functions
M0 and m0 and if (3.15) holds for a bounded function µ0, then ‖(is −
AB)

−1‖ . 1 + s2 for s ∈ R. The same result was previously proved for
D ∈ L(U,H) in [4, Thm. 2.3], and we shall discuss this result further in
the context of damped waves in Section 6.1 below. A result closely related
to Proposition 3.10 and, in particular, allowing non-constant functions M0

and m0 was proved in [32, Prop. B.3], once again in the simpler setting
where D ∈ L(U,H); see also [40]. Proposition 3.10 not only generalises and
extends these earlier results, it moreover allows us to see that observability
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conditions of the type considered in (3.13) and in [32, App. B] serve as
sufficient conditions for the wavepacket condition in Theorem 3.5. Finally,
in the case where µ0 is a bounded function, Lemma 2.6 and [47, Prop. 2.16]
show that the same conditions further imply the non-uniform Hautus test
in Definition 3.1 for the associated first-order equation.

We conclude this section by presenting an equivalent characterisation for
the non-uniform Hautus test of pairs (B∗, A) stemming from second-order
systems.

Proposition 3.11. Let L, D, A and B be as in Section 2.2. If M0,m0 :
R+ → [r0,∞), r0 > 0, are such that

‖w‖2H ≤ M0(s)‖(s − L1/2)w‖2H +m0(s)‖D∗w‖2U(3.16)

for all w ∈ H1/2 and s ≥ 0, then (B∗, A) satisfies the non-uniform Hautus
test for some function M such that M(s) . M0(|s|) + m0(|s|) and for m
given by m(s) = 4m0(|s|), s ∈ R. If, in addition, µ0 : R+ → [r0,∞), r0 > 0,
is such that

s ‖D∗((1 + is)2 − L−1)
−1D‖ ≤ µ0(s), s ∈ R+,

then iR ⊆ ρ(AB) and

‖(is −AB)
−1‖ . M0(|s|)µ0(|s|) +m0(|s|)µ0(|s|)2, s ∈ R.

Conversely, if (B∗, A) satisfies the non-uniform Hautus test for some
M,m : R → [r0,∞), r0 > 0, then (3.16) holds for M0 and m0 defined
by M0(s) = M(s) and m0(s) = m(s)/2 for s ≥ 0.

Proof. Since L1/2 is boundedly invertible by definition, similarly as in [47,
Thm. 3.8] the decomposition A = QAdiagQ

−1 with Q as in (3.10) implies
that (3.2) holds if and only if

‖y1‖2H + ‖y2‖2H ≤ M(s)
(
‖(s − L1/2)y1‖2H + ‖(s + L1/2)y2‖2H

)

+
m(s)

2
‖D∗(y1 − y2)‖2U

for all y1, y2 ∈ H1/2 and s ∈ R. Thus if (3.2) holds, then choosing y2 = 0
and s ≥ 0 in the above inequality implies the last claim of the proposition.

To prove the first claim, let s ≥ 0 and y1, y2 ∈ H1/2 be arbitrary. Our as-

sumptions imply that L1/2 is boundedly invertible and D∗L−1/2 ∈ L(H,U).
Thus the estimates ‖L1/2(s + L1/2)−1‖ ≤ 1, ‖(s + L1/2)−1‖ ≤ ‖L−1/2‖−1

and (3.16) imply that

‖y1‖2H + ‖y2‖2H ≤ M0(s)‖(s− L1/2)y1‖2H +m0(s)‖D∗y1‖2U + ‖y2‖2H
≤ M0(s)‖(s − L1/2)y1‖2H + 2m0(s)‖D∗(y1 − y2)‖2U
+ 2m0(s)‖D∗L−1/2‖2‖L1/2y2‖2H + ‖y2‖2H

≤ M0(s)‖(s − L1/2)y1‖2H + 2m0(s)‖D∗(y1 − y2)‖2U
+
(
2m0(s)‖D∗L−1/2‖2 + ‖L−1/2‖−2

)
‖(s + L1/2)y2‖2H .

Thus (3.2) holds for s ≥ 0 with M and m as described in the claim. For
s < 0 we get an analogous estimate by applying (3.16) to ‖y2‖2 with s
replaced by |s|, and combining the estimates shows that (3.2) holds for
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s ∈ R with functions M,m : R → [r0,∞) satisfying m(s) = 4m0(|s|) and
M(s) . M0(|s|) + m0(|s|) for s ∈ R. Finally, as shown in Section 2.2, our
assumptions imply that ‖B∗(1+ is−A−1)

−1B‖ . µ0(|s|), s ∈ R, so the final
claims follow from Theorem 3.2. �

4. Time-domain conditions for non-uniform stability

4.1. Conditions for first-order problems. In this section we present
sufficient conditions for polynomial stability of the semigroup (TB(t))t≥0

generated by AB in terms of the following generalised observability con-
cept. Related generalisations of exact observability have previously been
used in [2, 3, 1] to study non-uniform stability of damped second-order sys-
tems.

Definition 4.1. Let (T (t))t≥0 be a contraction semigroup on X, with gen-
erator A, and let C ∈ L(X1, U), where X and U are Hilbert spaces. The
pair (C,A) is said to be non-uniformly observable (with parameters β ≥ 0
and τ > 0) if there exists cτ > 0 such that

cτ‖(I −A)−βx‖2X ≤
∫ τ

0
‖CT (t)x‖2U dt, x ∈ D(A).(4.1)

Note that by [33, Corollary] the norm ‖(I − A)−βx‖ in (4.1) can be re-
placed by ‖(λ0 − A)−βx‖ for any fixed λ0 ∈ ρ(A)C+ (and a possibly dif-
ferent cτ > 0), and in particular the choice λ0 = 0 is possible if 0 ∈ ρ(A).
By injectivity of (I − A)−β, non-uniform observability also implies approx-
imate observability of the pair (C,A) in the sense that if CT (t)x = 0 for
all t ∈ [0, τ ], then necessarily x = 0. The case β = 0 corresponds to exact
observability of the pair (C,A).

Throughout this section we consider the setting of Section 2.1 in the case
where B is a bounded operator. In particular, A : D(A) ⊆ X → X generates
a contraction semigroup (T (t))t≥0 on a Hilbert space X and B ∈ L(U,X),
where U is another Hilbert space. In this situation the generator of the
semigroup (TB(t))t≥0 is AB = A−BB∗ with D(AB) = D(A). The following
consequence of the Heinz inequality for dissipative operators due to Kato
will be important for the arguments in this section. The result in particular
allows us to compare fractional powers of I −A and I −AB.

Theorem 4.2 ([33, Corollary]). Let A1 and A2 be generators of contraction
semigroups on X, and suppose that D(A1) ⊆ D(A2) and ‖A2x‖ . ‖A1x‖ for
all x ∈ D(A1). Then for every α ∈ [0, 1] we have D((−A1)

α) ⊆ D((−A2)
α)

and ‖(−A2)
αx‖ . ‖(−A1)

αx‖ for all x ∈ D((−A1)
α).

We shall also require the following lemma. A similar result for second-
order systems of the form in Section 2.2 (and a possibly unbounded opera-
tor B) was presented in [2, Lem. 4.1].

Lemma 4.3. Let A : D(A) ⊆ X → X be a skew-adjoint operator generating
a unitary group (T (t))t≥0 and let B ∈ L(U,X).

(a) For every τ > 0 there exists Cτ > 0 such that
∫ τ

0
‖B∗TB(t)x‖2 dt ≤

∫ τ

0
‖B∗T (t)x‖2 dt ≤ Cτ

∫ τ

0
‖B∗TB(t)x‖2 dt(4.2)
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for all x ∈ X. Moreover, the second inequality in (4.2) remains valid
when A is merely a generator of a contraction semigroup.

(b) The pair (B∗, A) is non-uniformly observable with parameters β ∈
[0, 1] and τ > 0 if and only if (B∗, AB) is non-uniformly observable
with the same parameters β and τ .

Proof. We begin by the second statement in (a). Suppose therefore that
(T (t))t≥0 is a contraction semigroup and let τ > 0 be fixed. Define Ψ,
ΨB ∈ L(X,L2(0, τ ;U)) by Ψx := B∗T (·)x and ΨBx := B∗TB(·)x for all
x ∈ X. If we define Fτ ∈ L(L2(0, τ ;U)) by

(Fτu)(t) =

∫ t

0
B∗T (t− s)Bu(s) ds, u ∈ L2(0, τ ;U),

then the variation of parameters formula for (TB(t))t≥0 implies that

(I + Fτ )ΨB = Ψ.

Hence the second inequality in (4.2) holds with Cτ = (1 + ‖Fτ‖)2. To
complete the proof of (a), assume that A is skew-adjoint in which case
(T (t))t≥0 is a unitary group. Direct computations may be used to show that
Re〈Fτu, u〉 ≥ 0 for all u ∈ L2(0, τ ;U), and therefore the operator I + Fτ is
boundedly invertible with ‖(I+Fτ )

−1‖ ≤ 1. This implies the first inequality
in (4.2) and thus completes the proof of (a).

To prove (b), fix β ∈ [0, 1] and τ > 0. Both (A− 1)−1 and (AB − 1)−1 are
bounded operators generating contraction semigroups on X. Since ‖(A −
1)−1x‖ . ‖(AB −1)−1x‖ . ‖(A−1)−1x‖ for all x ∈ X, Theorem 4.2 implies
that ‖(I − A)−βx‖ . ‖(I − AB)

−βx‖ . ‖(I − A)−βx‖ for all x ∈ X. Now
the claim follows directly from (a). �

As our first main result of this section we show that if D(A∗) = D(A)
and B ∈ L(U,X), then non-uniform observability of (B∗, A) implies poly-
nomial stability of the semigroup (TB(t))t≥0 generated by AB . The theorem
is similar in nature to the results presented in [2, 1] and [3, Ch. 2]. In
particular, these references introduce generalised versions of exact observ-
ability of (B∗, A) for second-order equations of the form in Section 2.2, and
deduce non-uniform stability of the semigroup (TB(t))t≥0. If β = 0 in our
result, then the pair (B∗, A) is exactly observable and we obtain exponential
stability, similarly as in [57].

Theorem 4.4. Let A be the generator of a contraction semigroup on X
such that D(A∗) = D(A), and let B ∈ L(U,X). If the pair (B∗, A) is non-
uniformly observable with parameters β ∈ [0, 1] and τ > 0, then iR ⊆ ρ(AB)
and

‖(is −AB)
−1‖ . 1 + |s|2β, s ∈ R.

In particular, if 0 < β ≤ 1 then the semigroup (TB(t))t≥0 is polynomially
stable and there exists a constant C > 0 such that

‖TB(t)x‖ ≤ C

t1/(2β)
‖ABx‖, x ∈ D(AB), t > 0.(4.3)

If β = 0 then the semigroup (TB(t))t≥0 is exponentially stable.
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Proof. Let β ∈ [0, 1] and τ > 0 be such that (4.1) holds for some cτ > 0.
By Lemma 2.2 the semigroup (TB(t))t≥0 is contractive and 1 ∈ ρ(AB).
Moreover, both (A−1)−1 and (AB−1)−1 are bounded operators generating
contraction semigroups on X. Since ‖(AB − 1)−1x‖ . ‖(A − 1)−1x‖ for
all x ∈ X, we have ‖(I − AB)

−βx‖ . ‖(I − A)−βx‖ for all x ∈ X, by
Theorem 4.2. Let λ ∈ C+ and x ∈ D(A). The previous estimate together
with non-uniform observability of (B∗, A), Lemma 4.3(a) and the estimate
Re〈(λ−AB)z, z〉 ≥ ‖B∗z‖2, z ∈ D(A), imply that

‖(I −AB)
−βx‖2 . ‖(I −A)−βx‖2 ≤ Cτ

cτ

∫ τ

0
‖B∗TB(t)x‖2 dt

≤ Cτ

cτ

∫ τ

0
Re〈TB(t)(λ−AB)x, TB(t)x〉 dt.

Since D(I −A∗
B) = D(A) = D(I −AB), Theorem 4.2 gives D((I −A∗

B)
β) =

D((I − AB)
β), and in particular (I − A∗

B)
β(I − AB)

−β ∈ L(X). Hence

if λ ∈ C+ and x ∈ D((−AB)
1+2β) are arbitrary, the above estimate and

contractivity of (TB(t))t≥0 imply that

‖x‖2 . Cτ

cτ

∫ τ

0
Re〈TB(t)(λ−AB)(I −AB)

βx, TB(t)(I −AB)
βx〉 dt

=
Cτ

cτ

∫ τ

0
Re〈(I −A∗

B)
β(I −AB)

−βTB(t)(λ−AB)(I −AB)
2βx, TB(t)x〉 dt

≤ τCτ

cτ
‖(I −A∗

B)
β(I −AB)

−β‖‖(λ −AB)(I −AB)
2βx‖‖x‖.

Since C+ ⊆ ρ(AB) we in particular obtain

sup
0<Reλ<1

‖(λ−AB)
−1(I −AB)

−2β‖ < ∞.

Thus ‖(λ − AB)
−1‖ . 1 + |λ|2β for 0 < Reλ < 1 by [39, Lem. 3.2]. In

particular, the inequality ‖(λ − AB)
−1‖ ≥ 1/dist(λ, σ(AB)) implies that

iR ⊆ ρ(AB) and ‖(is−AB)
−1‖ . 1 + |s|2β for s ∈ R. Finally, for β ∈ (0, 1],

the estimate (4.3) follows from Theorem 2.7, and for β = 0 the claim follows
from the Gearhart–Prüss theorem. �

As shown in the following proposition, non-uniform observability of (B∗, A)
can also be characterised in terms of the orbits of the semigroup (TB(t))t≥0.

Proposition 4.5. Let A be skew-adjoint and B ∈ L(U,X). The pair (B∗, A)
is non-uniformly observable with parameters β ∈ [0, 1], τ > 0 if and only if

‖(I −A)−βx‖2 . ‖x‖2 − ‖TB(τ)x‖2, x ∈ X.(4.4)

In particular, if (4.4) holds for some β ∈ [0, 1] and τ > 0, then iR ⊆ ρ(AB)
and ‖(is −AB)

−1‖ . 1 + |s|2β for s ∈ R.

Proof. Fix β ∈ [0, 1] and τ > 0. Similarly as in the proof of Theorem 4.4,
we have ‖(I − A)−βx‖ . ‖(I − AB)

−βx‖ . ‖(I − A)−βx‖ for all x ∈ X by
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Theorem 4.2. For every x ∈ D(A) = D(AB) we have

2

∫ τ

0
‖B∗TB(t)x‖2 dt = 2

∫ τ

0
Re〈(−A+BB∗)TB(t)x, TB(t)x〉 dt

= −
∫ τ

0

d

dt
‖TB(t)x‖2 dt = ‖x‖2 − ‖TB(τ)x‖2.

Thus (4.4) is equivalent to non-uniform observability of the pair (B∗, AB)
with parameters β and τ , which in turn is equivalent to non-uniform ob-
servability of (B∗, A) with parameters β and τ by Lemma 4.3(b). If (4.4)
holds, then non-uniform observability of (B∗, A) and Theorem 4.4 imply
that iR ⊆ ρ(AB) and ‖(is −AB)

−1‖ . 1 + |s|2β for s ∈ R. �

Note that by Theorem 4.2 the norm ‖(I − A)−βx‖ on the left-hand side
of (4.4) can be replaced by ‖(I − AB)

−βx‖, or by ‖(−A)−βx‖ if 0 ∈ ρ(A).
Estimates similar to (4.4) have been used in the literature in order to prove
polynomial decay rates for (TB(t))t≥0 based on discrete-time iterations, espe-
cially for damped wave equations [54] and coupled partial differential equa-
tions [52, 24]. In particular, in the special case β = 1/2 condition (4.4) is
equivalent to the observability estimate [24, Eq. (39)]. Thus Theorem 4.4
improves and generalises the stability result in [24, Sec. 5] in the case where
A is skew-adjoint. Finally, if A generates a contraction semigroup and
B ∈ L(U,X), then non-uniform observability of (B∗, A) with parameters
β ∈ [0, 1] and τ > 0 implies (4.4)

4.2. Time-domain conditions for second-order problems. In this sec-
tion we study non-uniform observability for second-order systems of the form

ẅ(t) + Lw(t) +DD∗ẇ(t) = 0, t ≥ 0.(4.5)

Throughout the section, L, D, A and B are as in Section 2.2. In the proofs
of our results we also make use of the operator |Adiag| : D(|Adiag|) ⊆ X → X
defined by

|Adiag| =
(
L1/2 0
0 L1/2

)
, D(|Adiag|) = D(A).(4.6)

For second-order systems the concept of non-uniform observability in Defi-
nition 4.1 has the following alternative characterisation.

Proposition 4.6. Let L, D, A and B be as in Section 2.2. The pair (B∗, A)
is non-uniformly observable with parameter β ∈ [0, 1] and τ > 0 if and only
if

‖L(1−β)/2w0‖2H + ‖L−β/2w1‖2H .

∫ τ

0
‖D∗ẇ(t)‖2U dt,

where w is the (classical) solution of

ẅ(t) + Lw(t) = 0, w(0) = w0 ∈ H1, ẇ(0) = w1 ∈ H1/2.

Proof. Fix β ∈ [0, 1] and τ > 0. Since 0 ∈ ρ(A), the norm ‖(I − A)−βx‖
in (4.1) can be replaced by ‖(−A)−βx‖. If |Adiag| is defined as in (4.6), then
for x = (x1, x2) ∈ X = H1/2 ×H we have

‖−A−1x‖2X = ‖L−1x2‖2H1/2
+ ‖x1‖2H = ‖|Adiag|−1x‖2X .
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Thus Theorem 4.2 implies that ‖(−A)−βx‖ . ‖|A|−βx‖ . ‖(−A)−βx‖ for
all x ∈ X, and hence

‖(−A)−βx‖2 . ‖L(1−β)/2x1‖2H + ‖L−β/2x2‖2H . ‖(−A)−βx‖2

for all x = (x1, x2) ∈ X. The claims now follow from the fact that for x =
(w0, w1) ∈ D(A) = H1×H1/2 we have T (t)x ∈ D(A) and B∗T (t)x = D∗ẇ(t)
for all t ≥ 0. �

We conclude this section by studying the damped second-order equa-
tion (4.5) for damping operators D ∈ L(U,H) satisfying

(4.7) ‖L−α/2w‖ . ‖D∗w‖ . ‖L−α/2w‖, w ∈ H,

for some α ∈ (0, 1]. Non-uniform stability of such equations was studied
in [45], and in [23] in a slightly more general setting. The assumptions on D
are satisfied in particular for the damping operator D = L−α/2 in the wave
and beam equations in [23, Sec. 15], as well as for the damped Rayleigh plate
studied in [45, Sec. 3]. We shall show that such damping implies non-uniform
observability in the sense of Definition 4.1. In particular, the following
proposition reproduces the result of [45, Thm. 2.1] for a symmetric damping
operator of the form DD∗ and for α ∈ (0, 1]. The degree of stability was
shown in [45, Sec. 3] to be optimal for a class of systems with a diagonal L.

Proposition 4.7. Let L, D, A and B be as in Section 2.2 with D ∈
L(U,H) such that (4.7) holds for some constant α ∈ (0, 1]. Then the pair
(B∗, A) is non-uniformly observable with parameter β = α and for any
τ > (π + 2π3)‖L−1/2‖−1. Moreover, the semigroup (TB(t))t≥0 generated
by AB is polynomially stable and there exists a constant C > 0 such that

‖TB(t)x‖ ≤ C

t1/(2α)
‖ABx‖, x ∈ D(AB), t > 0.

Proof. We begin by showing that if we define (0, I) ∈ L(X,H), then the
pair ((0, I), A) is exactly observable for any τ > (π + 2π3)‖L−1/2‖−1. To
prove this, let δ0 = ‖L−1/2‖. Then Lemma 3.8 shows that every non-trivial
(s, δ0)-wavepacket x of A has the form x = (w, i sign(s)L1/2w) where w is a
(|s|, δ0)-wavepacket of L1/2, and for such x we have

‖(0, I)x‖H = ‖L1/2w‖H =
1√
2
‖x‖X .

Since ‖(0, I)‖ = 1, it follows from [47, Cor. 2.17] that the pair ((0, I), A) is
exactly observable for τ > (π + 2π3)‖L−1/2‖−1.

If |Adiag| is defined as in (4.6), then |Adiag|−1 commutes with A, and thus
the same is true for |Adiag|−α. Similarly as in the proof of Proposition 4.6
we have ‖(−A)−αx‖ . ‖|Adiag|−αx‖ . ‖(−A)−αx‖ for all x ∈ X. We may
write B∗ = (0,D∗) = (0,D∗Lα/2)|Adiag|−α, where the operator D∗Lα/2 is
bounded below by assumption. Thus, for any fixed τ > (π+2π3)‖L−1/2‖−1

and for all x ∈ D(A), exact observability of ((0, I), A) implies that
∫ τ

0
‖B∗T (t)x‖2U dt &

∫ τ

0
‖(0, I)T (t)|Adiag |−αx‖2H dt

& ‖|Adiag|−αx‖2X & ‖(−A)−αx‖2X .
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Theorem 4.2 now implies that the pair (B∗, A) is non-uniformly observable
with parameter β = α and with the chosen τ > (π + 2π3)‖L−1/2‖−1. Since
A is skew-adjoint, the remaining claims follow from Theorem 4.4. �

5. Optimality of the decay rates

In this section we investigate the optimality of our non-uniform decay esti-
mates for the damped semigroup (TB(t))t≥0. In particular, we present lower

bounds for ‖TB(·)A−1
B ‖, which in turn impose a restriction on the growth

of N−1(t) as t → ∞ in estimate (3.1). Our results will allow us to show
that our resolvent estimates and the resulting non-uniform decay rates are
optimal or near-optimal in several situations of interest, including various
PDE models to be explored in Section 6. As we shall see in Section 6.1.3
below, however, there are also situations of interest in which our techniques
fail to produce sharp results and, in particular, the resolvent estimates ob-
tained by means of non-uniform Hautus tests or wavepacket conditions are
necessarily suboptimal.

Our first result of this section provides a lower bound for the resolvent
norm ‖(is −AB)

−1‖ near eigenvalues of A. Here A is assumed to be skew-
adjoint, but it need not have compact resolvent. In this section we define
Bs := (B∗Ps)

∗ ∈ L(U,X), where Ps := χ{s}(−iA) is the orthogonal pro-
jection onto Ker(is − A). Note that Ran(Bs) ⊆ Ker(is − A) and hence
we subsequently consider Bs as an operator from U into Ker(is − A). If
Ran(Bs) = Ker(is − A), we write B+

s ∈ L(Ker(is − A), U) for the Moore–
Penrose pseudoinverse of Bs. If dimKer(is − A) = 1 and Bs 6= 0, then
‖B+

s ‖ = ‖Bs‖−1.

Proposition 5.1. Let A and B satisfy Assumption 2.1 and suppose that A
is skew-adjoint. Suppose, in addition, that iR ⊆ ρ(AB) and let N : R →
(0,∞) be a function such that ‖(is − AB)

−1‖ ≤ N(s) for all s ∈ R. Then
Ran(Bs) = Ker(is−A) for all s ∈ R, and N(s) ≥ ‖B+

s ‖2 for all s ∈ R such
that is ∈ σp(A).

Proof. Fix is ∈ σp(A) and let y ∈ Ker(is−A) be arbitrary. Then 〈y, z〉X =
〈y, Psz〉X for all z ∈ X. Hence if x ∈ D(AB) is such that (is − AB)x = y,
then

〈y, z〉X = 〈(is −A−1)x, Psz〉X−1,X1 + 〈BB∗x, Psz〉X−1,X1

for all z ∈ X. It is straightforward to show that the first term on the right-
hand side is zero, so by definition of Bs we have 〈y, z〉X = 〈BsB

∗x, z〉X
for all z ∈ X. Thus BsB

∗x = y. Since y ∈ Ker(is − A) was arbitrary,
we deduce that Ran(Bs) = Ker(is − A), and in particular the Moore–
Penrose pseudoinverse B+

s ∈ L(Ker(is − A), U) of Bs is well defined. Now
‖B+

s y‖ = min{ ‖u‖ | u ∈ U and Bsu = y }, so by the identity BsB
∗x = y

and Lemma 2.11 we have

‖B+
s y‖2 ≤ ‖B∗x‖2 = ‖B∗(is −AB)

−1y‖2 ≤ N(s)‖y‖2.
This holds for all y ∈ Ker(is −A), so ‖B+

s ‖2 ≤ N(s). �

Remark 5.2. If the skew-adjoint operator A in Proposition 5.1 has pure
point spectrum and the eigenvalues of A are uniformly separated (but not
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necessarily simple), so that the spectral gap

dgap := inf { |s − s′| | is, is′ ∈ σ(A), s 6= s′ }
is strictly positive, then the norms ‖B+

s ‖ can be used to construct func-
tions δ and γ for which Theorem 3.5 provides the optimal rate of resolvent
growth. Indeed, if we choose a constant δ(s) ≡ δ := dgap/4 > 0, then all
non-trivial (s, δ(s))-wavepackets of A are eigenvectors corresponding to the
unique eigenvalue is′ in the interval i(s − δ, s + δ). If Bs′ maps surjectively
onto Ker(is′ −A) (which is in fact necessary for is′ to be an element of the
resolvent set ρ(AB)), then for every x ∈ Ker(is′ −A) we have

‖B∗x‖ = ‖B∗
s′x‖ ≥ ‖B+

s′‖−1‖x‖.
The wavepacket condition (3.4) is therefore satisfied for every bounded func-
tion γ such that γ(s) ≡ ‖B+

s′‖−1 whenever s ∈ (s′− δ, s′+ δ) and is′ ∈ σ(A).

Theorem 3.5 then implies that ‖(is − AB)
−1‖ . γ(s)−2, and by Proposi-

tion 5.1 this estimate is sharp in the sense that N(s′) ≥ γ(s′)−2 whenever
is′ ∈ σ(A) and N is as in (3.1).

As Proposition 5.1 provides us with a lower bound for the resolvent of
AB , we proceed by showing that such a bound implies a lower bound for
orbits of (TB(t))t≥0. This will be done in a more general context in antic-
ipation of possible applications elsewhere. It was shown in [8, Prop. 1.3]
that one cannot in general hope for a better rate of decay than that given
in Theorem 2.7. The following new result is a consequence of [8, Prop. 1.3].
More specifically, it is a variant of a claim made in [7, Thm. 1.1] and in
the discussion following [6, Thm. 4.4.14], and it gives a sharp optimality
statement of the same type but which, crucially, is applicable as soon as one
has a lower bound for the resolvent along a (possibly unknown) unbounded
sequence of points on the imaginary axis. The proof uses the same ideas as
that of [7, Cor. 6.11].

Proposition 5.3. Let X be a Banach space and let (T (t))t≥0 be a bounded
semigroup on X whose generator A satisfies iR ⊆ ρ(A). Suppose that N :
R+ → (0,∞) is a continuous non-decreasing function such that N(s) → ∞
as s → ∞ and

(5.1) lim sup
|s|→∞

‖(is −A)−1‖
N(|s|) > 0.

Then there exists c > 0 such that

(5.2) lim sup
t→∞

N−1(ct)‖T (t)A−1‖ > 0,

and if N has positive increase then (5.2) holds for all c > 0.

Proof. Consider the continuous non-decreasing function n : R+ → (0,∞)
defined by n(t) = supτ≥t ‖T (τ)A−1‖, t ≥ 0, and let n−1 denote any right-
inverse of n. Note that n takes strictly positive values since by (5.1) the
semigroup (T (t))t≥0 cannot be nilpotent, and that n(t) → 0 as t → ∞
by [8, Thm. 1.1]. Furthermore, by (5.1) and [8, Prop. 1.3] we may find
a constant c > 0 and an increasing sequence (sk)k∈N of positive numbers
such that sk → ∞ as k → ∞ and N(sk) < cn−1((2sk)

−1) for all k ∈ N.
Let tk = n−1((2sk)

−1) for k ∈ N. Then tk → ∞ as k → ∞ because N



NON-UNIFORM STABILITY OF DAMPED CONTRACTION SEMIGROUPS 29

is assumed to be unbounded, and we have sk = (2n(tk))
−1, k ∈ N. Now

N(N−1(ctk)) = ctk > N(sk) and hence N−1(ctk) > (2n(tk))
−1 for all k ∈ N.

Letting K = supt≥0 ‖T (t)‖, it follows that
1

2N−1(ctk)
≤ n(tk) ≤ K‖T (tk)A−1‖, k ∈ N,

which establishes (5.2). If N has positive increase then by [53, Prop. 2.2] we
have N−1(t) ≍ N−1(ct) as t → ∞ for all c > 0, which immediately yields
the second statement. �

Remark 5.4. IfN is not assumed to have positive increase then it is possible
for (5.1) to be satisfied but for (5.2) to hold only for certain values of c > 0.
We refer the interested reader to the discussion following [53, Rem. 3.3] for
an example of a contraction semigroup on a Hilbert space such that (5.1)

holds for N(s) = log(s), s ≥ 2, and ‖T (t)A−1‖ = O(e−t/2) as t → ∞. In
particular, (5.2) does not hold for any c ∈ (0, 1/2).

The considerations above lead to the following statement, which is the
main result of this section. It is an immediate consequence of Proposi-
tions 5.1 and 5.3, both of which are applicable under more general assump-
tions. The result provides lower bounds for orbits of (TB(t))t≥0 under an
assumption on the action of B∗ on eigenvectors of A associated with imag-
inary eigenvalues isk ∈ σp(A). These lower bounds will allow us to show
in Section 6.2 below that the non-uniform decay rates we obtain from our
observability conditions are optimal (or near-optimal) in several concrete
situations of interest.

Theorem 5.5. Let A and B satisfy Assumption 2.1 and suppose that A is
skew-adjoint. If there exist a sequence (sk)k∈N ⊆ R, |sk| → ∞ as k → ∞ and
a continuous non-decreasing function N0 : R+ → (0,∞) of positive increase
such that ‖B+

sk
‖2 ≥ N0(|sk|) for all k ∈ N, then

lim sup
t→∞

N−1
0 (t)‖TB(t)A

−1
B ‖ > 0.

Consequently, if (3.1) holds then there exists a sequence (tk)k∈N ⊆ (0,∞)
with tk → ∞ as k → ∞ such that N−1(tk) . N−1

0 (tk) for all k ∈ N.

We finish this section with a result of independent interest, offering an
asymptotic estimate for a collection of eigenvalues of AB under a uniform
spectral gap condition of the type discussed in Remark 5.2.

Proposition 5.6. Let A be skew-adjoint and suppose that B ∈ L(U,X) is
compact. Suppose further that σ(A) = σp(A) and that this set is infinite,
that dimKer(is−A) = 1 for every is ∈ σ(A), and that dgap > 0. Then there
exist a family (λs)is∈σp(A) and s0 ≥ 0 such that λs ∈ σ(AB) for |s| ≥ s0 and

|λs − (is − ‖Bs‖2)| = o(‖Bs‖2) as |s| → ∞.

Proof. First, we note that

{λ ∈ C− | Ker(I +B∗(λ−A)−1B) 6= {0} } ⊆ σp(AB).

Indeed, if λ ∈ C− and u ∈ U \{0} are such that B∗(λ−A)−1Bu = −u, then
(λ−AB)(λ−A)−1Bu = 0. Since (λ−A)−1Bu 6= 0 (otherwise u = −B∗(λ−
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A)−1Bu = 0), we conclude that λ ∈ σp(AB). This reduces our problem to
finding suitable points λ ∈ C− with Ker(I +B∗(λ−A)−1B) 6= {0}.

Our assumptions on A and compactness of B imply that ‖Bs‖ = ‖PsB‖ →
0 as |s| → ∞. Fix is ∈ σp(A) such that |s| ≥ 9‖B‖2 and ‖Bs‖2 ≤ dgap. By
Proposition 5.1, Bs maps surjectively onto Ker(is−A), and therefore Bs 6= 0.
Let

Fs(λ) = (λ− is)(I +B∗(λ−A)−1B).

Note that for λ ∈ ρ(A) we have Ker(I + B∗(λ− A)−1B) 6= {0} if and only
if Ker(Fs(λ)) 6= {0}. Our aim is to apply Rouché’s theorem for operator-
valued functions [27, Thm. 2.2]. We have Fs(λ) = Gs(λ) +Hs(λ) with

Gs(λ) = λ− is+B∗
sBs, Hs(λ) = (λ− is)B∗(λ−A)−1B −B∗

sBs.

Since B∗
sBs is a rank-one operator and dimX > 1, Gs(λ) is boundedly

invertible if and only if λ /∈ {is − ‖Bs‖2, is}. Let rs = ‖Bs‖2/2 and define
the closed disk Ωs = {λ ∈ C | |λ− (is−‖Bs‖2)| ≤ rs } ⊆ C− and Γs = ∂Ωs.
Then Gs(λ) is boundedly invertible for all λ ∈ Ωs \ {is−‖Bs‖2}, and for all
λ ∈ Γs we have

‖Gs(λ)
−1‖ =

1

dist(λ, {is − ‖Bs‖2, is})
=

1

rs
.

Let Js = { s′ ∈ R | |s′ − s| ≤ |s|/2 }. For every s′ ∈ R \ Js and every
λ ∈ Ωs we have

|λ− is′| ≥ |is′ − is| − |λ− is| ≥ |s|
2

− 3

2
‖Bs‖2 ≥

|s|
3
,

where the last inequality follows from the condition |s| ≥ 9‖B‖2. Hence, for
every λ ∈ Ωs,

‖B∗(λ−A)−1χR\Js(−iA)B‖ ≤ ‖B∗‖ sup
|s′−s|>|s|/2

1

|λ− is′| ‖B‖ ≤ 3‖B‖2
|s| .

Thus, for every u ∈ U with ‖u‖ ≤ 1, by the Cauchy-Schwarz inequality, the
uniform spectral gap assumption and Bessel’s identity, we see that

‖Hs(λ)u‖
|λ− is| ≤ ‖B∗(λ−A)−1χR\Js(−iA)Bu‖

+

∥∥∥∥B
∗(λ−A)−1χJs(−iA)Bu− B∗

sBsu

λ− is

∥∥∥∥

≤ 3 ‖B‖2
|s| +

∥∥∥∥∥∥

∑

is′∈(σp(A)∩iJs)\{is}

1

λ− is′
B∗

s′Bs′u

∥∥∥∥∥∥

≤ 3‖B‖2
|s| + sup

|s′|≥|s|/2
‖B∗

s′‖


2

∞∑

j=1

1

d2gapj
2




1
2



∑

is′∈σp(A)

‖Bs′u‖2



1
2

≤ 3‖B‖2
|s| +

π‖B‖√
3dgap

sup
|s′|≥|s|/2

‖Bs′‖.
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Thus ‖Hs(λ)‖ ≤ qs|λ − is| for some qs ≥ 0 satisfying qs → 0 as |s| → ∞.
Then, for |s| large enough and λ ∈ Γs,

‖Gs(λ)
−1Hs(λ)‖ ≤ qs|λ− is|

rs
≤ 3qs < 1.

Rouché’s theorem [27, Thm. 2.2] now implies that for every is ∈ σp(A) with
|s| sufficiently large there exists λs ∈ Ωs such that Ker(F (λs)) 6= {0}, and
the proof is complete. �

Observe that if A and B are as in Proposition 5.6, then the result implies
that lim infs→∞ ‖Bs‖2‖(is − AB)

−1‖ > 0. Then using Proposition 5.3 as in
Theorem 5.5, we obtain a lower bound for ‖TB(·)A−1

B ‖ along a sequence
(tk)k∈N ⊆ (0,∞) with tk → ∞ as k → ∞. We omit a precise formulation of
the corresponding statement since it is completely analogous to Theorem 5.5.

6. Non-uniform stability of damped partial differential

equations

In this section we apply our general results to several concrete partial
differential equations of different types. In particular, we consider damped
wave equations on one- and two-dimensional spatial domains, a one-dimen-
sional fractional Klein–Gordon equation, and a damped Euler–Bernoulli
beam equation. We also refer to a recent article [61] for an application of
Theorem 3.5 in the study of a coupled PDE system describing the dynamics
of linearised water waves.

6.1. Wave equations on two-dimensional domains. In this section we
consider wave equations on bounded simply connected domains Ω ⊆ R

2

which are either convex or have sufficiently regular (say C2) boundary to
ensure that the domain of the Dirichlet Laplacian on Ω is included in H2(Ω).
The wave equation with viscous damping and Dirichlet boundary conditions
is given by

wtt(ξ, t)−∆w(ξ, t) + b(ξ)2wt(ξ, t) = 0, ξ ∈ Ω, t > 0,(6.1a)

w(ξ, t) = 0, ξ ∈ ∂Ω, t > 0,(6.1b)

w(·, 0) = w0(·) ∈ H2(Ω) ∩H1
0 (Ω), wt(·, 0) = w1(·) ∈ H1

0 (Ω).(6.1c)

Here b ∈ L∞(Ω) is the non-negative damping coefficient. It is well known
that the geometry of Ω and the region where b(·) > 0 have great impact
on the asymptotic properties of the wave equation. In the framework of
Section 2.2 we set H = L2(Ω), L = −∆ with domain H1 = H2(Ω)∩H1

0 (Ω),
and define U = L2(Ω) and D ∈ L(L2(Ω)) by Du = bu for all u ∈ L2(Ω).
Since D ∈ L(U,H), the function µ0 in Section 3.2 can be chosen to be
bounded.

6.1.1. Exact observability of the Schrödinger group. In order to apply Propo-
sition 3.10 to the damped wave equation (6.1) we need to understand the
observability properties of the Schrödinger group on Ω. Of particular in-
terest here is the case of exact observability of the Schrödinger group,
which corresponds to (3.13) being satisfied for constant functions M0 and
m0. In such cases Proposition 3.10 immediately yields the resolvent bound
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‖(is−AB)
−1‖ . 1+ s2, s ∈ R, so by Theorem 2.7 (and Remark 2.8) classi-

cal solutions of the corresponding abstract Cauchy problem decay like (and
in fact faster than) t−1/2 as t → ∞. This was first proved in [4], but we
mention that, similarly as in [32, App. B], Proposition 3.10 also allows us
to deal with the much more general situation where (3.13) is satisfied for
functions M0 and m0 which satisfy suitable lower bounds but need not be
constant. We take advantage of this added generality in Section 6.1.2 below.

The study of energy decay of damped waves via observability conditions
has a long history [57, 54, 9, 42, 2, 11, 16, 43, 40], and in particular it predates
the resolvent approach. It is not surprising, therefore, that there is a rich
literature on exact observability of the Schrödinger group, giving many con-
crete examples to which our abstract theory may be applied. For instance, if
Ω is a rectangle then it follows from a classical result due to Jaffard [31] that
the Schrödinger group corresponding to our system is exactly observable for
every non-negative b ∈ L∞(Ω) such that ess supξ∈ω b(ξ) > 0 for some non-
empty open set ω ⊆ Ω; see [15] for an even stronger result on the torus.
Similarly, it follows from [14, Thm. 9] that if Ω is the Bunimovich stadium
then the corresponding Schrödinger group is exactly observable provided
the damping b has strictly positive essential infimum on a neighbourhood of
one of the sides of the rectangle meeting a half-disk and also at one point
on the opposite side. This allows us to recover under a slightly weaker as-
sumption the decay rate obtained in [11, Thm. 1.1]. Finally, if Ω is a disk
then by [5, Thm. 1.2] the Schrödinger group is exactly observable whenever
ess supξ∈ω b(ξ) > 0 for some open subset ω of Ω such that ω ∩ ∂Ω 6= ∅.
In fact, this condition is also necessary for exact observability, as can be
seen by considering so-called whispering gallery modes. We thus recover
the decay rate for classical solutions obtained in [5, Rem. 1.7]. Further ex-
amples of when the Schrödinger group is exactly observable, including also
higher-dimensional situations, may be found in [4, Sec. 2A]. We point out in
passing that there is also scope to apply directly the wavepacket result Theo-
rem 3.9, which underlies Proposition 3.10. One case in which this is possible
is if one knows that ess supξ∈ω b(ξ) > 0 for some open set ω ⊆ Ω such that
‖w‖L2(ω) ≥ c‖w‖L2(Ω) for some constant c > 0 and all eigenfunctions w of
the Dirichlet Laplacian on Ω. This would allow us to take γ0 to be constant
in Theorem 3.9, provided we know how to choose δ0 in such a way that the
(s, δ0(s))-wavepackets of (−∆)1/2 are eigenfunctions associated with a single
eigenvalue of ∆. The appropriate lower bound is obtained in [30] in the case
where Ω is a polygonal region and ω contains a neighbourhood of each of
the vertices of Ω, and in fact these assumptions can be relaxed somewhat;
see [30, Rem. 4]. Choosing an appropriate δ0, however, requires detailed
information on the distribution of the eigenvalues of the Dirichlet Laplacian
on Ω, which imposes a rather severe restriction on the domains Ω for which
this approach is likely to bear fruit.

6.1.2. Large damping away from a submanifold. Consider the damped wave
equation (6.1) on the square Ω = (0, 1)2 but with periodic rather than
Dirichlet boundary conditions. These boundary conditions allow us to view
Ω as the 2-torus T

2 and hence to apply the results in [13]. Note that the
setting is not exactly the same as in Section 2. In particular, AB does not
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generate a contraction semigroup on the space X = H1(T2)×L2(T2) and the
origin will lie in the spectrum of both A and AB . To resolve these issues, we
follow e.g. [4] and let X0 = (I−P0)X, where P0 denotes the Riesz projection
corresponding to the isolated eigenvalue 0, and we equip this space with
the Hilbert space (energy) norm as in Section 2.2. Then the restriction of
(TB(t))t≥0 to the invariant subspace X0 generates a contraction semigroup
on X0, and its generator has the same spectrum as AB except that the
point zero has been removed. In order to obtain decay rates for (TB(t))t≥0

it suffices, by Remark 3.7, to estimate the resolvent of AB away from zero,
and we do so by applying our general machinery under the assumption that
the damping coefficient b satisfies a certain type of lower bound away from
a submanifold Σ of T2. A typical example would be for Σ to be a circle of
the form Σ = { (ξ1, ξ2) ∈ Ω | ξ1 ∈ (0, 1) } for some fixed ξ2 ∈ (0, 1), but
the results in [13] also apply in a much more general setting than this. The
following result is a simple extension of [13, Cor. 1.3] in our special case.
The distance referred to here is the geodesic distance on the manifold T

2.

Corollary 6.1. Let r : R+ → R+ be a non-decreasing function satisfying
r(s) > 0 for all s > 0, and suppose that b(ξ)2 ≥ r(dist(ξ,Σ)) for all ξ ∈ T

2.
Then iR ⊆ ρ(AB) and there exist ε ∈ (0, 1) and s0 > 0 such that

‖(is−AB)‖ . r(ε|s|−1/2)−1, |s| ≥ s0.

Proof. It follows for instance from [4, Lem. 4.2] and the subsequent remarks
that iR ⊆ ρ(AB). We now prove the resolvent estimate. Given ε ∈ (0, 1)

and s ∈ R\{0} let ωε,s = { ξ ∈ T
2 | dist(ξ,Σ) < ε|s|−1/2 }. By [13, Thm. 1.1]

(but see also [58]) there exists s0 > 0 such that

(6.2) ‖w‖L2(ωε,s) . ε1/2
(
|s|−1‖(s2 +∆)w‖L2(T2) + ‖w‖L2(T2)

)

for all w ∈ H2(T2), ε ∈ (0, 1) and s ∈ R with |s| ≥ s0. By assumption

we have b(ξ)2 ≥ r(ε|s|−1/2) for all ξ ∈ T
2 \ ωε,s. Thus if we let mε(s) =

r(ε|s|−1/2)−1 for ε ∈ (0, 1) and |s| ≥ s0, then

mε(s)‖bw‖2L2(T2) ≥ mε(s)‖bw‖2L2(T2\ωε,s)
≥ ‖w‖2L2(T2) − ‖w‖2L2(ωε,s)

,

and hence by (6.2) and an application of Young’s inequality we may choose
ε ∈ (0, 1) sufficiently small to ensure that

‖w‖2L2(T2) . |s|−2‖(s2 +∆)w‖2L2(T2) +mε(s)‖bw‖2L2(T2)

for all w ∈ H2(T2) and all s ∈ R such that |s| ≥ s0. The result now follows
from Proposition 3.10 and Remark 3.7. �

We may use Corollary 6.1 to study the asymptotic behaviour of damped
waves. In particular, if r(s) = cs2κ for some constants c, κ > 0 then Corol-
lary 6.1 yields the estimate ‖(is − AB)‖ . 1 + |s|κ for s ∈ R, and hence
by Theorem 2.7 any classical solution of the damped wave equation decays
at the rate t−1/κ. Note that this is worse than the rate obtained under
additional assumptions in [41, 21]. On the other hand, it is stated in [13,

Rem. 1.5] that in the general setting the rate t−1/κ cannot be improved.
The main value of Corollary 6.1 lies in the fact that it leads to interesting
non-polynomial resolvent estimates whenever the function r providing the
lower bound is chosen appropriately.
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6.1.3. Suboptimality of the observability and wavepacket conditions. In this
section we discuss certain natural limitations of our results in Sections 3,
and in particular describe situations where the non-uniform decay rates
obtained by our methods are suboptimal. As shown in [11, 4, 41, 21, 62] in
the case of multi-dimensional wave equations with viscous damping, rates of
non-uniform decay are dependent not only on the location of the damping
but also on the smoothness of the damping coefficient b. By studying the
damped wave equation (6.1) on a square Ω = (0, 1)2 we can illustrate that
the resolvent growth rates in Sections 3 and 4 are inherently suboptimal due
to the fact that our observability concepts — the non-uniform Hautus test,
the wavepacket condition, the observability of the Schrödinger group and the
non-uniform observability — are unable to detect the degree of smoothness
of the damping coefficient b.

For this purpose, let ω = (0, 1/2) × (0, 1). For any arbitrarily small
ε ∈ (0, 1/2) we may as in [11, Sec. 3] define a smooth non-negative damping
coefficient bε such that supp bε ⊆ ω, ‖bε‖L∞ ≤ 1, and ‖(is −ABε)

−1‖ . 1 +
|s|1+ε, s ∈ R, where Bε ∈ L(L2(Ω),X) is the damping operator associated
with bε. Now consider the damping coefficient bχ = χω, and denote the
damping operator associated with this function by Bχ ∈ L(L2(Ω),X). For
this damping coefficient the optimal order of resolvent growth is known to
be 1+ |s|3/2 [60, 4], and in particular lim sup|s|→∞|s|−3/2‖(is−ABχ )

−1‖ > 0.

However, since bχ(ξ) ≥ bε(ξ) for all ξ ∈ Ω, we clearly have

‖B∗
χx‖ ≥ ‖B∗

εx‖, x ∈ X.

Hence the non-uniform Hautus test (3.2), the wavepacket condition (3.4),
observability of the Schrödinger group (3.13), or non-uniform observabil-
ity (4.1) for the pair (B∗

ε , A) immediately implies the same property for
the pair (B∗

χ, A) with the same parameters. In particular, any resolvent

estimate of the form ‖(is − ABε)
−1‖ ≤ N(s), s ∈ R, obtained from The-

orem 3.2, Theorem 3.5, Proposition 3.10 or Theorem 4.4 also implies that
‖(is − ABχ)

−1‖ ≤ N(s) for s ∈ R. However, by [4, Prop. B.1] we then also

have lim sup|s|→∞|s|3/2N(s) > 0. This means that N(s) is a suboptimal

upper bound for ‖(is −ABε)
−1‖ as |s| → ∞.

Comparing the rates of non-uniform decay of (6.1) with the two damping
profiles bε and bχ also shows that in the second part of Theorem 3.2 it is
in general impossible to choose functions M and m satisfying M +m . N .
To see this, let Mε and mε be functions M and m corresponding to the
damping bε. Then the inequality bχ ≥ bε implies that (B∗

χ, A), too, satisfies
the Hautus test for the same functions Mε and mε, and by Theorem 3.2 we
have ‖(is − ABχ)

−1‖ . Mε(s) +mε(s), s ∈ R. However, since the optimal

order of resolvent growth for the damping bχ is |s|3/2, the conclusion cannot
be true unless

lim sup
|s|→∞

|s|3/2
(
Mε(s) +mε(s)

)
> 0.

Thus Mε +mε provides a strictly worse resolvent bound than the estimate
‖(is −ABε)

−1‖ . 1 + |s|1+ε, s ∈ R, obtained in [11, Sec. 3].
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Finally, comparison of the damping coefficients bε and bχ further shows
that a dissipative perturbation of a generator of a polynomially stable semi-
group can strictly worsen the rate of decay. Indeed, since bχ ≥ bε by con-
struction, the “additional damping” of the difference b∆ = bχ − bε ≥ 0
increases the asymptotic rate of resolvent growth as |s| → ∞ from at most

|s|1+ε to |s|3/2. In terms of the semigroup generators this means that ABε

has a strictly slower asymptotic resolvent growth than ABχ even though ABχ

is a dissipative perturbation of ABε .

6.2. Damped wave equations on one-dimensional domains.

6.2.1. Damping at a single interior point. In this section we consider the
one-dimensional wave equation with pointwise damping studied in [2, Sec. 5.1];
see also [55] for a closely related problem on the stability of two serially con-
nected strings. Our arguments rely essentially on ideas from [2]. Given an
irrational number ξ0 ∈ (0, 1), let us consider the problem

wtt(ξ, t)− wξξ(ξ, t) + wt(t, ξ0)δξ0(ξ) = 0, ξ ∈ (0, 1), t > 0,(6.3a)

w(0, t) = 0, w(1, t) = 0, t > 0,(6.3b)

w(·, 0) = w0(·) ∈ H2(0, 1) ∩H1
0 (0, 1), wt(·, 0) = w1(·) ∈ H1

0 (0, 1).(6.3c)

As shown in [2, Sec. 5.1], the system (6.3) satisfies the assumptions in
Section 2.2 with H = L2(0, 1), L = −∂ξξ with domain H1 = H2(0, 1) ∩
H1

0 (0, 1), and L has positive square root with domain H1/2 = H1
0 (0, 1). The

damping operatorD is given byDu = δξ0u for all u ∈ U = C, where δξ0 is the
Dirac delta distribution at ξ = ξ0, and we indeed have D ∈ L(C,H−1/2) and

D∗ ∈ L(H1/2,C), where H−1/2 = H−1(0, 1) and H1/2 = H1
0 (0, 1). In order

to describe the domain D(AB), note that A−1
−1B = (−L−1δξ0 , 0) = (z, 0),

where z ∈ H1
0 (0, 1) is the solution of the differential equation z′′ = δξ0 with

boundary conditions z(0) = z(1) = 0 in H−1(0, 1). We thus have

z(ξ) =

{
ξ(1− ξ0), 0 < ξ ≤ ξ0,

ξ0(1− ξ), ξ0 < ξ ≤ 1.

Since D(AB) = {x ∈ XB | A−1x− BB∗x ∈ X } by Remark 2.4, we deduce
that (cf. [2, Sec. 5.1])

D(AB) = { (u+ z(·)v(ξ0), v) | u ∈ H2(0, 1) ∩H1
0 (0, 1), v ∈ H1

0 (0, 1) },
and therefore classical solutions of (6.3) correspond to initial conditions

w0 = w00 + z(·)w1(ξ0), w00 ∈ H2(0, 1) ∩H1
0 (0, 1), w1 ∈ H1

0 (0, 1).(6.4)

Since the eigenvalues λ2
n = n2π2, n ∈ N, and corresponding normalised

eigenfunctions φn(·) =
√
2 sin(nπ·) of L are known explicitly, we may use

the wavepacket condition in Theorem 3.9 to analyse the stability properties
of the damped system (6.3). Indeed, the eigenvalues λn = nπ, n ∈ N, of

L1/2 have a uniform gap, so we may choose δ(s) ≡ π/4. The non-trivial

(s, δ(s))-wavepackets of L1/2 are then simply multiples of the eigenfunctions
φn for n ∈ N such that nπ ∈ (s− π/4, s + π/4). For any n ∈ N we have

|D∗φn| = |φn(ξ0)| =
√
2|sin(nπξ0)|.
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In order to determine the rate of resolvent growth we need to estimate the
coefficients |D∗φn| from below. This certainly requires ξ0 to be an irrational
number, but in fact we shall need to assume more, namely that ξ0 is badly
approximable by rationals. It is known, for instance, that given any ε > 0
almost every irrational ξ0 ∈ (0, 1) has the property that

(6.5) min
m∈N

∣∣∣ξ0 −
m

n

∣∣∣ ≥ 1

n2 log(n)1+ε

for all sufficiently large n ≥ 2, while simultaneously for almost every irra-
tional ξ0 ∈ (0, 1) there exist rationals m/n with arbitrarily large values of
n ≥ 2 such that

(6.6)
∣∣∣ξ0 −

m

n

∣∣∣ ≤ 1

n2 log(n)
;

see for instance [34, Thm. 32]. A rather special class of irrationals ξ0 ∈ (0, 1)
is the set of irrationals that have constant type. These are commonly defined
to be those irrational numbers which have uniformly bounded coefficients
in their partial fractions expansions. Irrationals of constant type include all
irrational quadratic numbers, that is to say irrational solutions of quadratic
equations with integer coefficients. As shown in [35, Ch. II, Thm. 6], an
irrational number ξ0 ∈ (0, 1) has constant type if and only if there is a
constant cξ0 > 0 such that

(6.7) min
m∈N

∣∣∣ξ0 −
m

n

∣∣∣ ≥ cξ0
n2

, n ∈ N.

It follows from the Dirichlet approximation theorem [35, Ch. II,Thm. 1]
that for any irrational number ξ0 ∈ (0, 1) there exist rationals m/n with
arbitrarily large values of n ∈ N such that

(6.8)
∣∣∣ξ0 −

m

n

∣∣∣ ≤ 1

n2
.

The following result yields (essentially) sharp rates of decay for the energy
of our damped system for irrational numbers ξ0 ∈ (0, 1) of different nature.

Corollary 6.2. Let w be the (classical) solution of (6.3) corresponding to
initial conditions as in (6.4).

(a) Fix ε > 0. For almost every irrational number ξ0 ∈ (0, 1) there exists
Cε > 0 such that

(6.9) ‖(w(·, t), wt(·, t))‖H1×L2 ≤ Cε
log(t)1+ε

t1/2
‖(w00, w1)‖H2×H1 , t ≥ 2.

Moreover, the rate is almost optimal in the sense that if r : R+ →
(0,∞) is any function such that r(t) = o(t−1/2 log(t)) as t → ∞, then
there exist w0, w1 as in (6.4) for which r(t)−1‖(w(·, t), wt(·, t))‖H1×L2

is unbounded as t → ∞.
(b) If ξ0 ∈ (0, 1) is an irrational number of constant type then there

exists C > 0 such that

‖(w(·, t), wt(·, t))‖H1×L2 ≤ C

t1/2
‖(w00, w1)‖H2×H1 , t ≥ 1.

Moreover, the rate is optimal in the sense that if r : R+ → (0,∞)

is any function such that r(t) = o(t−1/2) as t → ∞, then there
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exist w0, w1 as in (6.4) for which r(t)−1‖(w(·, t), wt(·, t))‖H1×L2 is
unbounded as t → ∞.

Proof. The form of the estimates follows from Theorem 2.7 and the property
that for initial conditions as in (6.4) we have

‖AB(w0, w1)‖2X = ‖A(w00, w1)‖2X = ‖w′′
00‖2L2 + ‖w1‖2H1 .

In order to prove (a), we will use Theorem 3.9. As shown in [2, Lem. 5.3],
we have |s| ‖D∗((1 + is)2 +L−1)

−1D‖ . 1, s ∈ R. To verify the wavepacket
condition, let ξ0 be such that (6.5) holds. For a given n ≥ 2, choose m ∈ N

in such a way that Cn ∈ R defined by

ξ0 =
m

n
+

Cn

n2 log(n)1+ε

has minimal absolute value. By (6.5) we have 1 ≤ |Cn| ≤ n log(n)1+ε/2 for
all sufficiently large n ≥ 2, and since 2r/π ≤ sin(r) ≤ r for 0 ≤ r ≤ π/2 it
follows that

|D∗φn| =
√
2|sin(nπξ0)| =

√
2

∣∣∣∣sin
(

Cnπ

n log(n)1+ε

)∣∣∣∣ ≥
2
√
2

n log(n)1+ε

for all sufficiently large n ≥ 2. Thus by Theorem 3.9 we have ‖(is−AB)
−1‖ .

s2 log(|s|)2+2ε, |s| ≥ 2, and hence (6.9) follows from Theorem 2.7; see also [7,
Thm. 1.3].

In order to prove the optimality statement, note that by (6.6) there exist
infinitely many n ≥ 2 for which |Cn| ≤ log(n)ε and therefore also

|D∗φn| =
√
2

∣∣∣∣sin
(

Cnπ

n log(n)1+ε

)∣∣∣∣ ≤
√
2π

n log(n)
.

Now Proposition 5.1 shows that

lim sup
|s|→∞

‖(is −AB)
−1‖

|s|2 log(|s|)2 > 0,

and it follows from Proposition 5.3 that

lim sup
t→∞

log(t)

t−1/2
‖TB(t)A

−1
B ‖ > 0.

Now the optimality statement follows from a simple application of the uni-
form boundedness principle.

The argument for part (b) is entirely analogous and slightly simpler. It
uses (6.7) and (6.8) in place of (6.5) and (6.6), respectively. �

6.2.2. Weak damping. In this section we consider a weakly damped wave
equation on (0, 1), namely

wtt(ξ, t) −wξξ(ξ, t) + b(ξ)

∫ 1

0
b(r)wt(r, t)dr = 0, ξ ∈ (0, 1), t > 0,(6.10a)

w(0, t) = 0, w(1, t) = 0, t > 0,(6.10b)

w(·, 0) = w0(·) ∈ H2(0, 1) ∩H1
0 (0, 1), wt(·, 0) = w1(·) ∈ H1

0 (0, 1),(6.10c)

where b ∈ L2(0, 1;R) is the damping coefficient. The wave equation has the
form considered in Section 2.2 with H = L2(0, 1), L = −∂ξξ with domain
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H1 = H2(0, 1)∩H1
0 (0, 1), and L has positive square root with domainH1/2 =

H1
0 (0, 1). Moreover, U = C and D ∈ L(C,H) is the rank-one operator

defined by Du = bu for all u ∈ C.
The operator L is the same as in Section 6.2.1. Hence if we define δ(s) ≡

π/4 then the non-trivial (s, δ(s))-wavepackets of L1/2 are multiples of the
normalised eigenfunctions φn for n ∈ N such that nπ ∈ (s − π/4, s + π/4).
For any n ∈ N we have

|D∗φn| =
√
2

∣∣∣∣
∫ 1

0
b(ξ) sin(nπξ)dξ

∣∣∣∣ .

For a large class of functions b these Fourier sine series coefficients have
explicit expressions. In order to have iR ⊆ ρ(AB) we require that D

∗φn 6= 0
for all n ∈ N, and the rate at which |D∗φn| decays to zero as n → ∞
determines the rate of resolvent growth. In the following we summarise the
conclusions of Theorem 3.5 for a class of dampings.

Corollary 6.3. Assume that |D∗φn| & f(nπ), n ∈ N, for a continuous
strictly decreasing function f : R+ → (0,∞) such that f(·)−1 has positive
increase. Then there exist C, t0 > 0 such that for all w0 ∈ H2(0, 1)∩H1

0 (0, 1)
and w1 ∈ H1

0 (0, 1) the (classical) solution w of (6.10) satisfies

‖(w(·, t), wt(·, t))‖H1×L2 ≤ C

N−1(t)
‖(w0, w1)‖H2×H1 , t ≥ t0,(6.11)

where N−1 is the inverse function of N(·) := f(·)−2. Moreover, if there
exists an increasing sequence (nk)k∈N ⊆ N such that |D∗φnk

| . f(nkπ) for
all k ∈ N, then the decay rate is optimal in the sense of Theorem 5.5.

Proof. If |D∗φn| ≥ f(nπ), n ∈ N, then the wavepacket condition in (3.11) is
satisfied for δ0 = π/4 and γ0(s) = f(s+π/4). Moreover, since D ∈ L(C,H),
we have |s| ‖D∗((1 + is)2 + L)−1D‖ . 1, s ∈ R. Thus Theorem 3.9 implies
that ‖(is − AB)

−1‖ . f(|s|+ π/4)−2, s ∈ R, and Theorem 2.7 yields (6.11)
with the function N0 defined by N0(s) = f(s+ π/4)−2 for s > 0. The claim
now follows from the fact that N−1 = N−1

0 + π/4. �

For the particular damping functions b defined by b(ξ) = 1 − ξ, b(ξ) =
ξ2(1− ξ) and b(ξ) = χ(0,ξ0)(ξ), where ξ0 ∈ (0, 1) is an irrational of constant
type, the optimal decay rates are given by (writing bn = D∗φn for brevity)

b(ξ) = 1− ξ, bn =

√
2

nπ
, N−1(t)−1 . t−1/2,(6.12a)

b(ξ) = ξ2(1− ξ), bn =
2
√
2(2(−1)n − 1)

n3π3
, N−1(t)−1 . t−1/6,(6.12b)

b(ξ) = χ(0,ξ0)(ξ), bn =

√
2(1− cos(nπξ0))

nπ
, N−1(t)−1 . t−1/6.(6.12c)

The required upper and lower bounds for |D∗φn| in the third example
follow by arguments similar to those used in the proof of Corollary 6.2, once
again using (6.7) and (6.8). Optimality in all three examples is a consequence
of Theorem 5.5.

Remark 6.4. The above discussion implies that the Fourier sine series
coefficients bn = D∗φn of the damping b determine the resolvent growth and
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thus the rate of energy decay in (6.10). So it is natural to try to relate
the energy decay to the properties of b and (bn)n∈N directly. However, it is
difficult to give a succinct answer here without specifying a precise class of
functions b. First note that since b ∈ L2(0, 1), we have (bn)n∈N ∈ ℓ2. On the
other hand, the results in [48] show that for any (cn)n∈N ∈ ℓ2 with cn ≥ 0
there exists b ∈ C[0, 1] such that |bn| ≥ cn for all n ∈ N, and thus any rate
of decay that can be achieved with a damping function b ∈ L2(0, 1) can also
be achieved with a more regular function b ∈ C[0, 1]. However, imposing
further regularity properties on b, such as Hölder type conditions, changes
the situation substantially.

In general, finer estimates for decay of (bn)n∈N depend heavily on the mod-
ulus of continuity (or the integral modulus of continuity) of b, and conversely
for (bn)n∈N close in a sense to being monotone one may infer regularity prop-
erties of b from the sequence (bn)n∈N; see for instance [26, Ch. 7], [67, Ch. 5],
[25] and references therein.

Note finally that any polynomial rate of decay t−α with α ∈ (0, 1) can
be achieved by choosing the damping function b ∈ L2(0, 1) such that bn =
n−1/(2α) for n ∈ N. Moreover, by [48] the same scale of polynomial rates
can be realised by means of continuous damping functions. It would be
interesting to consider similar statements about other scales of decay rates,
for instance of regularly varying functions, but we do not pursue this here.

6.3. A damped fractional Klein–Gordon equation. In this example
we consider a “fractional Klein–Gordon equation” with viscous damping
studied in [46]; see also [28]. For a fixed α ∈ (0, 1] this system has the form

wtt(ξ, t) + (−∂ξξ)
αw(ξ, t) +mw(ξ, t) + b(ξ)2wt(ξ, t) = 0, ξ ∈ R, t > 0

w(·, 0) = w0(·) ∈ H2α(R), wt(·, 0) = w1(·) ∈ Hα(R),

where m > 0 and b ∈ L∞(R) is the non-negative damping coefficient. We
assume that ess infξ∈ω b(ξ) > 0 for some non-empty open set ω ⊆ R which
is invariant under translation by 2π.

Polynomial stability of this equation was studied e.g. in [46]. In the fol-
lowing proposition we use the wavepacket condition (3.11) to derive the same
resolvent estimate under the above assumptions on b (strictly weaker condi-
tions on the damping were also considered recently in [28]). The fractional
Klein–Gordon equation is again of the form studied in Section 2.2, now with
H = U = L2(R), L = (−∂ξξ)

α + m > 0 with domain H1 = H2α(R) and
H1/2 = Hα(R). The damping operator D ∈ L(L2(R)) is the multiplication

operator defined by Du = bu for all u ∈ L2(R).

Proposition 6.5. Let 0 < α < 1. There exists C > 0 such that for every
w0 ∈ H2α(R) and w1 ∈ Hα(R) the solution w of the fractional Klein–Gordon
equation satisfies

‖(w(·, t), wt(·, t))‖Hα×L2 ≤ C

tα/(2−2α)
‖(w0, w1)‖H2α×Hα , t > 0.

Proof. Let us begin by showing that the classical Klein–Gordon equation
corresponding to α = 1 is exponentially stable. Due to the properties of
the damping coefficients we may choose a smooth and 2π-periodic function
b1 such that 0 ≤ b1 ≤ b on R and infξ∈ω1 b1(ξ) > 0 for a non-empty open
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set ω1 ⊆ ω. By [12, Thm. 1.2] the Klein–Gordon equation with damping
coefficient b1 is exponentially stable. If we define D1 ∈ L(L2(R)) so that
D1u = b1u for all u ∈ L2(R), and define B1 =

(
0
D1

)
, then (B∗

1 , A) is exactly
observable, and by [47, Cor. 2.17] the pair (B∗

1, A) satisfies the wavepacket
condition (3.4) for constant functions δ(s) ≡ δ > 0 and γ(s) ≡ γ > 0.
However, since b(ξ) ≥ b1(ξ) for all ξ ∈ R we see that also (B∗, A) satisfies
the wavepacket condition for the same functions δ and γ.

Let us temporarily write Lα for the operator (−∂ξξ)
α + m, 0 < α ≤ 1,

accepting that this entails a minor abuse of notation. Since σ(Lα) ⊆ [m,∞)
for 0 < α ≤ 1, we obtain from Lemma 3.8 that

‖D∗w‖U ≥ γ1‖w‖H(6.13)

for all (s, δ1)-wavepackets w of L
1/2
α , where δ1, γ1 > 0 are suitable constants.

For 0 < α ≤ 1 and any bounded function δ0 : R+ → (0,∞) the (s, δ0(s))-

wavepackets of L
1/2
α are precisely the elements of Ran(χIs,δ0(s)

(L
1/2
α )), where

Is,δ0(s) = (s − δ0(s), s + δ0(s)). Using the spectral theorem we see that if

I ⊆ [
√
m,∞) is a bounded interval then Ran(χI(L

1/2
α )) = Ran(χJα(L

1/2
1 )),

where Jα = ((I2 − m)1/α + m)1/2. Now fix α ∈ (0, 1) and let δ0(s) =

c(1 + sα
−1−1), s ≥ 0, where c > 0 is a constant. Straightforward estimates

show that the images of the intervals Is,δ0 ∩ [
√
m,∞) under the map I 7→ Jα

have length bounded by some constant multiple of c. It follows that (6.13)

holds also for all (s, δ0(s))-wavepackets w of L
1/2
α provided that c is suffi-

ciently small. (Here the form of the function δ0 can either be guessed or
alternatively derived by considering the images of constant-width intervals
under the inverse of the map I 7→ Jα.) Moreover, since D ∈ L(L2(Ω)) we
have |s| ‖D∗((1 + is)2 + L)−1D‖ . 1, s ∈ R. Thus we deduce from Theo-

rem 3.9 that ‖(is − AB)‖ . |s|2(α−1−1)−1
for s ∈ R. The claim now follows

directly from Theorem 2.7. �

6.4. A weakly damped beam equation. In this section we consider the
stability of the following Euler–Bernoulli beam equation with weak damping,

wtt(ξ, t) + wξξξξ(ξ, t) + b(ξ)

∫ 1

0
b(r)wt(r, t)dr = 0, ξ ∈ (0, 1), t > 0,

w(0, t) = 0, wξξ(0, t) = 0, t > 0,

w(1, t) = 0, wξξ(1, t) = 0, t > 0,

w(·, 0) = w0(·) ∈ H4(0, 1) ∩H1
0 (0, 1),

wt(·, 0) = w1(·) ∈ H2(0, 1) ∩H1
0 (0, 1),

where b ∈ L2(0, 1;R) is the damping coefficient. The boundary conditions
describe a situation in which the beam is simply supported.

The beam equation fits into the framework of Section 2.2 with the choices
H = L2(0, 1) and

L = ∂ξξξξ, H1 = {x ∈ H4(0, 1) | x(0) = x′′(0) = x(1) = x′′(1) = 0 }.
The operator L is invertible and positive and its positive square root is given
by L1/2 = −∂ξξ with domain H1/2 = H2(0, 1) ∩ H1

0 (0, 1). The eigenvalues

and normalised eigenfunctions of L1/2 are given by λn = n2π2 and φn(·) =
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√
2 sin(nπ·), respectively, for n ∈ N. As in Section 6.2.2, U = C and D ∈

L(C,H) is the rank-one operator defined by Du = bu for all u ∈ C.
Our aim is to study the asymptotic behaviour of the solutions of the

damped beam equation using the wavepacket condition in Theorem 3.9.
Since the eigenvalues λn = n2π2, n ∈ N, have a uniform gap, we may choose
δ(s) ≡ π2/4. The non-trivial (s, δ(s))-wavepackets of L1/2 are then multiples
of the eigenfunctions φn for n ∈ N such that n2π2 ∈ (s − π2/4, s + π2/4).
For any n ∈ N we have

|D∗φn| =
√
2

∣∣∣∣
∫ 1

0
b(ξ) sin(nπξ)dξ

∣∣∣∣ .

These Fourier sine series coefficients are identical to the ones in Section 6.2.2.
However, the locations of the eigenvalues of A now result in a slower rate
of resolvent growth than in the case of the wave equation. In order to have
iR ⊆ ρ(AB) it is again necessary that D∗φn 6= 0 for all n ∈ N. However,
since the gaps between the eigenvalues n2π2 of L1/2 grow without bound
as n → ∞, the same damping has a greater relative effect for the beam
equation than for the wave equation.

Corollary 6.6. Assume that |D∗φn| & f(n2π2) for a continuous strictly
decreasing function f : R+ → (0,∞) such that f(·)−1 has positive increase.
Then there exist C, t0 > 0 such that for every w0 ∈ H1 and w1 ∈ H1/2 the
(classical) solution of the weakly damped beam equation satisfies

‖(w(·, t), wt(·, t))‖H2×L2 ≤ C

N−1(t)
‖(w0, w1)‖H4×H2 , t ≥ t0,

where N−1 is the inverse function of N(·) := f(·)−2. Moreover, if there
exists an increasing sequence (nk)k∈N ⊆ N such that |D∗φnk

| . f(nkπ) for
all k ∈ N, then the decay rate is optimal in the sense of Theorem 5.5.

The coefficients |D∗φn| for the functions b defined by b(ξ) = 1− ξ, b(ξ) =
ξ2(1 − ξ) and b(ξ) = χ(0,ξ0)(ξ) (with ξ0 ∈ (0, 1) an irrational number of
constant type) are presented in (6.12), and for these functions Corollary 6.6

implies the asymptotic rates t−1, t−1/3 and t−1/3 as t → ∞, respectively.
Note finally that Remark 6.4 applies also in the setting of this section.
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[7] C. J. K. Batty, R. Chill, and Y. Tomilov. Fine scales of decay of operator semigroups.
J. Europ. Math. Soc., 18(4):853–929, 2016.



42 R. CHILL, L. PAUNONEN, D. SEIFERT, R. STAHN, AND YU. TOMILOV

[8] C. J. K. Batty and T. Duyckaerts. Non-uniform stability for bounded semi-groups
on Banach spaces. J. Evol. Equ., 8:765–780, 2008.

[9] C. Benchimol. Feedback stabilizability in Hilbert spaces. Appl. Math. Optim.,
4(3):225–248, 1978.

[10] A. Borichev and Y. Tomilov. Optimal polynomial decay of functions and operator
semigroups. Math. Ann., 347(2):455–478, 2010.

[11] N. Burq and M. Hitrik. Energy decay for damped wave equations on partially rect-
angular domains. Math. Res. Lett., 14(1):35–47, 2007.

[12] N. Burq and R. Joly. Exponential decay for the damped wave equation in unbounded
domains. Commun. Contemp. Math., 18(6):1650012, 27, 2016.

[13] N. Burq and C. Zuily. Concentration of Laplace eigenfunctions and stabilization of
weakly damped wave equation. Comm. Math. Phys., 345(3):1055–1076, 2016.

[14] N. Burq and M. Zworski. Geometric control in the presence of a black box. J. Amer.
Math. Soc., 17(2):443–471, 2004.

[15] N. Burq and M. Zworski. Rough controls for Schrödinger operators on 2-tori. Ann.
H. Lebesgue, 2:331–347, 2019.
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8, 00956 Warsaw, Poland

Email address: ytomilov@impan.pl


	1. Introduction
	2. Preliminaries
	2.1. Standing assumptions and well-posedness
	2.2. Damped second-order problems
	2.3. Resolvent estimates and non-uniform stability

	3. Frequency domain criteria for resolvent bounds and non-uniform stability 
	3.1. Criteria for first-order problems
	3.2. Criteria for second-order problems

	4. Time-domain conditions for non-uniform stability
	4.1. Conditions for first-order problems
	4.2. Time-domain conditions for second-order problems

	5. Optimality of the decay rates
	6. Non-uniform stability of damped partial differential equations
	6.1. Wave equations on two-dimensional domains
	6.2. Damped wave equations on one-dimensional domains
	6.3. A damped fractional Klein–Gordon equation
	6.4. A weakly damped beam equation

	References

